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SUMMARY

The problem of selection bias has long been recognized in the analysis of two-stage trials, where promising
candidates are selected in stage 1 for confirmatory analysis in stage 2. To efficiently correct for bias,
uniformly minimum variance conditionally unbiased estimators (UMVCUEs) have been proposed for a
wide variety of trial settings, but where the population parameter estimates are assumed to be independent.
We relax this assumption and derive the UMVCUE in the multivariate normal setting with an arbitrary
known covariance structure. One area of application is the estimation of odds ratios (ORs) when combining
a genome-wide scan with a replication study. Our framework explicitly accounts for correlated single
nucleotide polymorphisms, as might occur due to linkage disequilibrium. We illustrate our approach on
the measurement of the association between 11 genetic variants and the risk of Crohn’s disease, as reported
in Parkes and others (2007. Sequence variants in the autophagy gene IRGM and multiple other replicating
loci contribute to Crohn’s disease susceptibility. Nat. Gen. 39(7), 830–832.), and show that the estimated
ORs can vary substantially if both selection and correlation are taken into account.

Keywords: Correlated outcomes; Genome-wide scan; Selection bias; Two-stage sample; Uniformly minimum variance
conditionally unbiased estimator.

1. INTRODUCTION

The two-stage “learn and confirm” strategy is widely implemented across biomedical research. For
example, in the sphere of randomized clinical trials, the vast majority of adaptive trial designs follow a
two-stage strategy, where design adaptations are made at the first interim analysis, with the trial then pro-
ceeding under a fixed design until its completion. See Bauer and others (2016), Bretz and others (2009),
and Posch and others (2005) for a thorough review of the literature.
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A key application has been in two-stage adaptive seamless trials incorporating mid-trial treatment selec-
tion (Bowden and Glimm, 2014; Kimani and others, 2013; Sampson and Sill, 2005). Typically, multiple
experimental treatments are simultaneously compared with a control in stage 1, and the most promising
treatment is selected for confirmatory analysis in stage 2.

In biomedical science more generally, there is an increasing focus on the identification of genetic mark-
ers predictive of phenotypic variation, in order to better understand disease etiology and to target future
drug development. The design of choice is the genome-wide association study (GWAS), in which upwards
of one million single nucleotide polymorphisms (SNPs) can be tested simultaneously for their associa-
tion with a given phenotype. Those SNPs achieving “genome-wide” significance (typically defined as a
p-value of < 10−8) are then validated in a replication study (Ioannidis and others, 2009).

A whole variety of formal two-stage design procedures have been proposed in this setting; see, for
example, Satagopan and Elston (2003), Satagopan and others (2004, 2002), Thomas and others (2004),
with an overview provided in Thomas and others (2009). In practice, the two-stage GWAS approach
has been successfully applied to many disease areas, including sclerosis (Chiò and others, 2009),
epilepsy (Guo and others, 2012), and breast cancer (Sapkota and others, 2012).

However, ranking and selecting candidates in a two-stage trial can induce bias in the final estimates
of the parameter of interest. Indeed, as a general rule, the more aggressive the selection, the worse is the
bias (Bauer and others, 2010). Specifically, a candidate has to perform “well” in stage 1 in order to proceed
to stage 2, which often leads to overly optimistic estimates, or the so-called “winner’s curse”. When there
is heavy selection from many candidates of roughly equivalent parameters, then the selected candidate is
typically based on chance variability rather than true superiority (Sill and Sampson, 2007). All this calls
into question the generalizability of the trial’s findings to future patients.

The need to correct for this selection bias in the analysis of two-stage trials has long been recognized.
An efficient and unbiased estimator can be obtained through the technique of Rao–Blackwellization. This
involves taking the unbiased stage 2 data and conditioning on a complete, sufficient statistic for the param-
eter in question. By the Lehmann–Scheffé theorem, this gives the uniformly minimum variance condition-
ally unbiased estimator (UMVCUE).

This two-stage framework was introduced by Cohen and Sackrowitz (1989), who derived the
UMVCUE for the selected mean, where the stage 1 populations are independent and normally distributed.
The method lends itself naturally to estimation in two-stage adaptive seamless phase II/III clinical tri-
als (Bowden and Glimm, 2008; Kimani and others, 2013), with equivalent work carried out in biomarker
research (Pepe and others, 2009; Koopmeiners and others, 2012; Robertson and others, 2015). In the
GWAS setting, Bowden and Dudbridge (2009) extended the Cohen and Sackrowitz method to derive the
UMVCUE for the SNP-disease log odds ratios (ORs), where either a one-sided or two-sided p-value test
is used for ranking the SNPs.

