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The current international pharmaceutical scenario encompasses several steps in drug
production, with complex and extremely long procedures. In the last few decades,
scientific research has been trying to offer valid and reliable solutions to replace or
support conventional techniques, in order to facilitate drug development procedures.
These innovative approaches may have extremely positive effects in the production
chain, supplying fast, and cost-effective quality as well as safety tests on active
pharmaceutical ingredients (APIs) and their excipients. In this context, the exploitation
of electrochemical paper-based analytical devices (ePADs) is still in its infancy, but
is particularly promising in the detection of APIs and excipients in tablets, capsules,
suppositories, and injections, as well as for pharmacokinetic bioanalysis in real samples.

Keywords: electrochemical detection, nanomaterials, microfluidics, pharmaceutical sector, paper-based devices

INTRODUCTION

Drug development represents a long and complex process characterized by several steps, from
the recognition of a new molecule with potential therapeutic value to a final product approved
for marketing and human health. The synthesis and characterization of such molecules, defined
as pharmaceutical compounds, are critical prerequisites for further investigations to create
preliminary safety and therapeutic efficacy data (Sinha and Vohora, 2018). To this aim, the
pharmaceutical research entails the analytical studies on bulk drug materials, formulations,
products, intermediates, impurities, and degradation products, as well as their bioanalyses. These
steps are crucial in drug development but represent a weak link in the production chain, due to
long-lasting and expensive phases; indeed, drug development takes about 10 years and accounts for
two-thirds of the total R&D costs (Rang and Hill, 2013). These main critical concerns are connected
to the stringent regulatory authorities in assessing the safety and efficacy of new compounds (e.g.,
ministry of health, government department including specific regulatory agencies, such as U.S.
Food and Drug Administration), hindering a commercial success.

For these reasons, the pharmaceutical industry is strongly interested to improve the entire
production chain, not neglecting any technical, investigative, and managerial aspects, to remain
profitable and competitive, as in the case of machine learning and artificial intelligence for
end-to-end drug discovery and development (Ekins et al., 2019; Mak and Pichika, 2019).

Concerning the methodologies to establish the safety and efficacy of a product
pharmacokinetically suitable for human health, the analytical methods conventionally recognized
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and utilized are titrimetry, spectrometry, chromatography,
and capillary electrophoresis. However, all these procedures
require technologically advanced equipment and highly skilled
personnel (Siddiqui et al., 2017). In this context, a technological
revolution is strongly required; therefore, the fervent research
of the last decades is not surprising. The exploitation of
sensing devices proved to be useful in this sector, being
reliable, sensitive, fast, and less expensive than the conventional
methodologies. The potentialities of these analytical tools
have been recently augmented by novel technologies (e.g.,
electrochemistry, microfluidics, and nanotechnology), and smart
material designed for point-of-use applications (e.g., paper)
(Maduraiveeran et al., 2018). In this overall scenario, paper-
based analytical devices (PADs) have attracted, in the last years,
widespread attention because of their inherent advantages as low
cost, easiness to use, free-pump equipment for sample handling
and processing, in addition to the advantages of sensitive and
selective detection provided by electrochemistry. In addition,
microfabrication and microfluidics allowed for the design of
novel tools for drug analysis. In particular, microfluidics promises
significant improvements not only for its potential to provide
reliable and fast devices, but also because it allows to significantly
lower production costs, reduce the amount of reagents used
during the analysis, and scale down sample volumes to be
analyzed (Kang et al., 2008). Lab-on-chip, organs-on-chip, 3D
cell culture, and droplet techniques represent recent examples of
microfluidic-based systems for basic and applied research in drug
screening, drug determination, drug metabolism, and toxicity
(Dittrich and Manz, 2006; Xu et al., 2011; Chen et al., 2016).

