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Abstract: Background: Understanding the role of repetitive elements (REs) in cancer
development is crucial for identifying novel biomarkers and therapeutic targets. Methods:
This study investigated the locus-specific dysregulation of REs, including the differential
expression and methylation of REs, across 12 TCGA cancer types stratified by their genomic
context (i.e., genic and intergenic REs). Results: We found uniquely dysregulated genic REs
co-regulated with their corresponding transcripts and associated with distinct biological
functions in different cancer types. Uniquely dysregulated intergenic REs were identified in
each cancer type and used to cluster different sample types. Recurrently dysregulated REs
were identified in several cancer types, with genes associated with up-regulated genic REs
involved in cell cycle processes and those associated with down-regulated REs involved
in the extracellular matrix. Interestingly, four out of five REs consistently down-regulated
in all 12 cancer types were located in the intronic region of the TMEM252, a recently
discovered tumor suppressor gene. TMEM252 expression was also down-regulated in
10 of 12 cancer types, suggesting its potential importance across a wide range of cancer
types. With the corresponding DNA methylation array data, we found a higher prevalence
of hypo-methylated REs in most cancer types (10 out of 12). Despite the slight overlaps
between differentially expressed REs and differentially methylated REs, we showed that
the methylation of locus-specific REs negatively correlates with their expression in some of
these 12 cancer types. Conclusions: Our findings highlight the cancer-specific and recurrent
deregulation of REs, their functional associations, and the potential role of TMEM252 as
a pan-cancer tumor suppressor, providing new insights into biomarker discovery and
therapeutic development.
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1. Introduction
1.1. Repetitive Elements (REs) and Their Regulations in the Human Genome

Repetitive elements (REs) are the most abundant type of sequences in the human
genome [1] can be classified into satellites (or tandem repeats) and transposable elements
(TEs), with the latter further subdivided into RNA transposable elements and DNA trans-
posable elements. REs are typically hierarchically classified with increasing granularity,
from class, family, and subfamily (corresponding to repClass, repFamily, and repName
hierarchies defined by the human Repeatmasker [2]) to locus-specific elements based on
sequence similarities [3]. As arrays of repeated nucleotides, satellites can be further clas-
sified based on the increasing size of the repeated unit into microsatellites, minisatellites,
satellites, and macrosatellites [4]. Due to their highly variable array size they are also
known as variable number of tandem repeats (VNTRs). Most satellites are composed of
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either simple repeats or complex repeats with increased repeat unit length and complex-
ity, mainly appearing at centromeres, pericentromeric regions and subtelomeric regions.
While the tandem repeats are primarily found in centromeres and telomeres, TEs and their
evolutionary relics are scattered throughout the genome [5]. The most common classes
of RNA transposable elements in the human genome include long terminal repeat (LTR),
long interspersed nuclear element (LINE), short interspersed nuclear element (SINE), and
Retroposon (LINE, SINE, and Retroposon belong to non-LTR), and these use RNA as their
intermediate for the transposition [3]. DNA transposable elements in the human genome
mainly consist of DNA transposons and RC (rolling circles or helitrons) [3]. Instead of using
RNA intermediate for their transposition, DNA transposons mostly use the “cut-and-paste”
mechanism for their propagation [6], with the RC using the rolling-circle intermediates for
their transposition [7].

LINE-1 (a family of LINE class) and Alu (a family of SINE class) have been extensively
studied in human genomes. LINE-1 makes up approximately 17% of the human genome,
and it has been estimated that there are more than one million Alu repeats in the human
genome [8]. The intact sequence for LINE-1 is about 6 kb, containing protein domains
encoded by two open reading frames (ORFs), one of which (ORF2) encodes both the en-
donuclease domain (EN) and the reverse transcriptase domain (RT) that are important for
the transposition. Alu is about 300 bp without the protein-coding ability, and it essentially
relies on the activity of the ORF2 protein encoded by LINE-1 for its transposition. In
addition to Alu, SVA (SINE-VNTR (variable number of tandem repeats)–Alu, a family
of retroposon class) also requires the LINE-1 for the transposition [9]. REs are generally
believed to be beneficial for the species, as they can help maintain the integrity of cen-
tromeres and telomeres. They have also been extensively domesticated in the genome
to benefit genome evolution [10]. In particular, most TEs in the human genome were
inserted millions of years ago and have accumulated mutations and thus become defec-
tive [8]. However, it has been estimated that about 80–100 LINE-1 elements are still fully
functional and capable of transposition [11]. Therefore, it is deleterious at the individual
level if their activities are not adequately regulated [10]. Given the critical role REs play
in chromosome integrity and genome stability, the host has evolved several mechanisms
to ensure the proper regulation of REs. In humans, epigenetic silencing, including DNA
methylation and histone modification, is extensively studied [6]. Biochemically, DNA
methylation involves adding the methyl (-CH3) group covalently to the five positions of
cytosine moiety, mainly within CpG dinucleotides, which often exist in clusters called CpG
islands. Enzymes, including methyltransferases (DNMTs), are responsible for DNA methy-
lation [12]. Methyl-CpG binding domain proteins (MBD) can associate with methylated
DNA, which can induce histone protein deacetylation by recruiting histone deacetylases.
The interplay between DNA methylation and histone acetylation is critical for regulating
chromatin conformation, which is essential for regulating gene expressions, including RE
expression [12,13]. Besides DNA methylation and histone modifications, piwi proteins
and their associated piwi RNA complexes have also been extensively studied for their
role in the silencing of REs in the germline via either transcriptional gene regulation (e.g.,
DNA methylation) or posttranscriptional gene regulation (e.g., bind to and degrade TE
transcripts in the cytosol) [11].

1.2. Dysregulation of REs in Cancer Genomes

Compared with normal cells, cancer cells typically present an aberrant epigenetic
landscape where the hypermethylation of promoter regions in the tumor suppressor genes
is coupled with extensive hypomethylation in the intergenic regions [14]. CpG islands
(regions with a high frequency of CpG sites) of gene promoters are a relatively small
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part of the genome compared with the vast majority of CpG dinucleotides found in the
regions of REs [12]. For example, by analyzing Illumina 450K methylation array data
of 10 different types of common cancer samples (including LIHC, HNSC, BLCA, LUSC,
COAD, BRCA, KIRC, PRAD, LUAD, and KIRP) compared with the corresponding matched
normal samples in the TCGA (The Cancer Genome Atlas) dataset, a recent study found
that out of 10 tumor types, 5 of them (LIHC, HNSC, BLCA, LUSC, COAD) showed more
hypo-methylated CpGs than hyper-methylated CpGs among differentially methylated
CpGs. Importantly, when restricting the analysis of CpGs within TEs, 9 out of 10 analyzed
cancer types (except KIRP) showed a significantly higher proportion of hypomethylated
CpGs than hypermethylated CpGs [3]. This result indicates that the hypo-methylated TEs
are the potential driving force for the extensively observed genome-wide hypomethylation
in the cancer genome [12]. Furthermore, a negative relationship was observed between the
intergenic TE expression and TE methylation (DNA methylation probes within ±500 bp
region around most 5′ sites of intergenic TE annotated in RepeatMasker [2]) at the subfamily
level [3]. In terms of temporal activities of TEs during tumor progression, by modeling the
progression of tumorigenesis via a series of cell transformations in fibroblast cells, a recent
study showed that TE expressions at the subfamily level are significantly increased as
cells progress through transformation (i.e., an increasing number of TE subfamilies are up-
regulated from early passage to the immortalized stage, and to early transformation) [15].
Notably, it was found that genome hypomethylation occurs at an early stage of transfor-
mation, and similar to findings in human cancer studies, this hypomethylation is more
pronounced in TE regions [15]. Furthermore, it is observed that the methylation of these
TEs remains dynamic (e.g., a given subfamily of TEs can change their methylation level)
during the transformation [15]. Besides TEs, studies [16,17] also revealed the dysregulation
of satellites in different types of cancers. For example, a recent study found that in bladder
cancers, Sat-a (satellite-α) and NBL-2 (microsatellite) were hypomethylated, while D4Z4
(macrosatellite) was hypermethylated compared with normal control; on the other hand, in
leukemia, DNA methylation was increased in NBL-2 and D4Z4 [16]. Finally, our previous
study on osteosarcoma also found significantly higher expression levels of different satel-
lites in osteosarcoma tumor samples compared with normal controls [17]. It is therefore
clear that REs are dynamically dysregulated both epigenetically and transcriptionally in
different cancer types as the tumor progresses.