A crucial assumption in all of the above analyses is that the stage 1 population parameter estimates are
independent random variables. However, this may not be a reasonable assumption to make. For example,
in the GWAS setting, SNPs in the same chromosomal region may be in linkage disequilibrium (LD).

The aim of this paper is to present general theory to enable the calculation of UMVCUEs for each setting
that explicitly accounts for correlation. We achieve this by deriving the UMVCUE in the multivariate
normal setting with an arbitrary known covariance structure. We illustrate the utility of the new theory
using an application in the GWAS setting.

Since the focus of this paper is on point estimation, our primary criterion for comparing the performance
of different estimators is the magnitude of the bias. Of course, bias is not the only criterion with which to
judge an estimator, especially considering the bias–variance trade-off. However, it is important to quantify
the bias of an estimator, not least due to regulatory concerns. As a secondary criterion, we also compare
the mean squared error (MSE) of the estimators, which takes into account the variance. In practice, the
relative importance attached to the criterion of bias and MSE will vary from setting to setting.
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In Section 2, we describe the general model framework and derive the form of the multivariate
normal UMVCUE. We then present a short simulation study in Section 3 for the bivariate normal
case. We extend our framework to estimating ORs in genome-wide scans in Section 4, and apply the
resulting UMVCUE to data reported in Parkes and others (2007). We conclude with a discussion in
Section 5.

2. GENERAL FRAMEWORK FOR THE UMVCUE

2.1 Model description

Consider the following two-stage trial design. Suppose that we have K correlated continuous stage 1
parameter estimates, defined by X = (X1, . . . , X K ), for the candidate treatments, biomarkers or genetic
variants C1, . . . , CK . Let X follow a multivariate normal distribution, defined by X ∼ N (µ, V ), where µ

is the vector of (unknown) means and V = (Vi j ), i, j ∈ {1, . . . , K } is the covariance matrix. We assume
that V is known and is positive definite. For notational convenience, we let Vii = σ 2

i for i = 1, . . . , K .
We denote the ordered stage 1 estimates as X(i), where the ordering is simply by effect size: X(1) >

X(2) > · · · > X(K ). We consider other ordering mechanisms in due course. Let Yi be the stage 2 estimate of
the i th ranked candidate, and so Yi ∼ N (μ(i), τ

2
i ). At the end of stage 2, the aim is to efficiently estimate

μ( j) for some j ∈ {1, . . . , K }.
The MLE for μ( j) is a weighted average of the first- and second-stage data:

μ̂( j) = τ 2
j X( j) + σ 2

( j)Y j

σ 2
( j) + τ 2

j

.

This estimator may be biased, because it does not take into account the first-stage selection procedures
or the correlation. An unbiased estimator can easily be found by just using the stage 2 data Y j . However,
this estimator suffers from lower precision since we are neglecting the stage 1 data. Hence we look for an
unbiased estimator that uses data from both stages.

2.2 Calculating the UMVCUE

Let Q be the event {X : X1 > X2 > · · · > X K }, which implies that X(i) = Xi for i = 1, . . . , K . Without loss
of generality, we condition on Q for the remainder of the derivation of the UMVCUE.

To start with, consider estimating the mean of the highest ranked population, μ1. For notational con-
venience, we let Y1 = Y and τ1 = τ . In Section 1 of the supplementary materials (available at Biostatistics
online), we prove the following theorem for the complete and sufficient statistic for µ = (μ1, . . . , μK ).

THEOREM 2.1 The statistic Z = (Z1, . . . , ZK ) is sufficient and complete for µ = (μ1, . . . , μK ), where
Zi = Xi + (V1i/τ

2)Y for i = 1, . . . , K .

Then, by the Lehmann–Scheffé theorem, Û = E(Y | Z = z, Q) is the UMVCUE for μ1 under Q. Hence
we have the following result, as proved in Section 2 of the supplementary materials (available at Biostatis-
tics online).

THEOREM 2.2 The UMVCUE for μ1 given Q is

Û = τ 2 Z1

σ 2
1 + τ 2

− τ 2√
σ 2

1 + τ 2

φ(W1) − φ(W2)

�(W1) − �(W2)
, (2.1)
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where

Wi = ki

√
σ 2

1 + τ 2

τ 2
− Z1√

σ 2
1 + τ 2

for i = 1, 2,

k1 = min(A1), k2 = max(A2),

A1 =
{

τ 2(Z j − Z j+1)

V1 j − V1, j+1
: V1 j > V1, j+1; j = 1, . . . , K − 1

}
,

A2 =
{

τ 2(Z j − Z j+1)

V1 j − V1, j+1
: V1 j < V1, j+1; j = 1, . . . , K − 1

}

and we define min{∅} = +∞ and max{∅} = −∞.

