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Objectives: To expand the genotypes and phenotypes of sodium voltage-gated
channel alpha subunit 1 (SCN1A)-related epilepsy.

Methods: We retrospectively collected the clinical and genetic information of 22
epilepsy patients (10 males, 12 females; mean: 9.2± 3.9 years; 3.9–20.3 years) carrying
22 variants of SCN1A. SCN1A mutations were identified by next-generation sequencing.

Results: Twenty-two variants were identified, among which 12 have not yet been
reported. The median age at seizure onset was 6 months. Sixteen patients were
diagnosed with Dravet syndrome (DS), two with genetic epilepsy with febrile seizures
plus [one evolved into benign epilepsy with centrotemporal spikes (BECTS)], one
with focal epilepsy, one with atypical childhood epilepsy with centrotemporal spikes
(ABECTS) and two with unclassified epilepsy. Fourteen patients showed a global
developmental delay/intellectual disability (GDD/ID). Slow background activities were
observed in one patient and epileptiform discharges were observed in 11 patients during
the interictal phase.

Significance: This study enriches the genotypes and phenotypes of SCN1A-
related epilepsy. The clinical characteristics of patients with 12 previously unreported
variants were described.

Keywords: epilepsy, SCN1A gene, novel mutation, BECTS, cohort

INTRODUCTION

SCN1A is a member of the voltage-gated sodium channel (VGSC) gene family (OMIM:182389)
and has been mapped to 2q24.3. SCN1A is the most clinically relevant gene in a wide spectrum
of epilepsy phenotypes ranging from febrile seizures to Dravet syndrome (DS) (Aljaafari et al.,
2017). Baulac et al. (1999) and Moulard et al. (1999) reported 2 unrelated families with generalized
epilepsy with febrile seizures plus those who showed linkage to a locus on chromosome 2q21-q33.
Escayg et al. (2000) identified 2 missense mutations in the SCN1A gene of these two families in
2000, marking SCN1A as a new disease gene for human inherited epilepsy. Since then, a wide
variety of mutations of SCN1A from epilepsy patients have been identified. More than 80% of
patients with DS have pathogenic variants (or mutations) in SCN1A (Scheffer and Nabbout, 2019).
Data from a cohort of 363 Chinese DS patients in 2015 showed that 70.3% of the patients carried
potentially pathogenic mutations in SCN1A, with a total of 223 mutations (Xu et al., 2015). As of
2015, 1727 SCN1A mutations had been identified in epilepsy patients. Patients with mild genotypes
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have a high frequency of missense mutations, which do not
result in protein truncation. For more severe phenotypes,
missense mutations occur less frequently. In addition, missense
mutations are found in severe phenotypes, such as DS, with
a higher potential to occur in the pore region of Nav1.1
than those occurring in mild phenotypes (Meng et al., 2015).
However, the genotypes and phenotypes of SCN1A have not
been completely identified. In this study, we elaborate on the
clinical manifestations of 22 mutations of SCN1A in 22 patients
in a Chinese cohort and provide more novel genotypes and
phenotypes of SCN1A-related epilepsy.

MATERIALS AND METHODS

Participants
Patients with epilepsy with SCN1A heterozygous variants were
enrolled at the Neurology and Pediatric Department of Xuanwu
Hospital Capital Medical University between September 2015
and November 2018. In the cohort, 367 patients with epilepsy
without acquired factors were assessed by the epilepsy panel. Of
these, 22 patients carried SCN1A variants. Clinical registrations,
including name, sex, date of birth, perinatal conditions,
age at the onset of seizures, clinical manifestations, family
history, genetic data, video electroencephalography (EEG),
magnetoencephalography (MEG), brain magnetic resonance
imaging (MRI), and therapeutic regimens, were established for all
patients without acquired factors. Follow-up clinical information
was collected online or by telephone call.

Genetic Analysis
SCN1A mutation screening was performed using next-generation
sequencing of epilepsy-associated genes or whole-exome
sequencing. Variants were validated using Sanger sequencing.
The SCN1A isoform was referenced (NM_001202435 and
GRCh37/hg19). All the samples were sequenced on an Illumina
Nova series platform (Illumina, San Diego, CA, United States)
by Kangso (Beijing, China). We analyzed the data as follows.
Synonymous changes and single nucleotide polymorphisms with
a minor allele frequency greater than 5% were removed.1 The
clinical significance of the identified variants was interpreted
according to the guidelines set out by the American College of
Medical Genetics. The pathogenicity of the identified variants
was predicted using the Mutation Taster server,2 Polymorphism
Phenotyping version 2 (Polyphen-2),3 PROVEAN, and Sorting
Intolerant From Tolerant (SIFT).4 SCN1A variants identified in
the patients were compared with those identified in a comparison
group of approximately 150,000 individuals from the Genome
Aggregation Database and SCN1A mutation database.5

1http://www.ncbi.nlm.nih.gov/projects/SNP
2http://www.mutationtaster.org/
3http://genetics.bwh.harvard.edu/pph2/
4http://sift.jcvi.org/
5http://scn1a.caae.org.cn/

Ethical Issues
This research was approved by the Ethics Committee of Xuanwu
Hospital Capital Medical University. Written informed consent
was obtained from the parents or guardians of all patients
included in this study.