Despite these advancements, the dysregulation of REs in most cancer studies is re-
stricted to the subfamily level (i.e., aggregated measurement) analysis, which may limit
the effectiveness of REs as biomarkers in cancer research. Recently, increasing amounts of
attention [15,18,19] have been shifted to the characterization of REs in the cancer genome
at the locus-specific level. However, most studies only focused on a few types of REs
(e.g., HERV, human endogenous retrovirus, a member of LTR) or a few types of cancers.
For instance, a recent study focusing on the locus-specific HERV in head and neck cancer
patients showed that different clusters of patients, grouped based on HERV expression in
the tumor-adjacent normal tissues, had significantly different survival probabilities [18].

To explore the dysregulation of locus-specific REs in cancer, we identified differentially
expressed REs between tumor and the matched normal samples in 12 TCGA cancer types
(including BLCA, BRCA, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, PRAD, THCA,
and UCEC) [20]. We found that genic REs were co-regulated with their corresponding
transcripts, defined as having overlaps in chromosomal coordinates. We identified the
uniquely and recurrently dysregulated REs as well as the biological functions with their
associated genes. With the recurrently dysregulated REs (REs that are dysregulated in
any seven cancer types), we also identified their associated cancer genes. We identified
six REs consistently dysregulated across all 12 cancer types: one up-regulated and five
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down-regulated. Notably, four of the five down-regulated REs were located within the
intronic region of the TMEM252 gene, which itself was down-regulated in ten out of twelve
cancer types. Our analysis of differentially expressed and methylated REs between tumors
and their matched normal controls revealed a consistent negative correlation between RE
methylation and expression at the locus-specific level for some of these 12 cancer types.

2. Materials and Methods
2.1. Determine Differentially Expressed REs at Locus-Specific Levels Across 12 Cancer Types

This study analyzed twelve cancer types from the Cancer Genome Atlas (TCGA)
database—BLCA, BRCA, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, PRAD, THCA,
and UCEC [20]. We selected cancer types and subjects (patients) with at least five patients
per type, and paired RNA-sequencing (RNA-seq) and methylation data from both tumors
and matched normal samples for each patient. RNA-seq data in the bam format was
downloaded using the GDC Transfer Tool Client (https://gdc.cancer.gov/access-data/gdc-
data-transfer-tool, accessed on 25 November 2023). The number of subjects analyzed in
each cancer type is detailed in Table S1.

The workflow for RE expression analysis is shown in Figure S1a. Specifically, the
bam files were first converted to paired-end reads in fastq format with samtools (ver-
sion: 1.18) [21]. The paired-end reads were cleaned with Trim Galore (version: 0.6.4,
https://github.com/FelixKrueger/TrimGalore, accessed on 8 December 2023) to remove
adaptors and low-quality bases at read ends by Cutadapt (version: 4.5) [22]. The quality of
clean reads was assessed with Fastqc (version: v0.11.8) [23] before aligning to the reference
human genome hg38 with STAR (version: 2.7.11a) [24]. The gene expression at the transcript
isoform level and RE expression at the locus-specific level were then determined via TElocal
(version 1.1.1, https://github.com/mhammell-laboratory/TElocal, accessed on 5 Decem-
ber 2023). Specifically, the TElocal takes alignment results generated from STAR, the gene
annotation file in gtf format downloaded from UCSC Table Browser [25], and pre-built locus-
specific RE gtf indices downloaded from https://labshare.cshl.edu/shares/mhammelllab/
www-data/TElocal/prebuilt_indices/hg38_rmsk_TE.gtf.locInd.gz (accessed on 5 Decem-
ber 2023), as inputs, and outputs the read count table for annotated transcripts and REs
in the reference human genome. To determine the differentially expressed REs in each
cancer type compared with matched normal samples at the locus-specific level, DESeq2 [26]
was used to analyze the TElocal results with the design = ~ type (tumor/normal) + pa-
tient_ID to account for any individual specific effects (i.e., potential confounding effects
from the different characteristics of the individual patient). The normal samples were
used as the reference for differential expression analysis. Specifically, count tables gen-
erated by TElocal for each cancer type were combined into a single table, which was
then analyzed using the DESeq function from the DESeq2 package (version: 1.40.2). REs
with a |log2FoldChange| ≥ 1 and the adjusted p-values ≤ 0.05 (using the Benjamini–
Hochberg procedure implemented in the results function from DESeq) were considered
as the differentially expressed REs comparing tumors with matched normal samples.
In the downstream analysis, we then focused on the locus-specific REs that belong to
one of the following seven classes DNA, LINE, LTR, RC, Retroposon, SINE, and Satel-
lite in terms of the RE annotations (https://labshare.cshl.edu/shares/mhammelllab/
www-data/TElocal/annotation_tables/hg38_rmsk_TE.gtf.locInd.locations.gz, accessed
on 5 December 2023). Notably, REs with highly similar sequences, which can lead to
ambiguous mapping with short reads, were excluded from further analysis. We visual-
ized RE expression changes in each cancer type with the R package EnhancedVolcano
(https://github.com/kevinblighe/EnhancedVolcano, accessed on 11 December 2023).

https://gdc.cancer.gov/access-data/gdc-data-transfer-tool
https://gdc.cancer.gov/access-data/gdc-data-transfer-tool
https://github.com/FelixKrueger/TrimGalore
https://github.com/mhammell-laboratory/TElocal
https://labshare.cshl.edu/shares/mhammelllab/www-data/TElocal/prebuilt_indices/hg38_rmsk_TE.gtf.locInd.gz
https://labshare.cshl.edu/shares/mhammelllab/www-data/TElocal/prebuilt_indices/hg38_rmsk_TE.gtf.locInd.gz
https://labshare.cshl.edu/shares/mhammelllab/www-data/TElocal/annotation_tables/hg38_rmsk_TE.gtf.locInd.locations.gz
https://labshare.cshl.edu/shares/mhammelllab/www-data/TElocal/annotation_tables/hg38_rmsk_TE.gtf.locInd.locations.gz
https://github.com/kevinblighe/EnhancedVolcano
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To understand how RE dysregulation varies across different genome regions, we
categorized differentially expressed REs based on their location. First, we downloaded an-
notations for various genic features (5′UTRs, coding regions, introns, and 3′UTRs) in hg38
bed format from the UCSC Table Browser [25]. These were then merged using BEDTools’
mergeBed module [27]. The remaining regions of the hg38 genome were designated as inter-
genic using BEDTools’ complementBed module. Finally, the intersect module assigned each
differentially expressed RE to a genic or intergenic category. We categorized differentially
expressed REs as either genic (within genes) or intergenic (between genes) to understand
how their dysregulation varies across the genome. For genic REs, we investigated the
transcriptional regulation of their corresponding genes. We first identified uniquely up- and
down-regulated REs specific to each cancer type within genic regions. Next, we explored
the biological functions associated with the genes linked to these uniquely dysregulated REs.
We used the Python package mygene (https://github.com/biothings/mygene.py, accessed
on 8 December 2023, version: 3.2.2) to retrieve the genes corresponding to transcripts asso-
ciated with these REs, followed by functional enrichment analysis using g:Profiler [28]. For
intergenic REs, we employed t-distributed Stochastic Neighbor Embedding (t-SNE) from
scikit-learn [29] to visualize distinct sample types. As a non-linear dimensionality reduction
technique, t-SNE preserves the relationships between samples in high-dimensional space
by maintaining these relationships in a lower-dimensional map. This allows us to visualize
potential clusters or groupings within the data based on intergenic RE expression patterns.

