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Abstract

Recent studies demonstrate that calcitonin gene-related peptide (CGRP) plays critical roles in migraine.
Immunohistochemistry and in situ hybridization studies have shown that CGRP and its receptors are expressed in
cortical areas that are critical for pain perception including the anterior cingulate cortex (ACC) and insular cortex
(IC). Recent studies reported that CGRP enhanced excitatory transmission in the ACC. However, little is known about
the possible effect of CGRP on excitatory transmission in the IC. In the present study, we investigated the role of
CGRP on synaptic transmission in the IC slices of adult male mice. Bath application of CGRP produced dose-
dependent potentiation of evoked excitatory postsynaptic currents (eEPSCs). This potentiation was NMDA receptor
(NMDAR) independent. After application of CGRP1 receptor antagonist CGRPg_3, or BIBN 4096, CGRP produced
potentiation was significantly reduced. Paired-pulse facilitation was significantly decreased by CGRP, suggesting
possible presynaptic mechanisms. Consistently, bath application of CGRP significantly increased the frequency of
spontaneous and miniature excitatory postsynaptic currents (SEPSCs and mEPSCs). By contrast, amplitudes of sEPSCs
and mEPSCs were not significantly affected. Finally, adenylyl cyclase subtype 1 (AC1) and protein kinase A (PKA) are
critical for CGRP-produced potentiation, since both selective ACT inhibitor NBOOT and the PKA inhibitor KT5720
completely blocked the potentiation. Our results provide direct evidence that CGRP contributes to synaptic
potentiation in the IC, and the ACT inhibitor NBOO1 may be beneficial for the treatment of migraine in the future.
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Introduction

The neuropeptide of calcitonin gene-related peptide
(CGRP) is a 37—amino acid peptide that is a member of
the calcitonin family. It is widely expressed in the central
and peripheral nervous systems, and frequently coexists
and interacts with other neurotransmitters [1]. As a
multifunctional neuropeptide, CGRP exists in two dis-
tinct isoforms: a-CGRP (CGRP1), which is the product
of alternative splicing of the calcitonin gene in neurons,
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and B-CGRP (CGRP2), which is encoded by a separate
gene [2]. CGRP1 is the dominant type of distribution in
the central nervous system (CNS), and is detected in
nearly 50% of the neurons in the trigeminal vascular sys-
tem [3, 4]. CGRP2 is particularly prominent in the en-
teric nervous system [5]. It is known the trigeminal
vascular system is highly related with pain, especially the
migraine [6]. Many studies show that CGRP reliably re-
leased by the activation of primary sensory neurons in
the trigeminal vascular system during migraine attacks
and the plasma level of CGRP could increase in ictal as
well as interictal periods among migraineurs [7]. Intra-
venous administration of CGRP could induce migraine
and Erenumab, a human monoclonal antibody blocking
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the CGRP receptor, is found to be valid for clinical treat-
ment of migraine [8, 9]. It is likely that antibodies pro-
duce effect through peripheral mechanisms, since they
are poor to permeate blood-brain barrier [10].