REMARK In the independent normal setting, Cohen and Sackrowitz (1989) note that all dependency on
observations X3, X4, . . . , X K vanished in the expression for the UMVCUE—which they interpreted as a
negative result when K > 2. However, we see in Equation (2.1) that accounting for correlation means that
all of the observations can contribute to the sets A1 and A2 and be implicitly used in the estimator. In fact,
any of the observations X3, X4, . . . , X K can be used explicitly, depending on which feature in min(A1)

and max(A2).

REMARK 2 It is often the case that the stage 1 estimates are asymptotically normal rather than precisely
normal. For example, log ORs have an asymptotic normal distribution. In these settings, our theorems hold
asymptotically.

Suppose that, instead of only selecting the single top-ranking treatment or biomarker for continuation to
stage 2, we take forward the top K from a larger group of K ′. For example, in the GWAS setting, typically
K ′ ≈ 500 000 and K < 100. We now require the UMVCUE for the j th best candidate out of K and the
following corollary covers this case.

COROLLARY 2.3 For a given value of j ∈ {1, . . . , K }, the statistic Z j = (Z1 j , . . . , ZK j ) is sufficient and
complete for µ = (μ1, . . . , μK ), where

Zi j = Xi + Vi j

τ 2
j

Y j (2.2)

for i = 1, . . . , K .
Also, the UMVCUE for μ j given Q is

Û j = τ 2
j Z j j

σ 2
j + τ 2

j

− τ 2
j√

σ 2
j + τ 2

j

φ(W1) − φ(W2)

�(W1) − �(W2)
, (2.3)

where

Wi =
ki

√
σ 2

j + τ 2
j

τ 2
j

− Z j j√
σ 2

j + τ 2
j

for i = 1, 2,

k1 = min(A1), k2 = max(A2),
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A1 =
{

τ 2
j (Zi j − Zi+1, j )

Vi j − Vi+1, j
: Vi j > Vi+1, j ; i = 1, . . . , K − 1

}
,

A2 =
{

τ 2
j (Zi j − Zi+1, j )

Vi j − Vi+1, j
: Vi j < Vi+1, j ; i = 1, . . . , K − 1

}

and we define min{∅} = +∞ and max{∅} = −∞.

REMARK As a simple check of our methodological development’s consistency with previous results, if we
set the off-diagonal terms of the covariance matrix V equal to zero, then we recover the independent normal
setting. The UMVCUE was derived in this special case by Bowden and Glimm (2008). We compare our
results in Section 3 of the supplementary materials (available at Biostatistics online) and show that they
are the same.

In Section 4, we show the form of the UMVCUE when ranking by p-value, and subsequently show how
to construct bootstrapped confidence intervals (CIs) in this setting.

3. SIMULATION STUDY: BIVARIATE NORMAL CASE

3.1 Bivariate normal UMVCUE

We now consider the UMVCUE derived in the bivariate normal setting, where K = 2. Suppose we have
two correlated continuous stage 1 outcome measures, defined by X = (X1, X2), for the candidates C1 and
C2. We let X follow a bivariate normal distribution, with(

X1

X2

)
∼ N

((
μ1

μ2

)
,

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

))
,

where ρ is the correlation coefficient between X1 and X2, and we assume ρ 
= ±1.
From Equations (2.1), the statistic (Z1, Z2) is sufficient for (μ1, μ2), where

Z1 = X1 + σ 2
1

τ 2
Y, Z2 = X2 + ρσ1σ2

τ 2
Y.

The UMVCUE depends on whether V11 > V12 ⇐⇒ σ1/σ2 > ρ. Since τ 2(Z1 − Z2)/(V11 − V12) =
τ 2(Z1 − Z2)/(σ

2
1 − ρσ1σ2), if follows that, from Equation (2.1), the UMVCUE for μ1 given Q is

Û =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ 2 Z1

σ 2
1 + τ 2

− τ 2√
σ 2

1 + τ 2

φ(W )

�(W )
if

σ1

σ2
> ρ,

τ 2 Z1

σ 2
1 + τ 2

+ τ 2√
σ 2

1 + τ 2

φ(W )

�(−W )
if σ1

σ2
< ρ,

τ 2 Z1

σ 2
1 + τ 2

if
σ1

σ2
= ρ,

(3.1)

where

W = (Z1 − Z2)
√

σ 2
1 + τ 2

σ 2
1 − ρσ1σ2

− Z1√
σ 2

1 + τ 2
.
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REMARK Note that if σ1/σ2 = ρ, then the UMVCUE is in fact equal to the MLE μ̂1.