To identify REs commonly dysregulated across multiple cancer types, we analyzed the
union of up- or down-regulated REs in various combinations of cancer types, ranging from
two (i.e., the union of up- or down-regulated REs in any two cancer types) to twelve (i.e.,
the union of up- or down-regulated REs in all twelve cancer types). We focused on REs
that were dysregulated in at least seven cancer types (more than half of the total analyzed),
referenced them as recurrently up- or down-regulated REs, and visualized them using
the Python package tagore (version: 1.1.2) [30]. To assess the biological significance of
these recurrently dysregulated REs, we analyzed the genes associated with these genic
REs using g:Profiler [28]. We also intersected these genes with a curated list of 2682 well-
established cancer-related genes from COSMIC Cancer Gene Census [31], TSGene [32],
IntOgen [33], oncogene database [34], and OncoKB Cancer Gene List [35]. The expression
changes (log2Fold) of the relevant transcripts between the tumor and matched normal
samples were visualized using the R package pheatmap (version: 1.0.12) [36]. Finally,
we employed IGV (Integrative Genomics Viewer) [37] to visually validate the recurrently
dysregulated REs across all 12 cancer types.

2.2. Determine Differentially Methylated REs at Locus-Specific Levels Across 12 Cancer Types

The Illumina 450K methylation array offers single-base resolution methylation
data for over 450,000 CpG sites across the human genome [38]. While covering 96%
of CpG islands and previously identified differentially methylated regions in cancer
(https://www.illumina.com/content/dam/illumina-marketing/documents/products/
datasheets/datasheet_humanmethylation450.pdf, accessed on 5 February 2024), it only
targets about 1.5% of all CpG sites [39]. Specifically, the 50 bp probes employed by this array
can cover 99% of RefSeq genes, including their gene bodies and promoter regions. Similar
to RNA-seq data, methylation data (SeSAMe Methylation β Values from Methylation Array
Harmonization Workflow) expressed in β values for each subject were downloaded using
the GDC Transfer Tool Client (https://gdc.cancer.gov/access-data/gdc-data-transfer-tool,
accessed on 25 November 2023). The workflow for RE methylation analysis is shown in
Figure S1b. Specifically, the hg19 annotation associated with each probe was obtained via
the R annotation package IlluminHumanMethylation450kann.ilmn12.hg19 (http://www.

https://github.com/biothings/mygene.py
https://www.illumina.com/content/dam/illumina-marketing/documents/products/
datasheets/datasheet_humanmethylation450.pdf
https://gdc.cancer.gov/access-data/gdc-data-transfer-tool
http://www.bioconductor.org/packages/IlluminaHumanMethylation450kanno.ilmn12.hg19/
http://www.bioconductor.org/packages/IlluminaHumanMethylation450kanno.ilmn12.hg19/
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bioconductor.org/packages/IlluminaHumanMethylation450kanno.ilmn12.hg19/, accessed
on 5 February 2024) [40] and the conversion of the coordinates from hg19 to hg38 was
conducted using pyliftover (https://pypi.org/project/pyliftover/, version: 0.4, accessed
on 5 February 2024), where only the probes that can be converted to hg38 were kept for
further analysis. Focusing on the transcription start site (TSS) known to be associated
with transcriptional repression in cancer [41], we defined a 1 kb region flanking the 5′ end
(TSS +/− 500 bp) of each RE in terms of the previous study [3]. We used pybedtools [27,42]
to identify probes intersecting these 1 kb regions, ensuring they mapped uniquely to each
RE locus. Probes that can be mapped to multiple RE loci were removed to reduce the
ambiguity. Average β values were calculated for RE loci mapped by multiple probes to
represent their methylation levels.

Similar to RE expression analysis, we focused on REs belonging to the seven RE
classes. Differentially methylated REs were identified using the limma R package (version:
3.56.2) [43], with the design = ~ type (tumor/normal) + patient_ID to account for individual
effects [3]. β values were converted to M values (M value = log2 (β value/(1 − β value))) for
the statistical tests given their approximate normal distributional properties. Differentially
methylated REs were identified based on the adjusted p-value ≤ 0.05 (using the Benjamini–
Hochberg procedure implemented in the topTable from limma) and an absolute difference
in β values between tumor and matched normal samples ≥ 0.1, as in the previous study [3].
Due to the limited coverage of the Illumina 450K methylation array on the human genome,
methylation data were primarily used for association analysis with RE expression data, as
described below.

2.3. Determine the Association Between RE Methylation and Expression Changes at the
Locus-Specific Level

While a previous study identified a negative association between the intergenic TE
expression and the methylation level at the subfamily level [3], we aimed to examine
this relationship at the locus-specific level. In this study, however, only 66,859 of the
4,467,488 locus-specific REs used for expression analysis have corresponding methylation
probes (107,634 probes). The limited overlap between differentially expressed and methy-
lated REs necessitates separate analyses. For each cancer type, we compared the expression
changes (log2 fold changes) between hypo- and hypermethylated REs. Additionally, we
compared the average methylation changes (tumor vs. normal) based on M values for up-
and down-regulated REs. Finally, the Pearson correlation coefficient between the methyla-
tion changes (i.e., tumor–normal) based on M values and expression changes based on log2
fold changes of normalized expressions (i.e., log2 (tumor/normal)) for each of these REs
was determined based on all subjects in a given cancer type.

2.4. Statistical Analysis

To assess the statistical significance of differences in expression and methylation
changes between tumor and matched normal samples, we employed the non-parametric
Wilcoxon rank-sum test implemented in the R package ggpubr (version: 0.6.0) [44]. A
p-value < 0.05 was considered statistically significant. For the enrichment analysis of gene
sets, we used the hypergeometric test implemented in g:Profiler [28]. Only annotated genes
were included in the statistical domain scope. Multiple testing correction was performed
using the default g:SCS method, and adjusted p-values < 0.05 were considered significant.
Pearson correlation coefficients were calculated using the pearsonr function implemented
in SciPy [45] for the correlation analysis between RE methylation and expression changes.

http://www.bioconductor.org/packages/IlluminaHumanMethylation450kanno.ilmn12.hg19/
http://www.bioconductor.org/packages/IlluminaHumanMethylation450kanno.ilmn12.hg19/
http://www.bioconductor.org/packages/IlluminaHumanMethylation450kanno.ilmn12.hg19/
https://pypi.org/project/pyliftover/
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3. Results
3.1. Differentially Expressed REs Between Tumor and Matched Normal Samples at the
Locus-Specific Level

Our analysis focused on locus-specific REs in the human genome, as annotated by
TElocal for hg38. There are 4,505,469 locus-specific REs, mostly belonging to SINE, LINE,
LTR, and DNA classes (Figure S2a,b). Sequence lengths varied across seven RE classes:
RC, SINE, DNA, and Retroposons ranged from 10 to 1000 bps, while LINEs spanned 10 to
10,000 bps, and Satellite and LTR elements ranged from 10 to 100,000 bps (Figure S3a). The
number of REs generally corresponded to chromosome size across the 22 autosomes (Figure
S3b). About half of the human genome comprises various REs (Figure S3c). Furthermore,
most REs associated with protein-coding and non-protein-coding genes (based on RefSeq
annotation) reside in intronic or intergenic regions (Figure S3d). Finally, we excluded 37,981
REs with identical genomics sequences to reduce the ambiguity in expression analysis,
resulting in 4,467,488 REs for further analysis.