Moreover, the use of nanomaterials (e.g., metal nanoparticles
and carbon nanomaterials) has shown a quantitative influence
on the enhancement of electrochemical (bio)sensors and lab-
on-a-chip performances, with clearly positive effects on the
analyses. Indeed, such nanomaterials have demonstrated benefits
for higher electrocatalytic properties and sensing response
thanks to their large surface area, defect sites, high electrical
conductivity, and good mechanical features (Farka et al., 2017;
Piscitelli et al., 2017; Mazzaracchio et al., 2019). Owing to
these astonishing features, nanomaterials are currently exploited
for in vivo and in vitro medical applications in the form
of robust and tuneable diagnostic and therapeutic platforms
(Chen and Chatterjee, 2013).

Finally, in the last decades a strong interest arose on
the exploitation of biopolymers in the design of (bio)sensors
for pharmaceutical and biomedical sectors, mainly driven
by low-cost applications. In particular, paper has shown
several advantages (e.g., compatibility with biological samples,
environmental sustainability, ease assembling, storage, and
transport, and adaptability as support for printing technologies)
that make it an ideal substrate in highly engineered diagnostic
devices (Yetisen et al., 2013; Meredith et al., 2016; Lee et al.,
2018; Noviana et al., 2019). This last requirement represents
an important and urgent topic declared by the World Health
Organization, which is particularly interested in biomedical
research toward the design of sensitive, cost-effective equipment-
free diagnostic tools devoted to both developed and developing
countries (Urdea et al., 2006).

This review describes the last trends associated with the design
of electrochemical paper-based analytical devices (ePADs), as
robust, fast, and affordable strategy for drugs analysis during
the production process as well as in bioanalyses, highlighting
the main advantages of ePADs in comparison with both
the conventional methodologies and the bulk electrochemical
sensors exploited for the detection of active pharmaceutical
ingredients (APIs) and excipients, as well as for pharmacokinetic
bioanalysis. In details, in case of comparison with conventional
methodologies, ePADs are characterized by the capability to be
applied on site by unskilled personnel with cost- effective set-
up allowing for a rapid analysis (Table 1). While, in case of
comparison with bulk electrodes, ePADs are characterized by
lower cost as well as lower volume of sample needed for the
analyses combined with the absence of working electrode surface
treatment (Table 2).

As also reported in our recent review (Arduini et al., 2017),
many electrochemical (bio)sensors have been developed for
biomedical applications (Huang X. et al., 2017; Huang Y. et al.,
2017; Jiang et al., 2017). This manuscript was inspired by the
unequal use of sensors in the pharmaceutical sector, where
optical devices are abundant while the electrochemical ones are
still in their infancy, despite their potential has been already
demonstrated. In particular, the convergence of innovative
technologies in the design of advanced tools will be reported to
boost the progress in electrochemical sensors devoted to the drug
production chain and personalized healthcare.

PIONEERING PHARMA-ON-CHIP: ePADs
FOR THE PHARMACEUTICAL SECTOR

In the last decades, the academic interest toward PADs is
considerably growing, to foster the development of sensing
platforms for pharmaceutical purposes. Starting from an
unbiased analysis of this context, it is noteworthy that the
majority of PADs relies on colorimetric detection, despite the
intrinsic limitations of this technology as low sensitivity,
restricted linear ranges, color saturation problems, and
background color due to the matrices (Arduini et al., 2017).

The analytical potential of ePADs has been well-established in
literature as customized tools, being able to overcome sensitivity
and selectivity drawbacks, as well as to encompass multifarious
configurations of sensors (e.g., screen-printed electrodes),
bioreceptors (e.g., enzymes, antibodies, artificial molecules), and
nanomaterials (e.g., metal nanoparticles, graphene, carbon black)
(Adkins et al., 2015).

In a recent review, Noviana et al. (2019) summarized
the fascinating and multi-step procedure to obtain ePADs,
considering the fabrication of both sensor (e.g., screen-
printing, inkjet-printing, stencil-printed, pencil/pen-drawn,
and microwire electrodes) and microfluidic pattern (e.g.,
photolithography, wax printing).

Currently, ePAD applications include clinical diagnosis,
environmental monitoring, food analysis, and drug analysis.
Moreover, the possibility to obtain a multiplexing sensor which
increase the efficiency and accuracy of the analysis has already
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been demonstrated (Wang H. et al., 2018; Xu et al., 2018).
Notwithstanding the potentialities reported above, the global
market of paper diagnostics, estimated at USD 5.69 billion in
2017 and projected to reach over USD 9 billion in 2025, does
not include any commercialized ePAD to date at our knowledge
(Grand View Research, 2019).