3.2 Simulation results

In this subsection, we compare various estimators for the largest mean μ1 in the bivariate normal setting:

Y = the observed stage 2 data for the highest ranked population.
μ̂1 = the MLE for μ1, which ignores selection and correlation.
ÛB = the UMVCUE derived by Bowden and Glimm (2008), which accounts for selection but
ignores correlation. Note that this is equivalent to Û when we set ρ = 0.
Û = our UMVCUE given in Equation (3.1), which accounts for selection and correlation.

To evaluate the performance of a generic estimator for μ1, say μ∗
1, we calculate the bias and MSE as

defined in Posch and others (2005), Sill and Sampson (2007), and Bowden and Glimm (2008):

bsel(μ
∗
1) =

K∑
i=1

E[μ∗
1 − μi | X1 = Xi ]P(X1 = Xi ),

MSEsel(μ
∗
1) =

K∑
i=1

E[(μ∗
1 − μi )

2 | X1 = Xi ]P(X1 = Xi ).

In our simulation study, we set σ1 = 0.05 and σ2 = 0.1 and then consider four simple scenarios (i)–(iv)
with varying values of the true means µ = (μ1, μ2) and stage 2 variance τ 2:

(i) µ = (0.1, 0.1), τ = 0.05, (ii) µ = (0.1, 0.3), τ = 0.05,

(iii) µ = (0.1, 0.1), τ = σ1, (iv) µ = (0.1, 0.3), τ = σ1.

Note that, for scenarios (i) and (ii), MSEsel(Y ) = 0.052. For scenarios (iii) and (iv), the exact MSE of
Y is as follows:

MSEsel(Y ) = E[(Y − μ1)
2 | X1 > X2]P(X1 > X2) + E[(Y − μ2)

2 | X1 < X2]P(X1 < X2)

= σ 2
1 �

(
μ1 − μ2√

σ 2
1 + σ 2

2 − 2ρσ1σ2

)
+ σ 2

2

[
1 − �

(
μ1 − μ2√

σ 2
1 + σ 2

2 − 2ρσ1σ2

)]
.

Figure 1 shows the mean relative bias (defined as bsel/μ1) of the MLE (μ̂1) and the UMVCUE (ÛB)

(which ignores correlation) as a function of ρ for the four scenarios. Since the mean bias of the stage 2
data (Y ) and the UMVCUE (Û ) are virtually identical to zero for all values of ρ (by definition), we do not
show the simulation results here.

The plots show that the bias of both estimators is at a maximum for ρ close to −1. The MLE is positively
biased for ρ < 0.5, and in scenarios (ii) is in fact substantially biased for all values of ρ. We see that ÛB is
positively biased for ρ < 0, unbiased when ρ = 0 (as would be expected), and negatively biased for ρ > 0.
The bias of both estimators is worse when τ = σ1 compared with τ = 0.05.

Figure 2 shows the MSE of the estimators (μ̂1, Y, ÛB, Û ) for the four scenarios. As would be expected,
the MLE always has the lowest MSE, while Y always has the highest. We also see that there is a substantial
reduction in the MSE when using the UMVCUEs Û or ÛB .

In scenarios (i)–(iii), the MSE of Û decreases as ρ approaches 0.5, and then increases again. This
is to be expected given Equation (3.1), which shows that Û reduces down to the MLE when σ1 = ρσ2.
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Fig. 1. Mean relative bias of the MLE (μ̂1, blue), and the UMVCUE (ÛB , black) that ignores the correlation. Plots
show the mean of 100 000 simulations for each value of ρ. The horizontal line shows where the bias equals zero.

In scenarios (iii) and (iv), we also see that, for ρ close to 1, the MSE of Û and the MLE are very
close.

In all of the scenarios, the MSE of Û is greater than that for ÛB when ρ < 0, equal when ρ = 0 (as
would be expected), and less than that for ÛB when ρ > 0. However, these differences in the MSE are
much less than the differences between the MSE of Y and either Û or ÛB . In conclusion, there is little
or no advantage in terms of MSE when using the estimator ÛB as opposed to our UMVCUE Û , which
properly accounts for correlation.