Based on these 4,467,488 locus-specific REs, we analyzed RE dysregulation patterns in
12 cancer types, identifying distinct expression changes for each. Concretely, the differentially
expressed REs between tumor and matched normal samples in each cancer type were deter-
mined separately. As shown in Figure S4 and Table S2, KIRC exhibited the highest number
of up-regulated REs (40,125), followed by BRCA (16,586). Conversely, BRCA had the most
down-regulated REs (45,586), followed by THCA (31,099). Interestingly, UCEC and HNSC
showed the fewest up- and down-regulated REs, respectively. A detailed breakdown of these
differentially expressed REs in either genic or intergenic regions is shown in Figure 1a. Clearly,
most of these differentially expressed REs fall into the largest four RE classes (i.e., SINE,
LINE, LTR, and DNA) in the genic regions. Interestingly, among all RE classes, HNSC has a
relatively higher number of Retroposon being up-regulated in tumor samples compared to the
matched normal controls (i.e., 720 genic RE up-regulations + 601 intergenic RE up-regulations
vs. 5 genic RE down-regulations + 4 intergenic RE down-regulations; see Table S2 for detailed
information in the context of other cancer types).

For both up- and down-regulated genic REs, we observed a strong co-regulation with
their corresponding transcripts across all 12 cancer types. As shown in Figure 1b, for
up-regulated genic REs, the large proportions of the log2Fold changes for the associated
transcripts show positive values across all 12 cancer types (indicating up-regulation).
However, these proportions varied slightly among different cancer types. A similar co-
regulation between RE and associated transcripts is also consistently observed for the
down-regulated genic REs, with predominantly negative values in log2 fold change, as
shown in Figure 1c.

3.2. Uniquely Differentially Expressed REs in Each Cancer Type at the Locus-Specific Level

To identify REs uniquely differentially expressed in each cancer type, we analyzed
the differentially expressed REs identified in each of the 12 cancer types (see the details
in Table S3–S14 for uniquely dysregulated REs in BLCA, BRCA, COAD, ESCA, HNSC,
KIRC, KIRP, LIHC, LUAD, PRAD, THCA, and UCEC, respectively). This analysis revealed
that each cancer type exhibits a distinct pattern of RE dysregulation, with unique sets of
REs being up- or down-regulated. Figure 2a,b summarize the number of uniquely up-
and down-regulated REs stratified by their genomic context (genic vs. intergenic) in each
cancer type. As expected, KIRC, which had the highest overall number of up-regulated REs,
also exhibited the most uniquely up-regulated REs, primarily in genic regions. Similarly,
BRCA and THCA demonstrated the highest number of uniquely down-regulated REs,
predominantly within genic regions.
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Figure 2. Uniquely and recurrently dysregulated REs across 12 cancer types. (a) Number of uniquely
up-regulated REs in a given cancer type stratified by their genomic context; (b) number of uniquely
down-regulated REs in a given cancer type stratified by their genomic context; (c) number of recur-
rently up-regulated REs among any number of 12 cancer types stratified by their genomic context;
(d) number of recurrently down-regulated REs among any number of 12 cancer types stratified by
their genomic context; (e) genomic locations of recurrently up- (red lines) and down-regulated (blue
lines) REs in any seven cancer types (defined as the recurrently dysregulated REs in this study) and
their abundance in each human chromosome.
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To understand the biological relevance of uniquely differentially expressed REs, we
performed gene set enrichment analysis for genes associated with these elements in genic
regions. Briefly, we retrieved genes linked to uniquely dysregulated genic REs using the
mygene package (https://github.com/biothings/mygene.py, version: 3.2.2, accessed on
5 December 2023). The relationship between the number of REs, associated transcripts,
and corresponding genes is summarized in Table S15. We then used g:Profiler [28] to
analyze the functional terms associated with these genes, including Gene Ontology (GO)
terms of GO: MF, GO: BP, and GO: CC and terms related to biological pathways in KEGG,
Reactome, and WikiPathways. Figure 3a,b depict the top five enriched functional terms
for uniquely up- and down-regulated REs across the 12 cancer types. All terms were
statistically significant (adjusted p-values < 0.05), based on the g_SCS correction method.
The rich factor is calculated as the intersection size (i.e., the number of genes in the input
query annotated to the corresponding term) divided by the term size (i.e., the number of
genes annotated to the term in hg38 genome annotation), multiplied by 100 (%).

In terms of uniquely up-regulated genic REs, as shown in Figure 3a, among a total of 38
(i.e., union of the top 5 enriched terms from all 12 cancers) functional terms, 24 are significantly
enriched in KIRC, followed by 18 terms in BLCA and 14 terms in BRCA. Notably, UCEC lacked
enriched terms. Namely, genes associated with uniquely up-regulated genic REs in UCEC do
not contain any enriched terms from GO and Pathway databases. Interestingly, BRCA and
ESCA are enriched in the terms related to the cell cycle process, whereas KIRC, BLCA, BRCA,
PRAD, HNSC, LUAD, and LIHC show enrichment in intracellular structures, with KIRC and
THCA also displaying enriched terms in signal transduction pathways. Among 53 functional
terms associated with uniquely down-regulated genic REs, BRCA have the most enriched
terms (24), followed by KIRP (21). ESCA, PRAD, and UCEC each have five enriched terms
(Figure 3b). BRCA, KIRP, LUAD, BLCA and, to a lesser extent, KIRC, THCA, and ESCA all
display enrichment in cell junctions. COAD and LIHC show enrichment in distinct pathways,
including cellular glucuronidation, uronic acid metabolic process, pentose and glucuronate
interconversion, ascorbate, aldarate, and retinol metabolism.

REs that are uniquely differentially expressed in each cancer may represent the unique
characteristics of that cancer. To assess the potential use of uniquely differentially expressed
REs as cancer-type representations, we focused on intergenic REs to minimize confound-
ing effects from associated transcripts. We used t-SNE [29] to visualize the normalized
expression of these REs, including uniquely up-regulated, down-regulated, and combined
sets. Briefly, the normalized expressions of uniquely up- or down-regulated intergenic REs,
as well as the combination of them, were used as the feature inputs to t-SNE to cluster
different sample types (including different normal samples, different tumor samples, and
different normal and tumor samples), as shown in Figure 4. Specifically, totals of 17,541
uniquely up-regulated intergenic REs, 24,351 uniquely down-regulated intergenic REs, as
well as 38,899 uniquely dysregulated intergenic REs (i.e., the union of up-regulated and
down-regulated REs; there are 2993 REs that overlap between uniquely up-regulated and
down-regulated REs because some of the uniquely up-regulated REs in one cancer can be
down-regulated in other cancers) were used as the input for t-SNE visualizations (see Fig-
ures 4a,b and S5a–f). Clearly, Figure 4 demonstrates the clustering of different sample types
(normal, tumor, and combinations) based on these REs. Notably, uniquely up-regulated
intergenic REs effectively differentiate sample types with different tissue origins for both
normal and tumor samples, as shown in Figure 4a. Interestingly, the tumors and their
matched normal samples are close together. Still, they are distinct from other sample types
in this two-dimensional latent space when these uniquely up-regulated intergenic REs are
used to cluster different normal and tumor samples, as shown in Figure 4b. Similar trends
were observed with uniquely down-regulated and combined intergenic REs (Figure S5c–f).