Insular cortex (IC), as an integrating forebrain struc-
ture, is believed to be involved in pain perception as well
as other higher brain functions such as emotional and
cognitive functions [11-18]. For example, Qiu et al.
demonstrate that the excitatory transmission in the IC
was enhanced after peripheral nerve injury [15], and Liu
et al. provide the first in vitro report of long-term po-
tentiation (LTP) in the IC using 64-channel recording
system [11]. Neurons in the IC may integrate extero-
and interoceptive information, and such process may
plays a vital role as “cortical hub” in migraine attacks.
Human imaging studies have found that the IC is acti-
vated in migraineurs [19, 20]. Cumulative evidences sug-
gest that CGRP-containing pathways could convey
nociceptive and visceral sensation from the posterior
thalamus and parabrachial nuclear (PBN) complex to
the IC and the amygdala [2]. Immunohistochemistry and
in situ hybridization researches have also shown that
CGRP and its receptors are expressed in some cortical
areas, including the IC and anterior cingulate cortex
(ACCQ) [21, 22]. Our previous study indicates that CGRP
may contribute to synaptic potentiation in the ACC [21].
The ACC and IC are two major cortical areas for pain
perception [23-26], less information is available about
the effects of CGRP on excitatory transmission within
the IC. In the present study, we used whole-cell patch-
clamp recording of adult mice slices to investigate the
effects of CGRP on synaptic transmission in the IC. We
found that bath application of CGRP produced dose-
dependent potentiation, which was the NMDA receptor-
independent. Application of CGRP1 receptor antagonist
attenuated this potentiation. Bath application of CGRP
significantly increased the frequency of spontaneous and
miniature excitatory postsynaptic currents (SEPSCs and
mEPSCs) and was consistent with the decrease of
paired-pulse ratio (PPR) found in evoked excitatory
postsynaptic currents (eEPSCs), which suggested that
CGRP enhanced the glutamate release from the pre-
synaptic terminals. Finally, both selective AC1 inhibitor
NB001 and the PKA inhibitor KT5720 completely
blocked the potentiation, demonstrating that calcium-
stimulated cAMP pathway was critical for CGRP-
produced potentiation in the IC.

Methods

Animals

Adult male C57BL/6 mice (7—9 weeks old) were used.
All animals were housed under a 12 h light/dark cycle
with the food and water provided ad libitum. Experi-
ments were conducted under the protocol approved by
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the Animal Care and Use Committee of the University
of Toronto (Protocol ID, 20012315).

Brain slices preparation

Coronal brain slices (300 uM) at the level of the IC were
prepared using standard methods [27-29]. Briefly, mice
were deeply anesthetized with 5% isoflurane and sacri-
ficed by decapitation. The whole brain was removed
quickly from the skull and submerged in the oxygenated
(95% O, and 5% CO,) ice-cold artificial cerebrospinal
fluid (ACSF) containing (in mM) 124 NaCl, 2.5 KCl, 2
MgSO4, 1 NaH,PO4, 2 CaCl,, 25 NaHCO3;, and 10 D-
glucose. The whole brain tissue was cooled for short
time before trimmed as the proper part to glue onto the
microslicer (VT1200S Vibratome, Leica, Germany).
Slices were incubated in a submerged recovery chamber
at room temperature for 1 h. The ACSF were continu-
ously aerated with a mixture of 95% O, and 5% CO,.

Whole-cell patch-clamp recording

Whole cell recordings were performed in a recording
chamber on the stage of an Axioskop 2FS microscope
with infrared differential interference contrast optics for
visualization. eEPSCs were recorded from layer II/III
neurons with an Axon 200B amplifier (Molecular De-
vices), and the stimulations were evoked in layer V of
the IC by a bipolar tungsten stimulating electrode. The
recording pipettes (3—5MQ) were filled with the solu-
tion containing (in mM) 145 K-gluconate, 5 NaCl, 1
MgCl,, 0.2 EGTA, 10 HEPES, 2 Mg-ATP, and 0.1 Nas-
GTP, which adjusted to pH7.3 with KOH and had
osmolality of 300 mOsmol. The amplitude of eEPSCs
were adjusted between 100 to 150 pA to obtain a base-
line. For mEPSCs recording, tetrodotoxin (TTX, 1 uM)
was added in the perfusion solution. Picrotoxin (PTX,
100 uM) was always presented to block the GABA4
receptor-mediated inhibitory synaptic currents in all ex-
periments. Access resistance was 15-30 MQ and moni-
tored throughout the experiment. Data were discarded if
access resistance changed >15% during an experiment.
Data were filtered at 1 kHz, and digitized at 10 kHz.