4. APPLICATION TO THE PARKES AND OTHERS’ GWAS DATA

We now apply our methodology to data from the genome-wide association scan for Crohn’s disease pub-
lished in 2007 by the Wellcome Trust Case Control Consortium (2007) (WTCCC). There were 1748 cases
for the disease, and 2938 controls in this cohort, which identified 12 SNPs associated with disease status
at genome-wide significance.

A replication study was then reported by Parkes and others (2007) in a follow-up cohort of 1182
cases and 2024 controls, in which 12 SNPs were successfully replicated in this study. Following
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Fig. 2. MSE of the MLE (blue), Y (green), ÛB (black), and Û (red). Plots show the mean of 100 000 simulations for
each value of ρ, except for Y , which is the theoretical value of the MSE.

Bowden and Dudbridge (2009), we exclude one (rs6887695) from our illustration (as its significance in
the WTCCC scan was severely reduced after data cleaning).

Table 1 shows the estimated ORs for stages 1 and 2 (i.e. the WTCCC data and the replication data), as
well as the overall MLE. This is then followed by two previously described estimators that combine the
data from the two stages in a way that attempts to correct for bias. The first estimator (denoted by ZP) is
the corrected MLE of Zhong and Prentice (2008). The second (denoted by ÛB) is the estimator considered
in Bowden and Dudbridge (2009), who calculated the UMVCUE assuming that all of the log ORs for the
SNPs are uncorrelated.

As the bold entries in Table 1 indicate, two pairs of SNPs are on the same chromosomal region. The
first- and second-ranked SNPs (rs17234657 and rs9292777) are both on chromosomal region 5p13, while
the fifth- and seventh-ranked SNPs (rs13361189 and rs4958847) are both on chromosomal region 5q33.

It can be safely assumed that SNPs from distinct genomic regions are in linkage equilibrium. However,
in an effort to assess the potential correlation between SNPs in the same genomic region, we used the
data from 498 Europeans in the 1000 genomes project (1000 Genomes Project Consortium, 2012). The
empirical correlation between the SNPs (encoded as 0,1,2 to indicate the number of risk increasing alleles)
on chromosomal regions 5p13 and 5q33 were −0.28 and 0.78, respectively.
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Table 1. The ORs (95% CIs) of 11 SNPs estimated from allele frequencies reported by Parkes and others
(2007) in an initial scan (stage 1) and replication study (stage 2). SNPs are ranked in order of stage 1

statistical significance, with those on the same chromosomal region highlighted in bold

Chr SNP Stage 1 OR Stage 2 OR MLE ZP ÛB
5p13 rs17234657 1.55 (1.38, 1.74) 1.16 (1.00, 1.35) 1.39 1.39 1.16
5p13 rs9292777 1.38 (1.26, 1.51) 1.34 (1.20, 1.50) 1.37 1.37 1.39
10q24 rs10883365 1.27 (1.17, 1.38) 1.18 (1.05, 1.32) 1.24 1.24 1.16
18p11 rs2542151 1.35 (1.21, 1.50) 1.15 (1.00, 1.32) 1.27 1.25 1.15
5q33 rs13361189 1.51 (1.30, 1.76) 1.38 (1.15, 1.66) 1.46 1.45 1.40
3p21 rs9858542 1.26 (1.15, 1.38) 1.17 (1.04, 1.31) 1.22 1.21 1.17
5q33 rs4958847 1.35 (1.20, 1.53) 1.36 (1.17, 1.59) 1.36 1.35 1.35
5q23 rs10077785 1.29 (1.16, 1.43) 1.19 (1.05, 1.36) 1.25 1.22 1.19
1q24 rs12035082 1.22 (1.12, 1.33) 1.14 (1.02, 1.27) 1.19 1.17 1.15
21q22 rs2836754 1.22 (1.12, 1.33) 1.15 (1.03, 1.28) 1.19 1.16 1.16
1q31 rs10801047 1.38 (1.18, 1.61) 1.47 (1.22, 1.76) 1.42 1.39 1.44

Although the populations considered by Parkes and others (2007) and the 1000 genomes project are
different, these correlations do suggest LD exists between these SNPs. Hence a natural question to ask
is how the OR estimates are affected by correlation. To do so, we first need to extend our framework to
account for ranking by p-value.