https://github.com/biothings/mygene.py
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Figure 3. Enriched biological functions associated with uniquely dysregulated genic REs. (a) Top
five enriched functional terms, including gene ontology (GO) terms (including GP: MF, GO: BP,
and GO: CC) and terms associated with biological pathways (including KEGG, Reactome, and
WikiPathways) associated with uniquely up-regulated genic REs. (b) Top five enriched functional
terms associated with uniquely down-regulated genic REs (note: numbers in the heatmap indicate the
rich factors calculated as ((number of genes in the input query that are annotated to the corresponding
term)/(number of genes that are annotated to the term)) × 100%).
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Figure 4. Sample clustering with uniquely up-regulated intergenic REs identified across 12 cancer
types (tsne_2d_one, first dimension; tsne_2d_two, second dimension). (a) t-SNE plots based on
uniquely up-regulated intergenic REs for normal and tumor sample clustering separately; (b) t-SNE
plot based on uniquely up-regulated intergenic REs for different sample type clustering (tumor with
matched normal samples).
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3.3. Recurrently Differentially Expressed REs in Multiple Cancer Types at the Locus-Specific Level

To identify REs commonly dysregulated across 12 cancer types, we analyzed the
overlap of up- and down-regulated REs in various combinations. We focused on those
appearing in at least 7 cancer types (more than half of the 12 cancer types), which we
termed “recurrently differentially expressed REs” (see the details in Table S16). As shown
in Figure 2c, we identified a total of 272 recurrently up-regulated REs, including 188 in genic
regions (15 DNA, 74 LINE, 29 LTR, 70 SINE) and 84 in intergenic regions (10 DNA, 33 LINE,
21 LTR, 17 SINE, 3 Retroposon). Similarly, we identified 566 recurrently down-regulated
REs (Figure 2d), with a similar distribution between genic and intergenic regions, namely,
295 in genic regions (consisting of 28 DNA, 114 LINE, 52 LTR, 98 SINE, 3 Retroposon REs)
and 271 in intergenic regions (composed of 14 DNA, 111 LINE, 54 LTR, 5 Satellite, 86 SINE,
1 Retroposon). Clearly, most of these recurrently dysregulated REs belong to LINE, SINE,
LTR, and DNA classes. Figure 2e illustrates the genomic locations of these recurrently up-
and down-regulated REs within each chromosome. Notably, chromosome 1, the largest
human chromosome, contains the highest number of recurrently dysregulated REs (102 out
of 838 or 12.17%).

Moreover, we found that among the transcripts associated with recurrently up-
regulated genic REs, a high percentage exhibited increased expression in tumor samples
compared to matched normal controls across all 12 cancer types (Figure 5a). Specifically,
188 recurrently up-regulated genic REs are associated with 588 transcripts. Among these
transcripts, 90.14% in BLCA show a positive log2 fold change in expression, while BRCA
has the lowest percentage, at 79.08%. The remaining cancer types fall between these two
values. Similarly, transcripts associated with recurrently down-regulated REs display de-
creased expression in tumors. We detected 295 recurrently down-regulated genic REs that
correspond to 863 transcripts, most of which are down-regulated, as shown in Figure 5b.
Among these transcripts, 90.96% in ESCA exhibit a negative log2 fold change when com-
paring tumor and matched normal samples, while PRAD has the lowest percentage at
71.15%. The remaining cancer types fall between these two.

Using the mygene package, we retrieved genes for transcripts associated with recur-
rently up- and down-regulated genic REs. Among the 588 transcripts associated with
recurrently up-regulated genic REs, 450 correspond to 121 genes, while the remaining
138 transcripts lack corresponding reference genes. Similarly, among the 863 transcripts
associated with recurrently down-regulated genic REs, 658 correspond to 158 genes, with
the remaining 205 transcripts lacking reference genes. These two gene sets were submitted
to g:Profiler [28] for functional analysis. Interestingly, the functional analysis revealed
distinct patterns for up- vs. down-regulated REs. Genes associated with recurrently up-
regulated REs were enriched for functions in the cell cycle and DNA replication (Figure 5c),
processes crucial for cancer cell proliferation. Conversely, genes associated with recur-
rently down-regulated REs displayed enrichment for extracellular matrix (ECM) and ECM
proteoglycans (Figure 5d), suggesting potential tumor microenvironment remodeling.
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Figure 5. Regulation and functions of transcripts associated with recurrently dysregulated genic
REs. (a) log2 expression changes between tumor and matched normal samples for transcripts
corresponding to recurrently up-regulated genic REs; (b) log2 expression changes between tumor
and matched normal samples for transcripts corresponding to recurrently down-regulated genic REs;
(c) enriched biological functions associated with the genes in (a); (d) enriched biological functions
associated with the genes in (b).
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To further investigate the potential importance of these genes in tumor development,
we compared these two sets of genes to a curated list of 2682 well-established cancer
genes, as mentioned in the method section. We identified 12 cancer genes associated with
recurrently up-regulated REs (CDK1, ESCO2, GAS5, GTSE1, H2BC12, KIFC1, MMS22L,
NF1, NIT2, PVT1, STAT1, UBE2C) and 19 cancer genes associated with recurrently down-
regulated REs (ADAMTS9-AS2, ATF3, CASP8, DCN, DUSP1, ECT2L, EMP1, FANCC, JDP2,
KLF6, NDRG2, NR4A1, RHOBTB2, SOCS2, SPARCL1, STARD13, SYNPO2, TAGLN, TIMP3).
The expression changes of the cancer-related transcripts associating with recurrently up-
and down-regulated genic REs between tumor and matched normal controls are shown
in Figure S6a„ respectively. While most genes associated with recurrently dysregulated
REs are transcriptionally regulated in a similar manner (up-regulated REs associated with
up-regulated genes, and vice versa, see Figure 1b,c), some genes, such as CASP8, FANCC,
ECT2L, and SPARCL1, exhibit opposing expression patterns. For example, in the case of the
CASP8 annotated with nine transcripts, 105 REs were found in its genic regions. Although
some of these REs (e.g., SVA_E_dup106, SVA_E_dup107) are recurrently down-regulated in
most of the 12 cancer types, the vast majority of these 105 REs are up-regulated, as shown
in Figure S6c. A similar scenario also holds for the FANCC, as shown in Figure S6d. On the
other hand, for gene ECT2L and especially SPARCL1, their up-regulation shown in Figure
S6b is indeed consistent with the up-regulation of the corresponding genic REs shown in
Figure S6e„ respectively. This suggests complex regulatory mechanisms might be involved
in RE expression and regulations.