In the following section, major milestones achieved with
ePADs for in vitro and in vivo APIs detection were reported,
to furnish a current snapshot of the successes obtained,
which can become inspiration sources for fine-tuned drug
development procedure.

Currently, a large variety of compounds with different origins
and chemical properties is routinely used for drugs design, mainly
classified into active and inactive pharmaceutical ingredients.
These two types of ingredients accomplish different functions,
but their union is essential for conservation and effectiveness of
the final formulation.

In particular, APIs are defined by WHO as “Any substance
or combination of substances used in a finished pharmaceutical
product, intended to furnish pharmacological activity or to
otherwise have direct effect in the diagnosis, cure, mitigation,
treatment or prevention of disease, or to have direct effect in
restoring, correcting or modifying physiological functions in human
beings” (Working document QAS/11.426/Rev.1) (World Health
Organization [WHO], 2011). Rigorous and strict standards
regulate these compounds, whose compliance is mandatory for
every actor in the pharmaceutical production chain (EudraLex,
2011; U.S. Food and Drug administration, 2017). Moreover, a list
of APIs sources has been assessed by the WHO and considered
acceptable for use in manufacture of finished pharmaceutical
products by United Nations (World Health Organization
[WHO], 2019). The listed APIs meet WHO norms and standards,
as well as the relevant manufacturing sites complying the Good
Manufacturing Practices.

Active pharmaceutical ingredients can be mainly identified
as drug of synthetic and natural source. The first one
includes organic (e.g., acetylsalicylic acid, chloramphenicol) and
inorganic synthetic drugs (e.g., aluminum hydroxide, magnesium
trisilicate). Natural chemical drugs can be divided in biochemical
drugs and plant chemical drugs (Bade et al., 2010; Lahlou, 2013).

On the contrary, inactive pharmaceutical ingredients do not
increase or affect the therapeutic action of the active ingredient,
but guarantee the dosage, stability, and bioavailability of the
active principle (Pifferi and Restani, 2003; Elder et al., 2016).
These inert ingredients or excipients (e.g., dyes, preservatives,
and flavoring agents) are added during the manufacturing of
tablets, capsules, suppositories, and injections, and are approved
by FDA. In this context, the US government agency released a
guidance for the industries to provide recommendations for use
and dosage, as well as to clarify the terminology (U.S. Food and
Drug administration, 2019). Excipients can derived from natural
sources or synthesized chemically or by other means, such as
fermentation (Saluja and Sekhon, 2016).

During the pre-clinical and early-clinical phases, careful
analyses on active and inactive pharmaceutical ingredients
are performed. These studies concern the compound
characterization, the identification of the effective dose and

range, as well as the side effects which may occur in tissues. HPLC
and UV-Vis spectrophotometry are useful and widely exploited,
but they are expensive and time consuming approaches. In
this context, handheld and integrated electrochemical sensors,
capable of rapid, selective, and sensitive analysis, could be
competitive in comparison with conventional techniques for
pharmaceutical analysis. Among them, ePADs are promising
tools for several pharmaceutical compounds (Figure 1) and the
following sections classify paper-based devices in function of the
analyte (EudraLex, 2011; Wesoły et al., 2016).

Antioxidants
Antioxidants are excipients generally exploited to increase
physical and chemical stability. Among them, ascorbic acid
and cysteine are widely exploited in pharmaceutical industry.
In detail, ascorbic acid boosts a substantial therapeutic market
as solid tablets and liquid forms, characterized by prolonged
storage and with an assured vitamin C content. Ascorbic acid
has many functions in the maintenance of various biological
activities, including beneficial effects on skin, activity as cofactor
in collagen biosynthesis, and antioxidant capacity. In particular,
the molecules of ascorbic acid neutralize the free radicals present
in the intra and extracellular matrices, avoiding damage to
lipid membrane, DNA, and proteins that would be caused by
oxidative stress (Maione-Silva et al., 2019). In medicine, its topical
application guarantees anti-inflammatory and depigmenting
effects (Farris, 2005; Stamford, 2012), while in the pharmaceutical
sector ascorbic acid is mainly detected in pharmaceutical
products for the quality assessment of, e.g., dietary supplements.