RESULTS

Clinical Features
The 22 patients (10 males, 12 females; mean: 9.2 ± 3.9 years;
3.9–20.3 years) were from 22 unrelated families. Demographic
and clinical characteristics are summarized in Supplementary
Table 1. The median age at seizure onset and sampling
was 6 months and 9 years, respectively. The first seizure
type varied among the patients with an SCN1A mutation:
febrile seizures in sixteen patients, myoclonic seizure in
one patient, simple partial seizure in one patient and
secondary generalized tonic-clonic seizure (GTCS) in one
patient. Status epilepticus was present in 13 patients. For
seizure-precipitating factors, low-grade fever in ten patients,
vaccines in two patients and hot baths in twelve patients
were identified.

All 22 patients had normal perinatal period and 11 patients
had a family history of febrile seizures or epilepsy. The father
and brother of patient 27 shared the same SCN1A variant with
the proband with a history of febrile seizures in childhood. The
twin sister of patient 28 with DS carrying the same SCN1A
(p.Arg1892Ter) heterozygous mutation died from a sudden
unexpected death in epilepsy (SUDEP) at the age of 16. The
father of patient 22 suffered febrile seizures plus and became
seizure-free at 8 years of age.

No patient had a developmental delay before seizure onset.
Fourteen patients showed global developmental delay/intellectual
disability (GDD/ID) during the disease course. These patients
showed a delay in at least two of the following domains: motor
skills, speech and language, cognitive skills, and social and
emotional skills (Moeschler and Shevell, 2014). Patient 5 had
autistic features in addition to their intellectual disability and
received special education.

Video Electroencephalography and Brain
Imaging
Electroencephalography was obtained in 17 patients, and
abnormalities were detected in 12 patients. Slow background
activity was observed except for epileptiform discharges in
one patient. All 11 patients had epileptiform discharges during
the interictal phase. Generalized spike waves, polyspike-
and-waves were captured in one patient. Focal or multifocal
epileptic discharges were present in six patients. Both focal
and generalized epileptic discharges were observed in four
patients. Clinical seizures were captured in four patients. Two
patients (9 and 25) exhibited focal to bilateral tonic-clonic
seizures. Patient 1 experienced myoclonic seizures. Patient 7 had
myoclonic seizures, eyelid myoclonic seizures and automatism
seizures at different times. Typical electroencephalogram
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FIGURE 1 | Typical electroencephalogram (EEG) changes in the cases with SCN1A mutations. (A) The interictal EEG for the patient 29 with BECTS obtained at the
age of 9 years showed right mid-temporal spikes during sleep. (B) Interictal EEG for the patient 7 with DS obtained at the age of 5 years showed high-voltage
generalized 3–4 Hz polyspike-and-waves. (C) Interictal EEG for the patient 12 with DS obtained at the age of 4 years showed bilateral occipital and posterior
temporal 2–3.5 Hz slow waves. (D) Interictal EEG for the patient 6 with ABECTS obtained at the age of 8 years showed independently bilateral central and
mid-temporal spikes.

changes in four cases with SCN1A mutations are shown in
Figure 1.

Among the 22 patients with brain MRI results, 17 showed
a normal MRI. The MRI abnormalities included small left
occipital gyrus (patient 21), left hippocampus higher signal in
FLAIR (patient 18), post-operative changes of bilateral frontal
and parietal lobe and corpus callosotomy (patient 8), slightly
small bilateral hippocampus (patient 7) and abnormal signal in
posterior horn of bilateral ventricles (patient 4).

Phenotypic Spectrum
The phenotypic spectrum of patients with SCN1A variants
included sixteen (72.7%) with DS, two (9.1%) with genetic
epilepsy with febrile seizures plus [one evolved into benign
epilepsy with centrotemporal spikes (BECTS)], one (4.5%) with
focal epilepsy, one (4.5%) with atypical childhood epilepsy
with centrotemporal spikes (ABECTS) and two (9.1%) with
unclassified epilepsy.