Drugs

The chemicals and drugs used in this study were as fol-
lows: a-CGRP and CGRPg_3; were obtained from
BACHEM AG (Bubendorf, Switzerland). BIBN 4096
were purchased from Tocris Cookson (Bristol, UK) and
PTX was bought from Sigma-Aldrich (St Louis, MO,
USA). All the other drugs were purchased from HelloBio
(Princeton, NJ, USA) except NB001, which was provided
by NeoBrain Pharmac Inc. (Canada). Drugs were pre-
pared as stock solutions for frozen aliquots at - 20°C.
All these drugs were diluted from the stock solution to
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the final desired concentration in the ACSF before being
applied to the perfusion solution.

Statistical analysis

Whole-cell patch-clamp data were collected and analyzed
by Clampex 9.0 and Clampfit 9.0 software (Molecular De-
vices). For the eEPSCs, the amplitude was normalized and
expressed as the percentage of the baseline. Spontaneous
and miniature EPSCs were analyzed by an event detection
program (Mini Analysis Program; Synaptosoft, Inc., Deca-
tur, GA). The paired ¢ tests or one-way ANOVA was con-
ducted as appropriate. The Tukey test was used for post
hoc comparison. GraphPad Prism 7.0 software (GraphPad
Software, San Diego, CA) and SPSS version 22.0 (SAS In-
stitute Inc., Cary, NC) software were used plotting figures
and analyzing results. All data were presented as the
mean + standard error of the mean (SEM). In all cases,
p < 0.05 was considered statistically significant.

Results

CGRP enhanced excitatory synaptic transmission in the IC
Our recent study showed that CGRP increased the excita-
tory synaptic transmission in the ACC [21]. Here we
wanted to see if similar effect would be found in the IC,
which also plays important roles in pain perception and
chronic pain. We recorded EPSCs at pyramidal neurons of
layer II/III in the agranular and dysgranular insular cortex
in the presence of a GABA, receptor antagonist, PTX
(100 uM). The holding potential was —70mV and local
stimulation was given at layer V in the IC. The schematic
diagram and representative recording diagram were shown
as Fig. la. After achieving the stable baseline recording in
response to single-pulse stimulation for at least 10 min, the
CGRP (10nM) were applied. As shown in Fig. 1b and c,
amplitudes of EPSCs were significantly increased after ap-
plied the 10nM CGRP (131.6 +10.3% of baseline, p <0.01
as compared with baseline, one-way ANOVA, n=9 neu-
rons/6 mice). The potentiation induced by CGRP was long-
lasting, and persisted during the washout period for at least
30 min (168.8 +23.1% of baseline, p < 0.01 compared with
baseline, one-way ANOVA, n =9 neurons/6 mice, filled cir-
cles, Fig. 1c). The effect of CGRP was dose-related. At a
dose of 1 nM, CGRP failed to induce any significant po-
tentiation (106.6 +10.8% of baseline, F (5 27 =24, p=0.1,
one-way ANOVA, n=6 neurons/4 mice, open circles,
Fig. 1c). Furthermore, there was no further potentiation
after the washout of CGRP (102.1 +7.1% of baseline, F ,,
27) =24, p=0.1, one-way ANOVA, n =6 neurons/4 mice,
open circles, Fig. 1c).

The potentiation induced by CGRP was NMDAR
independent

Since the activation of NMDARs is crucial for most
forms of LTP, we would like to test if CGRP induced
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Fig. 1 CGRP (10 nM) enhanced excitatory synaptic transmission in
the IC. a Schematic diagram (left) and representative recording
diagram (right) showed the placement of stimulating and
recording electrodes in the IC. b Top: sample traces of EPSCs
with single-pulse stimulation during the baseline, the application
of CGRP and washout period. Bottom: a time course plot of a
representative single example. ¢ The averaged data showed the
amplitude significantly increased during the application of CGRP
(10 nM) and washout period when compared with baseline. The
1 nM CGRP were used as a control, indicating the dose-
dependent characteristic of the effect of CGRP (n =9 neurons/6
mice for 10 nM CGRP, filled circles; n =6 neurons/4 mice for 1 nM
CGRP, open circles)