A low-cost and disposable ePAD for ascorbic acid pre-
screening was realized utilizing inkjet-printed polyaniline (PANI)
modified screen-printed carbon electrodes (Kit-Anan et al.,
2012) (Figure 2). In detail, this device is constituted of a
PANI modified Screen-Printed Carbon Electrode (SPCE) as the
working electrode, and two bare SPCEs as reference and counter
electrodes, screen-printed on a filter paper. These investigations
allowed the authors to present an alternative tool for a real-
time detection of ascorbic acid by chronoamperometry, with a
sensitivity of 17.7 µA/mM and a detection limit of 30 ± 3 µM in
a concentration range of 30–270 µ M.

Recently, another example of ePAD tested toward ascorbic
acid detection was obtained. This disposable sensor has
been modified with a dispersion based on carbon black
nanoparticles to increase the electrochemical performances of the
printed sensor, allowing for a highly performant nanomodified
electrochemical sensor platform (Figure 2). In particular, in the
presence of carbon black a decrease of the over-potential for
ascorbic acid oxidation was reported (from 0.47 to 0.28 V)
compared with bare sensor, as well as a boosted sensitivity (3-
times). The proposed electrochemical sensor was able to detect
ascorbic acid in a dietary supplement, quantifying 999 ± 130 mg
with respect to the 1,000 mg reported on the label (Cinti et al.,
2018). The results achieved have shown the reliability of the
sensor for controlling the quality and quantity of ascorbic acid
present in the dietary supplement, by means of small volumes
(i.e., drop) and fast analysis time (i.e., 1 min). This approach
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FIGURE 1 | Active pharmaceutical ingredients detected by e-PAD devices.

highlighted the cost-effectiveness as well as the easiness of use of
the proposed paper-based device for API control.

The ePAD technology was also assured for the design of
agreeable multi-detection platforms. This is the case of the
functional paper-based device constituted by a single-walled
carbon nanotube (SWCNT) electrode and a Nafion-modified
nitrocellulose membrane. In detail, the device was able to
simultaneously detect the presence of both ascorbic acid and
active pharmaceutical (acetaminophen) compounds. Using
Nafion-modified nitrocellulose membrane in combination
with gold nanoparticles and polyglutamic acid for the
SWCNT electrode functionalization, a distinguishable
acetaminophen oxidation peak was obtained, which was
distinct from the ascorbic acid oxidation peak. This allowed
for acetaminophen detection in linear range from 50 to
300 µM, which is broader than the standard drug dose range
(Lee et al., 2016).

Cysteine, an amino acid usually present in the form of
N-acetyl-L-cysteine (NAC) in supplements, is another inactive
compound widely exploited as pharmacological antioxidant and
cytoprotectant. The human body turns NAC into cysteine and
then glutathione, a strong antioxidant (Elias et al., 2005). In
the pharmaceutical industry, cysteine is used to improve hepatic

function and pigmentation, or as antioxidant agent in clinical
nutrition and food industry (e.g., in natural fruit juice products).

An interesting ePAD was developed by backfilling small holes
made in polyester sheets using a CO2 laser etching system.
Silver working electrodes were screen-printed on paper in a
sandwich two-electrode configuration. The device was tested
using linear sweep voltammetry toward cysteine using cobalt
phthalocyanine as a redox mediator. The rate constant obtained
by chronoamperometry was approximately 105 s−1 M−1, with a
limit of detection of 4.8 µM (Santhiago et al., 2013) (Figure 2).

Hormones
Several hormones are naturally secreted in microscopic amounts
as messengers by the endocrine signaling system. They can be
transported by the circulatory system toward distance targets
(e.g., tissues, organs), determining an increase or decrease of
cellular activities. In specific conditions, a hormonal drug therapy
is required to restore the hormonal balance in the patience
by either replacing the missing hormone or by inhibiting
hormone secretion.