4.1 Calculating the UMVCUE

Consider a two-stage design with a genome-wide association scan (stage 1) followed by a replication study
(stage 2). Only those SNPs that meet selection criteria (see below) in stage 1 continue on to stage 2. A
common approach in the genome-wide setting is to rank the SNPs according to the statistical significance
of the effects, with a p-value threshold pcrit. We assume that K of the SNPs pass pcrit and are then ranked.

For a one-sided test, we condition (WLOG) on the event

Q1 =
{

X :
X1

σ1
� X2

σ2
� · · · � X K

σK
� �−1(1 − pcrit)

}
.

The UMVCUE in this case is given in Section 4 the supplementary materials (available at Biostatistics
online).

For a two-sided test, we instead condition (WLOG) on the event

Q2 =
{

X :
|X1|
σ1

� |X2|
σ2

� · · · � |X K |
σK

� �−1(1 − pcrit/2)

}
.

Then the UMVCUE for μ j is as follows, with the proof found in Section 5 of the supplementary mate-
rials (available at Biostatistics online):

THEOREM 4.1 The UMVCUE for μ j given Q2 is

Û j = τ 2
j Z j j

σ 2
j + τ 2

j

− τ 2
j√

σ 2
j + τ 2

j

∑M
i=1 φ(W1i ) − φ(W2i )∑M
i=1 �(W1i ) − �(W2i )

, (4.1)
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where

W1i =
bi

√
σ 2

j + τ 2
j

τ 2
j

− Z j j√
σ 2

j + τ 2
j

, W2i =
ai

√
σ 2

j + τ 2
j

τ 2
j

− Z j j√
σ 2

j + τ 2
j

,

M⋃
i=1

[ai , bi ] =
(

K−1⋂
i=1

(A1i ∩ A2i ) ∪ (A3i ∩ A4i )

)
∩ (A5 ∪ A6),

A1i = {Y : (σi Vi+1, j − σi+1Vi j )Y � τ 2
j (σi Zi+1, j − σi+1 Zi j )},

A2i = {Y : (σi Vi+1, j + σi+1Vi j )Y � τ 2
j (σi+1 Zi j + σi Zi+1, j )},

A3i = {Y : (σi Vi+1, j + σi+1Vi j )Y � τ 2
j (σi+1 Zi j + σi Zi+1, j )},

A4i = {Y : (σi Vi+1, j − σi+1Vi j )Y � τ 2
j (σi Zi+1, j − σi+1 Zi j )},

A5 = {Y : VK j Y � τ 2
j [ZK − σK �−1(1 − pcrit/2)]},

A6 = {Y : VK j Y � τ 2
j [ZK + σK �−1(1 − pcrit/2)]}

and we define min{∅} = +∞ and max{∅} = −∞.

REMARK The introduction of the variable M above is for notational convenience. In particular, we re-
express the intersection of sets (

⋂K−1
i=1 (A1i ∩ A2i ) ∪ (A3i ∩ A4i )) ∩ (A5 ∪ A6) as the disjoint union of M

closed intervals on the real line [a1, b1], . . . , [aM , bM ], where M � 1. Note that possibly a1 = −∞ and/or
bM = ∞.

For either test, if all the off-diagonal terms of the covariance matrix are equal to zero, then we recover
the independent normal setting as in Bowden and Dudbridge (2009). In Section 6 of the supplementary
materials (available at Biostatistics online), we compare our estimators and show they are the same.

4.2 Results

Rather than assuming we know ρ, we take each pair of SNPs that are on the same chromosomal region and
calculate the UMVCUEs as the correlation between the log ORs varies between ±1. More explicitly, given
a pair of SNPs on the same chromosomal region which have stage 1 ranks j1 and j2, respectively, then we
assume that the log ORs X j1 and X j2 follow a bivariate normal distribution, with correlation coefficient ρ

(
X j1
X j2

)
∼ N

((
μ j1
μ j2

)
,

(
σ 2

j1 ρσ j1σ j2

ρσ j1σ j2 σ 2
j2

))
.

Starting with the SNPs on chromosomal region 5p13, the upper half of Figure 3 shows the UMVCUEs for
the ORs as a function of the correlation coefficient ρ. The first plot for SNP rs17234657 shows that the
UMVCUE can vary substantially if there is positive correlation between the SNPs. As ρ increases from
0 to 0.88, the UMVCUE increases from 1.16 to 1.32, with a particularly rapid increase for ρ greater than
about 0.5. For ρ > 0.88 we actually see a (small) decrease in the UMVCUE. In contrast, for negative values
of ρ, the UMVCUE is hardly affected.