potentiation is NMDAR dependent. In this set of experi-
ments, an NMDAR antagonist, AP5 (50 uM) was present
in the bath solution throughout the experiments. Bath
application of CGRP caused similar amount of potenti-
ation as those without AP5 (see above) (CGRP: 132.9 +
12.5% of baseline, washout: 140.7 £ 21.3% of baseline,
<001 and p<0.01 compared with baseline, respect-
ively; one-way ANOVA, n = 8 neurons/5 mice, Fig. 2).

CGRP1 receptor was involved in the potentiation induced
by CGRP

Among several receptors for CGRP, CGRP1 receptor is
the dominant type that distributes in the CNS [3, 4]. We
next tested the role of CGRP1 receptor in this CGRP in-
duced potentiation. Two different antagonists, peptide
CGRPg_3; and non-peptide antagonist BIBN 4096, were
used. As shown in Fig. 3, after application of CGRPg_3,
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Fig. 2 The potentiation induced by CGRP was NMDA receptor independent. a An NMDA receptor antagonist, AP5 (50 uM), did not affect the
CGRP induced potentiation. Left: a time line plot of one representative sample. Right: sample traces showed the increased of the amplitude
during the application of CGRP (10 nM) and washout period. b Left: the pooled data illustrated the time course of the effect of CGRP (10 nM) in
the IC. Right: summarized data showed the amplitude significantly increased during the application of CGRP and washout period when
compared with baseline (n =8 neurons/5 mice). **p < 0.01 compared with baseline, error bars indicated SEM
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Fig. 3 CGRP1 receptor was involved in the potentiation induced by CGRP. The peptide CGRP1 receptor antagonist CGRPg_ 3, (1 uM) (a) and non-
peptide CGRP1 receptor antagonist BIBN 4096 (1 uM) (b) were applied during the baseline and added CGRP periods. Top: sample traces showed
the amplitude of the baseline, application of CGRP (10 nM) and washout period for CGRPg 3, (1 uM) (@) and BIBN 4096 (1 uM) (b). Middle: a time
line plot of one representative sample for CGRPg_3; (1 uM) (@) and BIBN 4096 (1 uM) (b). Bottom: Pooled data showed no differences among
baseline, applied CGRP and washout periods for CGRPg_3, (1 uM, n =7 neurons/5 mice) (a) and BIBN 4096 (1 uM, n =8 neurons/4 mice) (b)
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or BIBN 4096, 10 nM CGRP produced potentiation was
significantly reduced (CGRPg_37: F (o, 27)=0.3, p=0.7,
one-way ANOVA, n =7 neurons/5 mice, Fig. 3a; BIBN
4096: F (5, 27) = 0.5, p = 0.6, one-way ANOVA, n =8 neu-
rons/4 mice, Fig. 3b). These results indicated that
CGRP1 mediated CGRP induced potentiation in the IC.

Effects on paired-pulse ratio by CGRP

Next, we would like to determine if CGRP may produce
potentiation by enhancing the release of transmitters.
Paired-pulse responses to a paired stimulation at 50 ms
interval were collected. We calculated PPR before and
after CGRP application. As shown in Fig. 4a and b, sam-
ple traces and pooled data showed that PPR was signifi-
cantly reduced after applied CGRP and the reduction
was long-lasting during the washout period (baseline:
1.6 £0.2, CGRP: 1.4+0.1, washout: 1.4+0.2, p<0.001
and p <0.001 compared with baseline, respectively; one-
way ANOVA, n=9 neurons/6 mice). Furthermore, in
experiments with the CGRPg_3, or BIBN 4096, the re-
duction of PPR were blocked (CGRPs_37: F (5, 27 =0.5,
p =0.6, one-way ANOVA, n =7 neurons/5 mice, Fig. 4c
left; BIBN 4096: F (5, 27, = 0.6, p = 0.5, one-way ANOVA,
n =8 neurons/4 mice, Fig. 4c right). These data sug-
gested that CGRP may produce its effect by affecting the
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release of glutamate, although we cannot completely rule
out possible postsynaptic effects as well.