The API estradiol is especially secreted within the follicles
of the ovaries, and in the human body is obtained from
cholesterol through a series of reactions and intermediates.
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FIGURE 2 | e-PAD platforms for detection of antioxidants. Target analytes: Ascorbic acid (Kit-Anan et al., 2012; Cinti et al., 2018), and cysteine (Santhiago et al.,
2013).

FIGURE 3 | e-PAD platforms for detection of hormones. Target analytes: 17β-estradiol (Wang Y. et al., 2018; Ming et al., 2019), and HCG (Cao et al., 2017).

It is used in menopausal hormone therapy to preclude and
treat menopausal symptoms. In fact, its role is pivotal in
regulating reproduction in humans; for this reason, several oral
contraceptives contain the synthetic estrogen ethinylestradiol
(Kuhl, 2005; Evans and Sutton, 2015). Moreover, estradiol is
also used in therapies to treat prostate and breast cancer (Ali
Shah, 2015; Coelingh Bennink et al., 2017). In 2016, more than
13 million prescriptions of estradiol were made allowing for

the 59th most prescribed medication in the United States. In
this scenario, there is therefore an urgent need to sensitively
and precisely detect estradiol in a cost-effective and easy way
(The top 300 of 2019, 2018). The development of ePAD
for hormones detection can meet the requirements of novel
challenging (bio)analytical studies, improving the quality of life,
providing reliable qualitative results, as well as reducing the
time and cost of analysis in comparison with conventional assay
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FIGURE 4 | e-PAD platforms for detection of anti-inflammatory and anesthetic drugs. Target analytes: Diclofenac sodium (Costa-Rama et al., 2019), ketamine
(Narang et al., 2017a), alprazolam (Narang et al., 2017b), and diazepam (Narang et al., 2017c).

FIGURE 5 | e-PAD platforms for detection of stimulants of the central nervous system. Target analytes: Methylenedioxymethamphetamine (Narang et al., 2018), and
dopamine (Rattanarat et al., 2012).

procedures (e.g., ELISA and chromatography) (Şimşek et al.,
2015; Lim et al., 2017).

Wang Y. et al. (2018) recently proposed a label-free
integrated ePAD for the highly sensitive electrochemical
detection of 17β-E2. The authors fabricated by wax printing
a three electrode microfluidic device, then modified with a
multi-walled carbon nanotubes/thionine/gold nanoparticles
composite, directly synthesized on the working electrode,
for the immobilization of anti-E2 (Figure 3). The resulted
device detected 17β-E2 as low as 10 pg mL−1, with a
linear range from 0.01 to 100 ng mL−1. The selectivity
of the immunoassay was evaluated in the presence of
follicle-stimulating hormone, luteinizing hormone, glutamic
acid, ascorbic acid, uric acid, neuron-specific enolase, and
carcinoembryonic antigen, which provided a variation of

peak currents of 3.62, 1.77, 6.33, 4.93, 0.81, 7.57, and 5.79%,
respectively. Finally, clinical serum samples were also analyzed
with high sensitivity and good accuracy, with a relative
deviation of 8.10–15.40% from standard methodologies
(i.e., a commercial-available electrochemiluminescence
apparatus from Roche).

Concerning this topic, a noteworthy contribution was
reached by Ming et al. (2019) with the development of a
folding aptasensor platform equipped of microfluidic system
to obtain a label-free electrochemical detection of 17β-
E2. This device encompasses filter holes, reaction chambers,
microfluidic channels, and three-electrode system, as well. The
detection sensitivity and aptamer immobilization was enhanced
by exploiting a novel nanoassembly, consisting of amine-
functionalized single-walled carbon nanotubes/new methylene
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blue/gold nanoparticles to modify the working electrode
(Figure 3). A detection limit of 5 pg mL−1 (S/N = 3) was observed
with a linear range comprised between 10 pg mL−1 and 500 ng
mL−1 (R2 = 0.993) (Ming et al., 2019).