Genetic Analysis
All patients underwent genetic sequencing and carried SCN1A
heterozygous mutations. Twenty-two kinds of pathogenic
mutations were identified in the SCN1A mutations, including

eleven missense, four non-sense, six frameshift and one splicing
site mutation. Seventeen were confirmed to be de novo, four
were inherited (one from his unaffected mother, three from
their affected parents with febrile seizures or febrile seizures
plus) (Figure 2) and one was unknown. The twelve novel
variants (location of novel variants shown in Figure 3) and ten
previously reported SCN1A variants are summarized in Table 1
and Supplementary Table 1. Twenty-one identified variants were
likely to cause changes in the Nav1.1 protein, eight of which
were in the pore region (reentrant loop between segment 5 and
segment 6, and segment 6), one in the voltage sensory (segment
4), six in the transmembrane segments, two in the linker regions
of domains, three in the C-terminal domain and one in the
N-terminal domain.

Variants of uncertain significance of SCN1B (c.566C > T,
p.Thr189Met) and SCN9A (c.5678G > A, p.Arg1893His) were
also detected in two patients (patients 4 and 16) and one patient
(patient 10), respectively, all with DS.

Correlation Between Genotype and
Phenotype
In our cohort, eleven patients carried SCN1A mutations (non-
sense, frameshift and splicing mutation), which might cause more
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FIGURE 2 | Pedigrees of the cases with inherited SCN1A variants and their corresponding phenotypes. ABPE, atypical benign partial epilepsy; DS, dravet
syndrome; FS, febrile seizures; FS+, febrile seizures plus; GEFS+: generalized epilepsy with febrile seizures plus. # represents female; � represents male;  and �
represents affected individuals; arrow represents proband; m/+ represents heterozygous mutation, +/+ represents wild type.

FIGURE 3 | Location of 12 novel variants identified in SCN1A in our cohort. Schematic diagram illustrating the transmembrane topology of a voltage-gated sodium
channel and location of novel variants characterized in this study.

severe protein structural changes. Eight patients (72.7%) were
diagnosed with DS, one (9.1%) with generalized epilepsy with
febrile seizures plus (GEFS +) converting to BECTS and two
(18.2%) with unclassified epilepsy. Three (75%) of four patients
with missense mutations in the pore region of the Nav1.1 channel
had DS and one (25%) had ABECTS. Five (71.4%) of seven
patients with missense mutations in other regions had DS, one
(14.3%) had focal epilepsy and one (14.3%) had GEFS +.

Treatment and Follow-Up
The age at which the final follow-up was taken of the 19 patients
in our cohort ranged from 3 to 19 years. The mean follow-
up period was 43 months. Eight patients were seizure-free for
5 months to 3 years. Patients 1 with DS had self-remission
without antiepileptic medication. Seven patients were seizure-
free with antiepileptic medication: two patients with DS (patients
12 and 18) and patient 29 with BECTS had valproate and
levetiracetam combination therapy; patients 27 with GEFS + had
levetiracetam monotherapy; two patients with DS (patients
14 and 25) were on valproate and topiramate or valproate,
levetiracetam and clobazam therapy; and one patient with

unclassified epilepsy accompanied by right limb dysplasia and
right external auditory canal atresia (patient 13) had valproate,
levetiracetam and clobazam therapy.

Eleven patients still had seizures, and their age at last follow-
up ranged from 3 to 19 year 5 mo. Eight of these patients had
tried at least three antiepileptic drugs. Two patients (patients 16
and 22) with DS presented increased myoclonic seizures after
exposure to oxcarbazepine. Patient 8 with DS underwent epileptic
lobectomy (pathological result suggested focal cortical dysplasia
type I), corpus callosum resection, vagus nerve stimulation and
acupuncture. She still experienced weekly GTCSs.

DISCUSSION

The spectra of phenotypes and genotypes of SCN1A mutations
have been expanding. As Meng et al. (2015) counted in
2015, 1727 SCN1A mutations have been identified in epilepsy
patients. In this study, 12 unreported mutations from 12 patients
were identified, and the clinical features and mutations of the
patients were described. BECTS and ABECTS are both parts
of the spectrum of idiopathic rolandic epilepsy syndromes
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(IRES) (Gobbi et al., 2006), which are related to several genes,
such as recombinant ionotropic glutamate receptor, N-methyl-
D-aspartate 2A (GRIN2A), γ-aminobutyric acid A receptor
(GABAA-R), DEP domain-containing 5 (DEPDC5), and RNA
binding protein fox-1 homolog 1/3 (RBFOX1/3) (Lal et al., 2013,
2014; Lemke et al., 2013; Reinthaler et al., 2015). One patient from
a GEFS + family carried with a pathogenic heterozygous SCN1A
(c.2624C > A) variant was diagnosed with ABECTS (Kivity et al.,
2017). Patients with SCN1A (p.R604H, p.T1250M and p.T1174S)
variants were reported to have Rolandic epilepsy (Lal et al.,
2016). IRES is a rare phenotype of SCN1A variants compared
to DS. Two patients in our cohort who presented with BECTS
and ABECTS carried the SCN1A variants (c.5636_5637insAG,
p.Ser1879ArgfsX33; c.1193C > T, p.Thr398Met), respectively,
adding strong evidence that the SCN1A variants might be
responsible for IRES.