The second plot for SNP rs9292777 shows that the UMVCUE decreases as ρ increases, but in absolute
terms correlation has little effect. The main reason for this is because the stage 1 and stage 2 estimates
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Fig. 3. The UMVCUEs for the ORs of the SNPs on chromosomal region 5p13 (rs17234657 and rs9292777) and 5q33
(rs13361189 and rs4958847) as a function of the correlation coefficient.

for the OR were very similar (1.38 and 1.34, respectively), so we would not expect the UMVCUE to be
dramatically different regardless of any correlation.

Performing the analysis for the SNPs on chromosomal region 5q33 gives the results displayed in
the lower half of Figure 3. Looking at the first plot for SNP rs13361189, in absolute terms corre-
lation has little effect on the UMVCUE. However, note the piecewise nature of the UMVCUE: it
increases for −1 < ρ < −0.58, decreases for −0.57 < ρ < −0.33, remains constant for −0.33 < ρ <

0.1, and then (rapidly) decreases again for ρ > 0.1. Also note that this time, there is a large dis-
crepancy between the stage 1 and stage 2 log ORs (1.51 and 1.38, respectively). The fact that the
UMVCUE hardly varies indicates that the substantial correction to the stage 1 estimate is in fact robust to
correlation.

As for the second plot for SNP rs4958847, again the correlation hardly changes the value of the
UMVCUE (in fact, the UMVCUE remains constant until ρ > 0.5). However, this should be expected since
the stage 1 and stage 2 estimates for the OR were very similar (1.35 and 1.36, respectively).
Constructing CIs. After constructing a point estimate for the OR, it is natural to construct CIs as well.
We use a parametric bootstrap procedure inspired by Bowden and Glimm (2008) and Pepe and others
(2009), where we assume that the true log OR mean μ j = Û j (the UMVCUE calculated from the observed
data).

Starting with the SNPs on chromosomal region 5q33, these had the fifth and seventh stage 1 ranks.
Given the observed stage 1 log ORs x = (x1, . . . , x11) and the assumed correlation coefficient ρ between
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Fig. 4. The UMVCUE for the OR of the highest ranked SNP (rs17234657) as a function of the correlation coefficient
with the second-ranked SNP (rs9292777). Also plotted are the 95% bootstrapped CIs for the UMVCUE, using 10 000
bootstrapped replicates per data point. The 95% CIs for the stage 2 OR (in red) and the MLE (in black) are displayed
for comparison purposes.

X5 and X7, we use the following procedure:

1. Simulate “bootstrapped” stage 1 data X (B)
5 , X (B)

7 by drawing from a bivariate normal distribution

(
X (B)

5

X (B)
7

)
∼ N

((
Û5

Û7

)
,

(
σ 2

5 ρσ5σ7

ρσ5σ7 σ 2
7

))
,

conditional on |x4|/σ4 � |X (B)
5 |/σ5 � |x6|/σ6 and |x6|/σ6 � |X (B)

7 |/σ7 � |x8|/σ8.
2. Simulate bootstrapped stage 2 data Y (B)

5 , Y (B)
7 from independent normal distributions

Y (B)
5 ∼ N (Û5, σ

2
5 ) and Y (B)

7 ∼ N (Û7, σ
2
7 ).

3. Calculate the bootstrapped UMVCUEs Û (B)
5 , Û (B)

7 using X (B)
5 , X (B)

7 , Y (B)
5 , Y (B)

7 and the original
observed values x1, . . . , x4, x6, x8, . . . , x11.

These steps are then repeated for a large value of B, with the α/2 and (1 − α/2) empirical quantiles
then used as the (1 − α)% CIs for Û5 and Û7. Bootstrapped CIs for the MLE, as well as the Zhong &
Prentice estimator (ZP) are also then straightforwardly available.

Further details of how the variables are generated in step 1 can be found in Section 7 of the supple-
mentary materials (available at Biostatistics online), as well as an extension to the general multivariate
case.