Following the growing trend of infertility, the clinical use
of fertility-related hormones has increased in recent years, and
the intake of gonadotropin, beneficial for ovarian stimulation,
is part of this medical record (Leão and Esteves, 2014; Murray
et al., 2018; Lunenfeld et al., 2019). Moreover, the chorionic
gonadotropin (HCG) is a well-known and important biomarker
present in the blood and urine of pregnant women, with pivotal
roles against complications during prenatal care; furthermore,
elevated levels of HCG were found in many cancerous tumors.
For these reasons, HCG sensing in human urine or serum is
highly sought after (Theofanakis et al., 2017). Recently, Cao
et al. (2017) proposed an electrochemical detection for HCG
in a linear range from 1 mIU mL−1 to 100 IU mL−1, with
a detection limit of 0.36 mIU mL−1. The authors fabricated
hydrophilic test zones on an aldehyde-functionalized screen-
printed electrode functionalized with capture antibodies (Ab1)
(Figure 3). Then, primary signal antibody functionalized gold
nanoparticles (GNPs/Ab2) and alkaline phosphatase conjugated
secondary antibody (ALP-IgG) were used for the detection of
HCG by differential pulse voltammetry. This disposable, efficient,
sensitive, and low-cost ePAD was tested on real human serum,
showing a great potential for the development of point-of-care
devices (Cao et al., 2017).

Anti-inflammatory Drugs
Non-steroidal anti-inflammatory drugs (NSAIDs) represent
another class highly consumed over the world as over-the-
counter products. These compounds can face inflammation and
swelling states, and these actions are often associated with a
painkiller effect. Unfortunately, NSAIDs are also known for
the side effects that can determine in patients who abuse
or use them for long time (Brune and Patrignani, 2015;
Aguilar-Lira et al., 2017).

The API Diclofenac sodium (sodium [o-(2,6-dichloroanilino)
phenyl] acetate) belongs to the NSAID class, prescribed as
anti-pyretic, anti-rheumatic, analgesic, anti-inflammatory in
case of degenerative disease, arthritis, musculoskeletal injuries,
ankylosing spondylitis, post-surgery analgesia, osteoarthritis,
and also in sport injuries. Being its quantification of great
importance for the clinical (e.g., quality and therapeutic control)
and environmental (e.g., emerging contaminant determination)
sectors, there is a huge commercial demand for sensitive,
selective, accurate, and cost-effective tools for diclofenac
sodium detection devoted to pharmaceuticals, medical and
biomedical sectors (Shalauddin et al., 2019).

Costa-Rama et al. (2019) reported a smart ePAD for diclofenac
detection, reaching a very competitive limit of detection
(70 nM) with an RSD of about 5%, exploiting the possibility
of sample pre-concentration (Costa-Rama et al., 2019). The
easy-to-handle device was fabricated using a carbon-ink paper-
based working electrode and two metallic wires, provided by
a gold-plated standard connector, as reference and counter
electrodes (Figure 4). This multiplex configuration enabled

sample pre-concentration, sample, and detection, providing a
wide dynamic range between 0.10 and 100 µM, with two linear
concentration ranges (i.e., 0.10–5.0 µM and 5.0–100 µ M).

Anesthetic Drugs
Several APIs are daily used in medical practice to induce
anesthesia, which means a temporary loss of sensation or
awareness. Among them, ketamine is an important anesthetic
drug widely administered in medication to anesthetize patients,
as depression remedy and for post-operative pain management.