Beyond the recurrently dysregulated REs identified in at least seven cancer types,
we also identified a subset of REs consistently dysregulated in all 12 cancer types. As
shown in Figure 2c, one intergenic RE (MLT1D_dup1540), which belongs to the MLT1D
subfamily, ERVL-MaLR family, and LTR class, is consistently up-regulated in all 12 cancers
when comparing tumors with matched normal controls. Furthermore, five genic REs
(i.e., MamTip2_dup3664, L1MB2_dup4373, L1ME3Cz_dup10031, MamRTE1_dup5302, and
LTR82A_dup581) are consistently down-regulated in all 12 cancer types, as shown in
Figure 2d. We validated these findings using IGV, comparing read coverage between
tumor and matched normal samples. An example of read coverage corresponding to
MLT1D_dup1540 between 5 randomly selected tumors and matched normal samples from
BLCA (out of total 17 paired tumor–normal samples in BLCA) is shown in Figure S7a. The
comparison of normalized expression levels across all 12 cancer types is shown in Figure
S7b, which is consistent with the IGV results. Interestingly, four of these five consistently
down-regulated REs (except for L1ME3Cz_dup10031) are located in the same intronic
region of the TMEM252 gene (with transcripts ID: NM_153237.2, consisting of two exons).
For example, in Figure 6a, we show the reads coverage corresponding to these four REs
between the same randomly selected tumor and matched normal samples from BLCA
(note that no reads are mapped to the fifth RE, LTR82A_dup582). The log2Fold changes
of TMEM252, as well as the five associated REs (displayed in Figure 6a), across 12 cancer
types, are depicted in Figure 6b, and the corresponding normalized expression comparison
between tumor and matched normal samples in BLCA is shown in Figure 6c. A similar
comparison across all 12 cancer types is shown in Figure S8. Among these five consistently
down-regulated genic REs, L1ME3Cz_dup10031 is located in the intronic region of genes
GCOM1 and MYZAP. The IGV genomic context and the normalized expression comparison
for L1ME3Cz_dup10031 between tumor and matched normal samples across all 12 cancer
types are shown in Figure S9.
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Figure 6. Four consistent down-regulated REs and their corresponding gene TMEM252 among
12 cancer types. (a) Reads coverage corresponding to these 4 REs (down-regulated in all 12 cancer
types) and their associated gene, TMEM252 (with transcript ID: NM_153237.2), between the 5
randomly selected tumor and matched normal samples in BLCA (same set of samples as used
in Figure S7a, tumor sample ends with 01A while the matched normal sample ends with 11A).
(b) The log2Fold changes of TMEM252 as well as the associated REs between each tumor type and
corresponding normal controls, the darker blue represents the increased downregulation of TMEM252
or REs in tumor samples in terms of their expressions. (c) Normalized expression comparison between
tumor and matched normal samples in BLCA for TMEM252 and associated REs.

3.4. Differentially Methylated REs Between Tumor and Matched Normal Samples at the
Locus-Specific Level

To analyze RE methylation, we focused on probes that mapped uniquely to the 1 kb
region surrounding the transcription start site (TSS) of locus-specific REs. Among the
4,467,488 locus-specific REs available for expression analysis, 131,322 were covered by at
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least one probe within their 1 kb TSS. After excluding probes that mapped to multiple
RE loci (due to the overlapping REs in the genome), we identified 66,859 unique REs
associated with a total of 107,634 probes (multiple probes can be mapped to the 1 kb TSS of
the same RE). These unique REs consist of 33,590 SINE, 17,348 LINE, 7427 LTR, 7988 DNA,
245 Retroposon, 241 Satellite, and 20 RC, as shown in Figure S10a. The breakdown of these
REs at the family level is shown in Figure S10b.

To identify differentially methylated REs between tumors and matched normal con-
trols for these 66,859 REs, the calculated M values for each RE were used as the input for
the limma R package [43]. Table S17 summarizes the number of hypomethylated REs (i.e.,
reduced methylation level in tumors) and hypermethylated REs (i.e., increased methylation
level in tumors) in each cancer type. Ff 12 cancer types, 10 (excluding KIRP and PRAD)
exhibited significantly more hypomethylated REs than hypermethylated ones. Like differ-
entially expressed REs, most differentially methylated REs belonged to SINE, LINE, LTR,
and DNA classes.

3.5. Relationship Between RE Methylation and Expression at the Locus-Specific Level

Given the limited coverage of Illumina 450K methylation array data, we focused
on assessing the association between RE methylation and expression changes among
the differentially methylated REs (see Table S17). We observed a slight overlap between
hypomethylated REs and differentially expressed REs across all 12 cancer types (Figure
S11a). Similar patterns were found for hypermethylated REs and differentially expressed
REs (Figure S11b). Furthermore, we also identified the differentially methylated REs that
are up- or down-regulated in their expression. As shown in Figure S11c,d, similar small
overlaps were also observed in this case.

To examine the relationship between methylation and expression changes, we com-
pared expression changes (log2 fold changes) of hypo- and hypermethylated REs, assuming
hypo-methylated REs are expected to have a higher expression change compared to hyper-
methylated REs if DNA methylations negatively regulate the expression of REs. As shown
in Figure 7a, four cancer types (BRCA, KIRC, KIRP, PRAD) showed this expected pattern,
while the remaining eight had non-significant results. Furthermore, we compared the
averaged methylation changes (i.e., tumor–normal) based on M values between up- and
down-regulated REs with the assumption that averaged methylation changes should be
lower for up-regulated REs compared to down-regulated ones. As shown in Figure 7b,
six cancer types (BRCA, COAD, KIRC, KIRP, LUAD, and PRAD) showed lower aver-
aged methylation changes when these REs were up-regulated. Therefore, based on this
two-complementary analysis, BRCA, KIRC, KIRP, and PRAD demonstrated a consistent
negative relationship between RE methylation and expression at the locus-specific level.
For recurrently dysregulated REs, we found limited overlap with methylation data due to
array coverage. Unfortunately, the six consistently dysregulated REs identified in this study
are not covered by the Illumina 450K methylation arrays. Therefore, we focused on those
recurrently dysregulated in any seven cancer types. Among 272 recurrently up-regulated
REs, only 16 were covered by the DNA methylation array; among 566 recurrently down-
regulated REs, only 10 were covered. The Pearson correlation between methylation and
expression changes for recurrently up-regulated REs is shown in Figure 7c, while Figure 7d
shows the results for recurrently down-regulated REs. While the correlation varied slightly
between cancer types, a clear negative correlation was observed for some specific REs (e.g.,
L1M4_dup16795 in Figure 7d).
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Figure 7. Association between changes of RE methylation and RE expression across 12 cancer
types. (a) Comparison of expression changes for differentially expressed REs that are either hypo- or
hypermethylated; (b) comparison of methylation changes for differentially methylated REs that are
either up- or down-regulated; (c) Pearson correlation coefficient between methylation changes (i.e.,
tumor–normal) based on M values and expression changes based on log2 fold changes of normalized
expressions (i.e., log2(tumor/normal)) for recurrently up-regulated REs that are covered by DNA
methylation array; (d) Pearson correlation coefficient between methylation changes and expression
changes for recurrently down-regulated REs that are covered by the DNA methylation array.

4. Discussion and Conclusions
Previous research has extensively explored the dysregulation of repetitive elements

(REs), particularly transposable elements (TEs), in various adult and pediatric cancers [17].
Differentially expressed TEs were investigated comprehensively among 13 cancer types [3].
Although these studies primarily analyzed REs at the subfamily level, few studies inves-
tigated the dysregulation of specific REs at the more detailed, locus-specific level. For
example, using Telescope [46], a recent study compared the expression levels of locus-
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specific HERVs between prostate, breast, and colon cancers and their matched normal
controls [19]. They found that 155 HERV loci were differentially expressed in all three
cancer types, and 114 were differentially expressed in the same direction. Focusing on head
and neck cancer and using Telescope, expression levels of HERVs in the tumor-adjacent
normal tissue were shown to help cluster patients with different survival probabilities [18].