Effect of CGRP on sEPSCs

Spontaneous events are thought to be the results of the
presynaptic action potential evoked neurotransmitter vesi-
cles release from the readily releasable pool [30]. The ef-
fects of CGRP on sEPSCs recorded from the pyramidal
neurons of the IC were examined. As shown in Fig. 5, the
frequency of sSEPSCs was significantly increased with the
bath application of 10 nM CGRP (2.3 + 0.4 Hz vs. 3.3+ 0.6
Hz, t=-2.8, p <0.05, paired ¢ test, # = 9 neurons/6 mice).
A cumulative fraction plot showed that the inter-event
interval was reduced during CGRP application (Fig. 5b
left). While, the amplitude of sEPSCs was not significantly
affected (6.6+0.7 pA vs. 7.5+0.7 pA, t=-1.3, p=02,
paired ¢ test, n =9 neurons/6 mice, Fig. 5b and c right).
Next, we examined if the effects of CGRP can be blocked
by CGRP1 receptor antagonists. We found that both
CGRPg_5, and BIBN 4096 blocked the effects of CGRP on
SEPSCs (CGRPg_3;: frequency: 3.0+ 0.5Hz vs. 3.1+0.6
Hz, t=-0.6, p=0.5, paired ¢ test, n =7 neurons/4 mice;
amplitude: 10.9 + 1.0 pA vs. 10.7 £ 0.8 pA; t=0.7, p=0.5,
paired ¢ test, #n = 7 neurons/4 mice; BIBN 4096: frequency:
29+04Hzvs. 31+04Hz t=-1.9, p=0.1, paired ¢ test,
n = 8 neurons/4 mice; amplitude: 10.0 + 1.0 pA vs. 10.1 £

Fig. 4 CGRP altered paired-pulse ratio in the IC. a Left: a time line plot of one representative sample. Right: sample traces of this neuron. b The
time courses plot (left) and histograms (right) for the pooled data illustrated that PPR significantly decreased during the application of CGRP (10
nM) and washout period when compared with baseline (n =9 neurons/6 mice). ¢ CGRP1 receptor antagonist CGRPg 37 (left) and non-peptide

CGRP1 receptor antagonist BIBN 4096 (right) blocked the decrease of PPR after applied CGRP (CGRPg_37, n =7 neurons/5 mice; BIBN 4096, n = 8
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1.0 pA, t=-1.3, p=0.2, paired ¢ test, =8 neurons/4
mice). These results suggested that CGRP effects maybe
mainly presynaptic and needs CGRP1 receptors.

Effect of CGRP on mEPSCs

Unlike the sEPSCs, miniature synaptic transmission is
resulted from neurotransmitter release independent of
action potential, which occurs randomly in the absence
of stimuli. We also recorded mEPSCs in the IC in the
presence of 1 uM TTX to further determine the role of
presynaptic mechanisms of CGRP induced potentiation.
It found that the frequency of mEPSCs were significantly
increased after perfusing 10nM CGRP (1.2 + 0.2 Hz vs.
2.3+0.4Hz, t=-4.7, p<0.01, paired ¢ test, #=9 neu-
rons/5 mice, Fig. 6). Besides, a cumulative fraction plot
showed a decrease of inter-event-interval during CGRP
application (Fig. 6b). As to the amplitude of mEPSCs, no
significant changes were observed (8.9 + 0.4 pA vs. 89
0.5 pA, t=0.2, p=0.8, paired ¢ test, =9 neurons/5
mice, Fig. 6b and c right). We also found that the effect
of CGRP on mEPSCs was blocked in the presence of
CGRPg_3; or BIBN 4096 (CGRPg_37: frequency: 2.2 + 0.3
Hz vs. 23+0.3Hz, t=-1.1, p=0.3, paired ¢ test, n="7
neurons/4 mice; amplitude: 8.8 £ 0.2 pA vs. 8.8+ 0.1 pA,