Narang et al. (2017a) explored the possibility to develop
an ultrasensitive technique for ketamine electro-sensing by a
nano-hybrid micro fluidic ePAD device. A paper chip modified
with nanocrystals of zeolites and graphene oxide nanoflakes
was designed for ketamine detection by cyclic voltammetric
technique (Figure 4). The accuracy of this ePAD was evaluated
by measuring ketamine in alcoholic and non-alcoholic drinks.
This configuration can represent a positive perspective for
pharmaceutical purposes, as well as furnish advantages over
conventional three electrode systems, as these are easy to prepare,
economical, portable and disposable after use. Benzodiazepine
group is a significant segment in anesthetic drugs, generally
prescribed as psycho-pharmaceuticals (e.g., for anxiety, tension,
insomnia) (Murphy et al., 2016). In recent years, their abusing in
combination with opioids and alcohol caused many emergency
department visits and related deaths (Schmitz, 2016). Alprazolam
is one of the benzodiazepine anti-depressive therapeutically
administered as anxiolytics, tranquilizers, and muscle relaxants
(Tan et al., 2011). Its overdose determines acute drowsiness,
muscle numbness, and coordination problems. Thus, alprazolam
monitoring is of utmost importance to clinicians and forensic
toxicologists (Donoghue and Lader, 2010). The conventional and
time-consuming methods exploited for the analysis of alprazolam
in biological fluids and pharmaceutical formulation today can
be coupled and/or replaced with ePAD technology, with a first
attempt achieved with a facile lab-paper chip based on urchin
like Ag@ Pd shell nano-hybrids (Figure 4). The alprazolam
detection was performed in a reliable and fast manner by cyclic
voltammetric technique in buffer solutions at clinically relevant
concentrations (detection limit of 0.025 ng/l and linear range 1–
300 ng/mL), as well as in real time samples, as urine and serum,
with good correlation (99%) (Narang et al., 2017b).

An innovative device based on ePAD technology was
developed also for the detection of diazepam, a sedative,
anxiety-relieving, and muscle-relaxing API belonging to the
benzodiazepine category. For this purpose, silica coated gold
nanorods (Si@GNRs) were synthesized and drop cast on an
electrochemical microfluidic paper-based device (Figure 4).
The modified paper-based electrode showed a stable cyclic
voltammetric response in an analyte concentration range
from 3.5 nM to 3.5 mM. This device was tested for
diazepam in spiked human urine samples, but the authors
recommended this configuration also for the determination of
serum metabolites (Narang et al., 2017c). All these qualities,
in terms of response speed, sample volume required and
signal reliability, could rightly motivate the choice of ePAD
technology rather than the conventional methods used for
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the determination of alprazolam in biological fluids and
pharmaceutical formulation (e.g., UV spectroscopy, HPLC, GC-
MS, and LC-MS) (Madea and Mußhoff, 2009).

Stimulants of the Central Nervous
System
Stimulants are natural and synthetic APIs affecting the
central nervous system (CNS) activity (e.g., caffeine, cocaine,
amphetamines, and methamphetamine). Their effect can be
useful for the treatment of prolonged fatigue, inability to
concentrate, excessive sleepiness, attention deficit disorder as
well as prolonged depression. The CNS stimulants can differ
in the level of neurotransmitters produced and in their time of
action. In this contest, the chemical research is very dynamic, and
enhanced products have been already achieved as in the case of
methamphetamine, which is obtained adding a methyl group to
amphetamine molecule. This improvement determined a longer
drug effect, and a better penetration into the brain in comparison
with amphetamine, as well as less detrimental consequences
on heart (Hegadoren et al., 1999; Martinez-Price et al., 2002).
However, these APIs are frequently abused beyond medical and
therapeutic context, including athletes and recreational users,
causing serious public health concern (Napper et al., 2010).

The ePAD technology aims to find smart solutions for the
urgent need to detect these APIs for both pharmaceutical
and forensic diagnostic applications. Intriguing scientific
results are already available, such as the ePAD for the drug
methylenedioxymethamphetamine. This device was equipped
with a working electrode modified with zinc oxide nanorods
(ZnONRs) (Figure 5), showing optimum response in cyclic
voltammetry at 7.0 pH with a detection limit of 0.1 µM and
linear range of 1 µM–1 mM. Satisfactory results in terms of
recovery were also reported during the evaluation test of the
sensor (Narang et al., 2018). As stated by the authors, the
proposed ePAD shows many advantageous features of being
simple, low-cost, consistent and disposable. This allows for
cost-effective, simple and fast analysis also in the field for
pharmaceutical applications, thus avoiding expensive samples
transportation to the laboratories as well as complex and
long-lasting analytical procedures.