To better understand the dysregulation landscape of REs comprehensively at the
locus-specific level in cancer genomes, we used TElocal (https://github.com/mhammell-
laboratory/TElocal, accessed on 5 December 2023). Unlike Telescope, designed primarily
for locus-specific HERV analysis [46], TElocal performed better in a recent benchmarking
comparison among TE RNA-Seq analysis tools [47]. Our study comprehensively inves-
tigated the dysregulation of repetitive elements (REs) at the locus-specific level across
12 cancer types, offering a more detailed picture of RE dysregulation in cancer genomes.
We observed uniquely dysregulated REs in each cancer type and commonly dysregulated
REs across multiple types. The dysregulation of genic REs, specifically those situated
in introns, may influence the expression of corresponding genes. Notably, several genes
associated with these dysregulated REs are well-known tumor suppressors or oncogenes,
highlighting the potential role of REs in cancer development.

Our analysis identified distinct patterns of RE dysregulation across the 12 cancer
types. After accounting for the potential confounding effects of individual subjects in
our expression analysis, our results (see Table S2) show that among the 12 cancer types
analyzed, 5 (BLCA, COAD, HNSC, KIRC, PRAD) showed more up-regulated REs than
down-regulated ones at the locus-specific level. In comparison, despite focusing on the
intergenic TE dysregulations at the subfamily levels, the previous study using the TCGA
dataset also showed the over-expression of TEs in these five cancer types [3]. On the other
hand, the remaining seven cancer types (BRCA, ESCA, KIRP, LIHC, LUAD, THCA, and
UCEC) showed more down-regulated REs than up-regulated ones. Among these seven
cancer types, four (KIRP, LUAD, BRCA, and THCA) also showed more down-regulated
intergenic TE expressions when comparing tumors with matched normal samples from
the same previous study [3], where ESCA and UCEC were not analyzed. Interestingly, in
the previous study [3], LIHC displayed more up-regulated intergenic TE expressions in
tumor samples compared to matched normal samples. This discrepancy is possibly due to
the differences in analysis methods (e.g., subfamily level versus locus-specific level), the
inclusion of genic REs in our study, and the consideration of potential individual effects
in our data analysis. Despite the small differences, our results are, in general, consistent
with the previous findings in terms of the amount of dysregulated REs identified from
different cancer types (the vast majority of REs are TE; see Figure S2). Compared with the
previous study [3], we also included the genic region REs in our analysis, which can help us
to better characterize the biological effects of RE dysregulations in cancers by the functional
analysis of the associated genes. Most of these genic REs are located in the intronic regions
(see Figure S3), and we showed that genic REs are primarily regulated similarly to their
corresponding transcripts (see Figure 1b,c and Figure S6c–f). This co-regulation may occur
because these dysregulated genic REs could be read-through transcriptions of host genes,
as suggested by the previous study [3]. However, it is also possible that these REs are
independent entities, regulated in a manner similar to their corresponding transcripts
and genes.

To understand the unique characteristics of each cancer type, we identified REs that
were exclusively up- or down-regulated in specific cancers. By analyzing the genes associ-
ated with these REs, we discovered distinct biological functions enriched in each cancer
type. For example, genes linked to up-regulated REs in BRCA and ESCA were enriched
in the mitotic cell cycle process, while those related to down-regulated REs in COAD and

https://github.com/mhammell-laboratory/TElocal
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LIHC were enriched in cellular glucuronidation. This highlights how the dysregulation
of genic REs, likely reflecting the dysregulation of their corresponding transcripts, can
contribute to the unique features of different cancer types. In addition to the uniquely
dysregulated genic REs, by projecting the uniquely dysregulated intergenic REs to a lower
dimensional space with t-SNE, we demonstrated their usefulness in clustering different
sample types (cancer types). Notably, these low-dimensional representations captured
both the critical difference between different sample types (e.g., clustering different normal
sample types as well as different tumor types) as well as the difference for different tissues
(i.e., tumor and matched normal samples tend to cluster together, see Figure 4b and Figure
S5d,f). The importance of the information contained in dysregulated REs has also been
recently shown to lead to improved cancer classifications for liver and esophagus cancer
when differentially expressed REs measured at the subfamily level from the blood plasma
of different cancer patients are included as features in a logistic regression model [48]. Com-
pared with aggregated measurement at subfamily levels, the measurement of locus-specific
REs can provide richer and more informative insights into cancer studies. For example, the
uniquely dysregulated intergenic REs identified in this study across different cancer types
could help us better characterize each cancer type.

In addition to the uniqueness of each cancer type, we also explored their commonality
by determining the commonly dysregulated REs at locus-specific levels in multiple cancer
types. With the dysregulation in any of the seven cancer types analyzed, we defined the
recurrently differentially expressed REs (see Figure 2c,d). Interestingly, genes correspond-
ing to the recurrently up-regulated genic REs are enriched in DNA replication and mitotic
cell cycle. In contrast, genes corresponding to the recurrently down-regulated genic REs
are enriched in the extracellular matrix. Notably, among these genes, 12 cancer-related
genes, including CDK1 (oncogene [49]), ESCO2 (oncogene [50]), GAS5 (tumor suppressor
non-coding gene [51]), GTSE1 (oncogene [52]), H2BC12 (potential oncogene [53]), KIFC1
(oncogene [54]), MMS22L (oncogene [55]), NF1 (tumor suppressor gene [56]), NIT2 (tumor
suppressor gene [57]), PVT1 (non-long coding RNA with oncogenic effects [58]), STAT1
(tumor suppressor gene [59]) and UBE2C (oncogene [60]), are consistently up-regulated (see
Figure S6a). At the same time, 17 out of 19 cancer-related genes, including ADAMTS9-AS2
(tumor suppressor long non-coding gene [61]), ATF3 (tumor suppressor gene [62]), DCN
(tumor suppressor gene [63]), DUSP1 (promote carcinogenesis in some cancers and inhibits
carcinogenesis in other cancers [64]), ECT2L (oncogene [65]), EMP1 (oncogene [66]), JDP2
(tumor suppressor gene [67]), KLF6 (tumor suppressor gene [68]), NDRG2 (tumor suppres-
sor gene [69]), NR4A1 (tumor suppressor in some cancers oncogene in other cancers [70]),
RHOBTB2 (tumor suppressor gene [71]), SOCS2 (tumor suppressor gene [72]), SPARCL1
(tumor suppressor gene [73]), STARD13 (tumor suppressor gene [74]), SYNPO2 (tumor
suppressor gene [75]), TAGLN (oncogene [76]), and TIMP3 (tumor suppressor gene [77]),
are mostly down-regulated in most of the 12 cancer types (see Figure S6b). Furthermore,
since one gene typically consists of many transcripts and each transcript can be associated
with many genic REs, we found that the regulation direction (i.e., up or down-regulation)
for a given gene is similar to the regulation direction of the majority of the corresponding
genic REs, as shown in Figure S6c–f.