As for the SNPs on chromosomal region 5p13, these had the first and second stage 1 ranks. The same
bootstrap procedure described above can be used, except that in step 1, we condition on |X (B)

1 |/σ1 �
|X (B)

2 |/σ2 � |x3|/σ3.
Figure 4 shows the bootstrapped 95% CIs for SNP rs17234657 on chromosomal region 5p13. When the

correlation ρ = 0, the CI for the UMVCUE is virtually identical to that achieved by just using the stage 2
data. However, we see that, for ρ > 0.5, the CIs become appreciably different, since the stage 2 OR ignores
the correlation.
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Table 2. Bootstrapped 95% CIs for the ORs of the two
highest ranked SNPs when the correlation ρ = 0. There

were 10 000 bootstrapped replicates used

rs17234657 rs9292777

Stage 2 (1.002, 1.348) (1.243, 1.547)
UMVCUE (1.003, 1.348) (1.299, 1.566)
ZP (1.289, 1.529) (1.308, 1.487)
MLE (1.290, 1.526) (1.307, 1.485)

Table 2 compares the bootstrapped 95% CIs for the various estimators for the two highest ranked SNPs
(rs17234657 and rs9292777) when the correlation ρ = 0. For the SNP rs9292777, there is a 12% reduction
in the CI width (from 0.304 to 0.268) when using the UMVCUE compared to just using the stage 2 data.
For both SNPs, the ZP estimator and the MLE give very similar CIs.

5. DISCUSSION

In this paper, we present a general framework for accounting for selection and correlation in two-stage
trials, with an emphasis on the GWAS setting. We achieve this by deriving the UMVCUE in the multivariate
normal setting with an arbitrary known covariance structure. Our framework relaxes the assumption present
in the literature that the stage 1 population parameter estimates are independent.

As the bivariate normal simulation study demonstrated, it is important to correctly account for cor-
relation. Indeed, if the correlation coefficient is not close to zero, then the UMVCUE that ignores cor-
relation can be substantially biased. Due to the bias–variance trade-off, the MSE of the UMVCUE is
greater than that of the MLE, but is substantially less than the MSE of using the (unbiased) stage 2
data alone.

The GWAS example showed how our estimation strategy can be applied in practice. We also described
how to construct CIs using a parametric bootstrap procedure. Our results demonstrate how correcting
for correlation is necessary in the GWAS setting. Indeed, for the Parkes and others (2007) data, the
OR estimate for the highest ranking SNP varied substantially for high positive values of the correlation
coefficient.

In the GWAS setting, our framework assumes that the LD structure of the SNPs is known.
In practice, we would envisage using large external datasets such as the International HapMap
Project (The International HapMap Consortium, 2003) to give an estimate of SNP LD. Alternatively, the
correlation could be estimated based on the stage 1 data itself if individual participant data were avail-
able, but further research is needed to give guidance as to whether doing so would induce bias into our
UMVCUE and/or appreciably increase the MSE.

Even if it is not possible to have reliable estimates of the correlation between the (log) ORs, a sensitivity
analysis (like the one we carried out) is still useful to probe the robustness of the reported ORs to any LD
between the SNPs.

Due to the structure of the Parkes and others (2007) data, our results in Section 4.2 focused on the
bivariate setting. Of course, in other GWAS studies the data may mean that it is necessary to consider
multiple (i.e. K > 2) SNPs in a local region that are in LD. Our UMVCUE, although still tractable, would
then have a much more complex dependence on K (K − 1)/2 correlation coefficients.

We note that some progress was made to account for correlated outcomes by Sill and Sampson (2007),
who looked at two-stage trials with mid-trial treatment selection based on a surrogate endpoint. They
derived the UMVCUE for the final endpoint when the surrogate and final endpoint follow a bivariate
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normal distribution. However, our framework is a more general one, and allows application to other trial
settings. Indeed, as current work, we have applied our estimator to two-stage adaptive seamless phase II/III
clinical trials, allowing for unequal stage 1 (and stage 2) variances as well as generalized selection rules.

One of the limitations of our work is the construction of CIs. In the bivariate case, we can simply use
a parametric bootstrap procedure. As for the general multivariate case, in the supplementary materials
(available at Biostatistics online) we show theoretically how to extend our method. However, it is not clear
what the coverage of such CIs would be in practice. An alternative approach could be based on the work
of Sampson and Sill (2005), who developed exact CIs in the independent normal setting. It may be possible
to extend their analysis to correlated multivariate normal outcomes.

In the framework for our UMVCUE, we treat the stage 2 data as coming from independent univariate
normal distributions, i.e. we ignore the potential stage 2 correlation structure. As current work, we are
deriving efficient unbiased estimators that make use of, and fully account for, all the available correlated
stage 2 outcomes. However, preliminary results appear to show that no UMVCUE exists for this case,
despite the obvious appeal of making use of more data, when available.

Finally, another extension would be trials with more than two stages. Bowden and Glimm (2014)
derived Rao–Blackwellized estimators for multistage drop-the-loser trials assuming independent normal
outcomes, and this could be a starting point for looking at multistage trials with multiply correlated
outcomes.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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