t=0.3, p=0.8, paired ¢ test, n =7 neurons/4 mice; BIBN
4096: frequency: 2.2+04Hz vs. 23+0.5Hz, t=-14,
p =02, paired t test, # =6 neurons/4 mice; amplitude:
9.7+0.4 pA vs. 95+ 0.4 pA, t=1.9, p=0.1, paired ¢ test,
7 =6 neurons/4 mice). These results demonstrated that
CGRP enhanced excitatory synaptic transmission via in-
creasing the probability of presynaptic neurotransmitter
release in the IC and CGRP1 receptors are important for
this process.

AC1-PKA signal pathways were required for CGRP
induced potentiation

The primary signal transduction pathway for the CGRP
receptor is mediated by Gas, which activates AC, leading
to the production of cyclic adenosine monophosphate
(cAMP) and activation of protein kinase A (PKA) [2].
Consistently, our previous study showed that in the
ACC, the CGRP induced potentiation did need AC1 and
PKA [21]. Here we tried to determine if this signal path-
way is also required in the IC. Firstly, a selective AC1 in-
hibitor, NB0O1 (50 uM) [31] was bathed during the
baseline and CGRP periods. The results showed that
NBO001 completely blocked the effect of CGRP (F (5
27y=0.2, p=0.7, one-way ANOVA, n=7 neurons/5
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mice, Fig. 7a). Furthermore, a PKA inhibitor, KT5720
(1 uM) was found to attenuate CGRP produced effects
(F 2, 27y=2.5, p=0.1, one-way ANOVA, 1 =7 neurons/4
mice, Fig. 7b). Our previous studies in the IC as well as
ACC found that the same dose of inhibitor NB0O1 or
KT5720 did not significantly affect baseline excitatory
transmission [29, 31, 32].

Discussion

CGRP is a recognized neuromodulator which released
both at central and peripheral terminals of nociceptors.
Accumulative evidence has shown that CGRP in the CNS
can be a key modulator of pain via its involvement in
brain circuits and may contribute to central sensitization
[2, 4, 21, 33]. In the present study, we report that the mod-
ulatory effect of CGRP on synaptic transmission in the IC,
a key cortical area for pain perception and chronic pain.
The results show that CGRP induced potentiation in the
IC is NMDA receptor independent. CGRP altered the
PPR and increased the frequency of sSEPSCs and mEPSCs
in the IC. Our pharmacological data demonstrate that
neuronal selective AC1 is critical for CGRP induced po-
tentiation. Furthermore, downstream protein kinase PKA
is also required (see Fig. 8 for a summarized model). This
is the first time to report the requirement of AC1 for

CGRP induced potentiation in the IC, raising the possibil-
ity that AC1 inhibitor may be beneficial for the treatment
of CGRP related migraine.

Innervation and distribution of CGRP in the IC

CGRP is known to be distributed in the CNS. At periph-
ery, CGRP is expressed in a subgroup of small neurons
in the dorsal root ganglion, trigeminal and vagal ganglia,
which respond to various sensory stimuli including nox-
ious stimuli. These neurons then project to the dorsal
horn, trigeminal nucleus caudalis, or nucleus of the soli-
tary tract. Within the CNS, the CGRP-containing path-
ways originated from the PBN and posterior thalamus
convey nociceptive and visceral sensation to the amyg-
dala and the IC [2]. The IC can be divided into three
fields based on its cytoarchitecture and subcortical con-
nections: the granular, dysgranular, and agranular insular
areas. Previous study shows that modest numbers of
CGRP-like immunoreactive fibers are distributed mainly
in layers II, III, and V of the agranular and dysgranular
IC with few are detected in the granular area [22]. Thus,
we selected the layer II or III pyramidal neurons for re-
cordings, and the effects induced by CGRP is likely to
mimic those released from those projecting terminals
within the IC.
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Fig. 7 AC1-PKA signal pathways were involved in the CGRP induced potentiation. a Selective ACT inhibitor, NBOO1 (50 uM) attenuated the effect
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Modulation of synaptic transmission by CGRP in the IC