To determine genotype-phenotype associations in SCN1A-
related epilepsy, some investigators have attempted to make
a prognosis based on SCN1A mutations. For instance, Cetica
et al. (2017) reported that truncating mutations result in earlier
onset disease and a significantly higher risk of developing DS.
A study by Meng et al. (2015) indicated that missense mutations
in voltage sensory and ion-pore regions are associated with the
DS phenotype rather than GEFS +. The frequency of missense
SCN1A mutations in the pore region of the Nav1.1 channel
in DS patients was 54.1% (Meng et al., 2015). In our cohort,
most patients with truncating mutations and missense mutations
in pore regions presented with a more severe DS phenotype,
which corresponded with previous reports. The mutation in
patient 25 was inherited from his mother without epilepsy-related
phenotype but with migraine, indicating the case of phenotypic
heterogeneity of this gene mutation. A recent systematic review
(Hasırcı Bayır et al., 2021) summarized six families of 33 patients
with mutations in the SCN1A gene related to epilepsy and familial
hemiplegic migraine (FHM). Recent works showed the role of
hyperactivity of GABAergic interneurons in a mechanism of
cortical spreading depression (CSD) initiation, which is relevant
as a pathological mechanism of SCN1A mutations (Jansen et al.,
2020; Chever et al., 2021). The pathogenesis of the mutations
identified in our study remains to be further investigated.

The VGSC subtype Nav1.7 is encoded by SCN9A, which
is well known to be involved in the generation, development,
and maintenance of pain responses (Bang et al., 2018; Chang
et al., 2018). SCN9A was proven to be both a cause of febrile
seizure and variable epilepsy phenotypes and a partner with
SCN1A in DS (Singh et al., 2009; Yang et al., 2018). SCN1B
encodes the VGSCβ1 and β1B non-pore-forming subunits. Early
infantile developmental and epileptic encephalopathy resulting
from homozygous SCN1B loss-of-function variants has a more
severe clinical phenotype with earlier onset than typical DS (Aeby
et al., 2019). The SCN1B (p.Thr189Met) variant was detected
in sudden unexplained nocturnal death syndrome (Liu et al.,
2014) and atrial fibrillation cases (Hayashi et al., 2015). This
gain-of-function variant was predicted to lower the threshold
potential for cellular excitability (Hayashi et al., 2015). Three
patients carried mutations in not only SCN1A but also SCN1B
and SCN9A. Whether mutations in SCN1B and SCN9A influence
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the phenotype cannot be defined unless functional studies are
performed. Further investigations of these mutations should be
conducted in the future as one of our future research directions.

Sudden unexpected death in epilepsy has been reported to
account for approximately 2–18% of all epilepsy-related deaths
(Gaitatzis and Sander, 2004) and has a higher incidence in DS
(Dravet et al., 2005). SUDEP in GEFS + (Hindocha et al.,
2008) and DS (Le Gal et al., 2010) patients with SCN1A
mutations have also been reported. SUDEP was not observed
in patients in our cohort but in a twin sister of patient 28
with DS carrying the same SCN1A heterozygous mutation at
the age of 16. The specific reason for death in our patient’s
twin sister is unknown. The proposed mechanisms of SUDEP
include (Tomson et al., 2008): effects of long-standing seizure
disorder; predisposition to SUDEP, incidental or related to
etiology of epilepsy; factors related to drug treatment; unknown
factors that transform a seizure into a fatal event; precipitating
seizure. Ultimately, apnea/hypoxia and cardiac arrhythmia with
electrocerebral shutdown cause SUDEP. Patients with DS seem
predisposed to SUDEP, with an imbalance of cardiac autonomic
function with decreased heart rate variability and increased P
wave and QT dispersion compared with other forms of epilepsy
(Delogu et al., 2011; Ergul et al., 2013).

Our cohort was not large, and a significant pattern between
phenotype severity and mutation location may not be concluded.
Large-scale prospective studies are needed to assess the effect of
treatment on development in the long term.

This study involved a cohort of 22 patients carrying SCN1A
variants from a single center. We described the details of the
clinical and genetic alterations of patients with some atypical
symptoms, mainly BECTS and ABECTS. We also identified 12
novel variants of SCN1A in a Chinese population, extending the
phenotypic and genotypic spectra. In addition, we reported the
prognosis of the 19 patients with a mean follow-up period of
43 months. One case of SUDEP with variants of p.Arg1892Ter
was described, reminding us that clinical methods to predict
SUDEP risks need to be developed. Supervision in appropriate
cases and provision of balanced information to patients and
relatives are also of vital importance.
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