Another noteworthy example is the ePAD designed by
Rattanarat et al. (2012) for the selective determination of
dopamine using square-wave voltammetry, with a detection
limit of 0.37 µM and a linear range of 1–100 µM. The
device was constituted by: (i) a top layer of SU-8 photoresist
defining a hydrophilic sample application spot on the filter
paper; (ii) a middle layer made of a transparency film containing
two holes for sample pre-concentration and surfactant; and
(iii) a screen-printed carbon electrode forming the bottom
layer for the electrochemical measurements (Figure 5). Prime
measurements were obtained when the paper was modified with
the anionic surfactant sodium dodecyl sulfate, with a current
increase of five-fold and an advanced selectivity of the device.
On the contrary, the use of non-ionic Tween-20 had no effect
and cationic tetradecyltrimethylammonium bromide surfactants
showed reduced current signals, respectively, highlighting the
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capability of paper to both store the reagents and increase the
analytical response.

CONCLUSION AND FUTURE REMARKS

Pharmaceutical industry requests a reorganization of drug
production system, which is excessively long and expensive.
This remarkable revolution could praise the ePAD technology,
which, despite not yet fully exploited, show relevant features in
terms of sustainability, sensitivity, robustness, and repeatability.
In this review, the reliability of ePADs for pharmaceutical
field was reported as highlighted in Table 3, and the pivotal
role of the interdisciplinary convergence of microfluidics and
nanotechnology, as well as the engagement of sustainable
materials, was described as a key motif of ePAD rapid
improvement. Moreover, the representative scientific goals
obtained and the multiple applications of ePAD technology
were described in pre-clinical and early clinical phases of
drug development, pharmaceutical products quality assessment.
Furthermore, the rational of this detailed description on ePADs
aims to provide new fields of action of these interesting devices,
such as in counterfeiting and illicit drug screening. In particular,
the exploitation of ePADs can be extremely positive for the
detection of adulterants (e.g., amphetamines and paracetamol),
often not considered in clinical or forensic toxicology, but clue
of poor manufacturing techniques, and with adverse health
consequences (Cole et al., 2011). Several scientific evidences
suggest that illicit drugs are commonly adulterated with benign
substances, as well as those that enhance or mimic the effects,
and others to facilitate the administration. For these reasons,
novel approach of investigation and monitoring, such as ePADs,
are strongly required to furnish the state of art concerning the
adulteration practices and appropriate countermeasures.

However, ePAD technology for pharmaceutical compounds is
struggles to reach the market, and this is probably due to some
technical limitations not yet overcome, such as sensitivity and
reproducibility, taking into account that the repeatability is often
at the level of RSD 10%, because the development of ePAD is still
at research level. Indeed, a future industrialization is capable to
boost the fabrication of sensors with increased reproducibility

with lower RSD% values, exploiting the industrial fabrication
processes (e.g., use of BioDot, low volume precision dispensing
equipment, for nanomaterial modification of working electrode).
To face this drawback, strategies for signal enhancement need
to be evaluated to measure traces of pharmaceutically active
compounds. For example, metal nanoparticles and carbon
materials demonstrated their benefits for more sensitive ePADs.
Long-term stability and reproducibility of such devices should be
also taken into consideration for marketable purposes, as well
as the requirement for micro- and nano-volumes of analysis
to provide minimized invasiveness for the patients in case of
pharmacokinetic bioanalysis.

Moreover, the main challenge relies on the admission of
ePADs as accurate and reliable analytical tools in quality tests
and assurance purposes carried out at pharmaceutical industries
by government agencies, actually hindering ePAD application.
The requirement of certified quality tests probably restricts the
development of ePADs for pharmaceutical compounds, actually
limited to few devices, when compared with the huge number
of ePADs developed for the detection of biomarkers in biological
fluids and pollutants in environmental samples (Mettakoonpitak
et al., 2016; Arduini et al., 2017). Considering the overall
scenario, further research efforts should be devoted toward the
development of novel ePADs for the detection of emerging APIs
as well to the validation of developed ePADs to better establish
their reliability and effectiveness.
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