Previous studies of central synaptic transmission influ-
enced by CGRP are mainly focused on the PBN, amyg-
dala, the bed nucleus of the stria terminalis and spinal

cords [17, 34, 35]. In the present study, we demonstrate
that CGRP enhanced the synaptic transmission in the
IC, which is like our recent study in the ACC [21]. We
found that CGRP induced potentiation is NMDAR
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Fig. 8 The proposed model for signaling pathways of CGRP induced potentiation. Left: a simplified diagram showed that the PBN is the
prominent location of CGRP- expressing neurons in the CNS, which projects to the IC and other regions. Right: a synaptic model for the CGRP
induced potentiation in the IC. CGRP likely causes the potentiation by enhancing presynaptic release of glutamate, although we cannot
completely rule out the possibility of postsynaptic action. The calcium-stimulated AC1 is critical for CGRP induced potentiation and downstream
protein kinase PKA is also required
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independent for the role of CGRP in the IC. Interest-
ingly, in the amygdala, Okutsu et al. reported that CGRP
enhanced NMDAR-mediated excitatory potentials [36].
It is likely that CGRP may affect excitatory synapses dif-
ferently in various brain regions. Based on our current
findings, CGRP likely causes the potentiation by enhan-
cing presynaptic release of glutamate in the IC, but we
cannot completely rule out the possibility of postsynap-
tic action of CGRP. Future studies are clearly needed.
Among two different subtypes of CGRP receptors,
CGRP1 receptor is mostly investigated. Less is known
about CGRP2 receptor [5, 37]. Thus, we mainly focus on
the CGRP1 receptor in the present study. We did find
that CGRP1 receptors are involved in CGRP-induced
potentiation. For signaling pathways, the results demon-
strated that neuronal AC1 is important for CGRP pro-
duced presynaptic enhancement. Previous studies
demonstrate that AC1 is cortical for both pre- and post-
LTP in the ACC and IC [29, 32, 38]. These results fur-
ther support the important roles of AC1 in presynaptic
potentiation within cortical synapses.

Functional and clinical implications

Recent studies have consistently demonstrated that cor-
tical potentiation, including pre-LTP and post-LTP, play
important roles in different types of chronic pain. The
ACC and IC are two critical cortical areas that are in-
volved in chronic pain and emotional changes [23, 29,
39]. Supporting these hypotheses, the present study and
our recent study consistently show that CGRP produce
long-lasting potentiation in the IC and ACC. Consider-
ing the important roles of CGRP in migraine, we believe
that these cortical mechanisms may be at least in part
involved in CGRP-related migraine [11-13, 15, 21]. The
latest Global Burden of Disease (GBD) study reported
that migraine takes the second place based on the GBD’s
disease hierarchy and in the age of 15-49 years group,
migraine is the top cause of years lived with disability
[40, 41]. The estimated one-year prevalence of migraine
is 9.3% in the mainland China, and the total estimated
annual cost is USD 47.8 billion [42]. In addition to
CGRP receptor antagonists that are currently used for
the treatment of migraine, our results provide direct evi-
dence that NB0O1, a selective AC1 inhibitor, completely
occluded the enhanced effect of CGRP in the IC. We
propose that NBOO1 which has been proved to be safe in
both animals and humans, may be a promising novel
drug for treating migraine in the future.
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