Among the five consistently down-regulated genic REs in all 12 cancer types, four
are in the same intronic region of gene TMEM252 (with transcripts ID NM_153237.2), as
shown in Figure 6a. Interestingly, one of these five RE elements (i.e., LTR82A_dup582) is
also located in the same intronic region, but with little to no read coverage in almost all
12 cancer types (see Figure 6b,c and Figure S8), indicating the less likely event of read-
through transcription. TMEM252 (Human transmembrane protein 252), a member of the
transmembrane protein family, showed significantly reduced expression in the majority of
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the 12 cancer types (including BLCA, BRCA, COAD, ESCA, HNSC, LIHC, LUAD, PRAD,
THCA) with non-significant reductions in UCEC when comparing tumors with matched
normal samples, as shown in Figure S8. Interestingly, even with all four corresponding
genic REs being significantly down-regulated in KIRC and KIRP, the expression level
of TMEM252 showed comparable expression between the tumor and matched normal
samples (see Figure S8). TMEM252 has recently been identified as a tumor suppressor
gene in triple-negative breast cancer, inhibiting its progression by suppressing STAT3 activa-
tion [78]. Furthermore, a recent study on papillary thyroid carcinoma demonstrated that the
overexpression of TMEM252 can suppress cell proliferation by repressing the expressions of
p53, p21, and p16 through the inhibition of the Notch pathway, and consequently epithelial–
mesenchymal transition. The overexpression of TMEM252 also inhibited cell migration and
invasion [79]. Although not being shown to be down-regulated in KIRC and KIRP in this
study, evidence has shown that the higher expression levels of TMEM252 in KIRC (https:
//www.proteinatlas.org/ENSG00000181778-TMEM252/pathology/renal+cancer/KIRC, ac-
cessed on 5 May 2024) and KIRP (https://www.proteinatlas.org/ENSG00000181778-TMEM2
52/pathology/renal+cancer/KIRP, accessed on 5 May 2024) are associated with a higher
survival probability for the cancer patients. Given the consistent down-regulation across
the vast majority of 12 cancer types analyzed in this study and the recently reported tumor-
suppressing effects, TMEM252 could potentially act as a tumor suppressor gene in a wide
range of cancer types, thus warranting further in-depth investigation.

To investigate the epigenetic dysregulations of REs, we also analyzed the DNA methy-
lation changes of REs that can be uniquely identified in their 1kb TSS by the corresponding
methylation probes. Compared with RNA-seq data, only about 1.5% of REs (66,859 out of
4,467,488) are available for the analysis of methylation changes due to the low coverage of
the Illumina 450K methylation array in the human genome (i.e., only 1.5% CpG coverage
in the human genome [39]). In contrast to differentially expressed REs (see Table S2), 10 out
of 12 cancer types (BLCA, BRCA, COAD, ESCA, HNSC, LIHC, LUAD, THCA, and UCEC)
showed a higher number of hypomethylated REs at locus-specific levels than hypermethy-
lated ones (see Table S17). This is consistent with the TE methylation changes observed
at the subfamily level [3], further indicating the validity of the RE methylation analysis
conducted in this study at the locus-specific level.

Despite the general belief that DNA methylation negatively regulates RE expression [1,
12], our analysis revealed a discrepancy between the prevalence of hypomethylated REs
and up-regulated REs in cancer types, namely, the larger number of cancer types with
higher levels of hypomethylated REs and the smaller number of cancer types showing more
up-regulated REs. This discrepancy may be partially attributed to the limited coverage of
the Illumina 450K methylation array. To overcome the small overlaps between differentially
methylated REs and differentially expressed REs shown in Figure S11, and to explore the
association between RE methylation and expression changes, we compared the expression
changes between hypo- and hypermethylated REs, as well the averaged methylation
changes between up- and down-regulated REs shown in Figure 7a,b, respectively. We
also checked the correlation between methylation and expression changes for recurrently
dysregulated REs covered by the DNA methylation array (see Figure 7c,d). In general,
expression changes are higher for hypo-methylated REs than hyper-methylated ones, and
averaged methylation changes are lower for up-regulated REs than down-regulated ones.
Although the Illumina 450K methylation array’s limited coverage restricted our analysis of
the association between RE methylation and expression, our results are broadly consistent
with the belief that DNA methylations restrict RE activities.

In terms of the regulatory effects of genic REs on their associated genes, studies have
shown that genes containing more highly methylated REs tend to display significantly
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reduced expression compared to genes that contain less methylated REs or genes without
genic REs [80]. Therefore, it is possible that the progressive hypomethylation of REs during
cancer development can drive the expression of their associated genes. The recent study also
showed that cryptic regulatory elements within REs can be frequently co-opted by cancer
cells to drive the expression of oncogenes [81]. In Arabidopsis thaliana, it has been found
that genic REs/TEs are often less methylated than intergenic TEs, and the maintenance of
the heterochromatic state of genic REs is important for proper host gene expression [80];
however, it is unclear whether this is also true in human cancer genomes. Studies in
mammals demonstrated that repressive histone H3K9 methylation can be deposited on
genic LINE1 within the transcriptionally active chromatin for RE repression [82]. Therefore,
besides DNA methylation, histone modifications can also affect RE activities, which could
then, in turn, affect the surrounding genes.

To our knowledge, this is the first study that has comprehensively characterized
the dysregulation of locus-specific REs among multiple common cancer types. With the
increasing adaptation to long-read sequencing [83], we expect a higher interest in studying
REs at locus-specific levels in cancer research. Due to the limited coverage of the Illumina
450K methylation array, a comprehensive understanding of methylation changes for REs at
locus-specific levels in the common cancer is still lacking. With the increasing application
of whole genome bisulfite sequencing in cancer studies [84], we expect a high-resolution
map of DNA methylation changes for different cancer types. Future studies utilizing
whole-genome bisulfite sequencing will provide a more comprehensive picture of DNA
methylation patterns for REs at the locus-specific level. Considering the rich information
contained in REs at the locus-specific level and complementary information offered by
RE expression and methylation changes, we expect to see the development of RE-based
biomarkers for cancer type classification and, eventually, for potential therapeutic targets
in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes16050528/s1, Figure S1: The workflow to identify dys-
regulated REs across 12 cancer types; Figure S2: Summary of locus-specific REs based on hg38
annotation for TElocal; Figure S3: Distribution of locus-specific REs in the human genome based
on hg38 annotation for TElocal; Figure S4: Expression changes of locus-specific REs in each of the
12 cancer types; Figure S5: Sample clustering with uniquely dysregulated intergenic REs identified
across 12 cancer types; Figure S6: Expression changes of transcripts corresponding to cancer genes
associated with recurrently dysregulated genic Res; Figure S7: Consistent up-regulated intergenic
RE; Figure S8: Expression comparison between tumor and matched normal samples for TMEM252
gene (with transcripts ID: NM_153237.2) and its associated REs across 12 cancer types; Figure S9:
Consistent down-regulated intronic RE (i.e., L1ME3Cz_dup10031) across 12 cancer types; Figure S10:
Number of REs that can be uniquely mapped with DNA methylation probes; Figure S11: Number of
REs that are differentially expressed and differentially methylated; Table S1: The number subjects
from different cancer types used in this study; Table S2: The number of differentially expressed
REs in each cancer type; Table S3: The uniquely dysregulated REs in BLCA; Table S4: The uniquely
dysregulated REs in BRCA; Table S5: The uniquely dysregulated REs in COAD; Table S6: The
uniquely dysregulated REs in ESCA; Table S7: The uniquely dysregulated REs in HNSC; Table S8:
The uniquely dysregulated REs in KIRC; Table S9: The uniquely dysregulated REs in KIRP; Table
S10: The uniquely dysregulated REs in LIHC; Table S11: The uniquely dysregulated REs in LUAD;
Table S12: The uniquely dysregulated REs in PRAD; Table S13: The uniquely dysregulated REs in
THCA; Table S14: The uniquely dysregulated REs in UCEC; Table S15: The number of uniquely up-
and down-regulated genic REs with their associated transcripts and genes; Table S16: The recurrently
dysregulated REs in any 7 cancer types; Table S17: The number of differentially methylated REs in
each cancer type.
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