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Background. Although accumulating evidence suggested that a molecular signature panel may be more effective for the prognosis
prediction than routine clinical characteristics, current studies mainly focused on colorectal or colon cancers. No reports
specifically focused on the signature panel for rectal cancers (RC). Our present study was aimed at developing a novel
prognostic signature panel for RC. Methods. Sequencing (or microarray) data and clinicopathological details of patients with RC
were retrieved from The Cancer Genome Atlas (TCGA-READ) or the Gene Expression Omnibus (GSE123390, GSE56699)
database. A weighted gene coexpression network was used to identify RC-related modules. The least absolute shrinkage and
selection operator analysis was performed to screen the prognostic signature panel. The prognostic performance of the risk
score was evaluated by survival curve analyses. Functions of prognostic genes were predicted based on the interaction proteins
and the correlation with tumor-infiltrating immune cells. The Human Protein Atlas (HPA) tool was utilized to validate the
protein expression levels. Results. A total of 247 differentially expressed genes (DEGs) were commonly identified using TCGA
and GSE123390 datasets. Brown and yellow modules (including 77 DEGs) were identified to be preserved for RC. Five DEGs
(ASB2, GPR15, PRPH, RNASE7, and TCL1A) in these two modules constituted the optimal prognosis signature panel. Kaplan-
Meier curve analysis showed that patients in the high-risk group had a poorer prognosis than those in the low-risk group.
Receiver operating characteristic (ROC) curve analysis demonstrated that this risk score had high predictive accuracy for
unfavorable prognosis, with the area under the ROC curve of 0.915 and 0.827 for TCGA and GSE56699 datasets, respectively.
This five-mRNA classifier was an independent prognostic factor. Its predictive accuracy was also higher than all clinical factor
models. A prognostic nomogram was developed by integrating the risk score and clinical factors, which showed the highest
prognostic power. ASB2, PRPH, and GPR15/TCL1A were predicted to function by interacting with CASQ2/PDK4/EPHA67,
PTN, and CXCL12, respectively. TCL1A and GPR15 influenced the infiltration levels of B cells and dendritic cells, while the
expression of PRPH was positively associated with the abundance of macrophages. HPA analysis supported the downregulation
of PRPH, RNASE7, CASQ2, EPHA6, and PDK4 in RC compared with normal controls. Conclusion. Our immune-related
signature panel may be a promising prognostic indicator for RC.

1. Introduction

Previously, colon cancer (CC) and rectal cancer (RC) are
considered a single tumor entity (called colorectal cancer

(CRC)) [1]. However, recent studies indicate that there are
significant differences in epidemiology, pathology, molecular
mechanisms, and the response to treatments [1]. The risk of
developing RC is estimated to be four times higher than that
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of CC, and RC patients have a lower 5-year survival rate than
CC patients (60% versus 72%) due to a poor response to cur-
rent treatment options [1–3]. Thus, it is of particular impor-
tance to explore approaches to early separate RC patients
with a high death risk and then provide improved specialized
care to further reduce the overall mortality rate.

With the developments in sequencing technology and
bioinformatics, recent scholars suggest that a molecular sig-
nature panel may be more effective for the prognosis predic-
tion than routine clinical characteristics (such as the tumor-
node-metastasis (TNM) stage) [4, 5]. Li et al. identified a
four-mRNA signature panel as an independent prognostic
factor for CRC. This four-mRNA signature panel can effec-
tively predict the prognosis of CRC patients, with an area
under the receiver operating characteristic (ROC) curve
(AUC) of 0.730. The stratified analysis indicated that the
patients belonging to the same T stage (T3+T4), N stage
(N1+N2), or TNM stage (III+IV) can also be stratified into
the high-risk and low-risk groups using this 4-gene signature
panel [6]. The study of Zuo et al. revealed that a six-mRNA
signature panel had a significant prognostic value to discrim-
inate the high-risk patients from the low-risk patients, with
an AUC of 0.711 and 0.683 for 3-year and 5-year survival,
respectively. This 6-gene signature panel was an independent
factor of OS after adjustment for clinical factors and can pre-
dict different survival outcomes in patients with the early (or
advanced) TNM stage [7]. Sun et al. developed a 12-gene
expression signature panel to precisely predict the prognosis
for CC patients, which could distinguish poor from good
prognosis patients within stage II/III [8]. Chen et al. found
that the signature panel consisting of 16 gene pairs formed
by 24 genes had a better prognostic ability than the TNM
stage (AUC: 0.724 vs. 0.703; concordance index (C-index):
0.869 vs. less than 0.8) at 5 years [9]. Although there were also
studies to identify mRNAs associated with the prognosis of
RC patients [10–13], no reports specifically focused on the
signature panel and compared its prognostic values with clin-
ical factors.

In the present study, we aimed to (1) screen RC-related
genes by weighted gene coexpression network analysis
(WGCNA) [14], (2) develop a reliable mRNA signature
panel for the prediction of overall survival (OS) in patients
with RC using the least absolute shrinkage and selection
operator (LASSO) method [15, 16], (3) validate its superior
prognostic performance to various clinical features by strati-
fied analysis and comparison of the AUC and C-index, and
(4) establish a clinicopathologic-mRNA nomogram to
improve the prediction accuracy clinically.

2. Materials and Methods

2.1. Data Access. The RNA-seq expression data (fragments
mapped per kilobase of exon per million reads mapped, level
3) were retrieved from The Cancer Genome Atlas (TCGA;
https://portal.gdc.cancer.gov) database using “TCGA-rectal
adenocarcinoma (READ)” as the keyword. There were 177
READ cases and 10 controls in this dataset. However, only
162 READ cases provided clinical information. Thus, TCGA
dataset (including 162 cases and 10 controls) served as the

training dataset for our following analyses. Furthermore,
GSE123390 (platform: Affymetrix Human Transcriptome
Array 2.0) and GSE56699 (platform: Illumina HumanHT-
12 WG-DASL V4.0 R2 expression beadchip) microarray
datasets were also obtained from the Gene Expression Omni-
bus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database
using “rectal cancer” as the keyword. GSE123390 was used
for the WGCNA model validation because it investigated
the mRNA expression profile in human RC tissues (N = 28)
and controls (N = 5). GSE56699 was used for the survival
model validation because it provided the prognosis informa-
tion for 61 of 72 RC cases. The study flowchart is illustrated
in Figure 1.

2.2. Identification of Differentially Expressed Genes (DEGs).
In TCGA-READ and GSE123390 datasets, the DEGs were
screened between RC and controls using the limma package
of R (version 3.34.7; https://bioconductor.org/packages/
release/bioc/html/limma.html) [17]. False discovery rate ð
FDRÞ < 0:05 and ∣log2FC ðfold changeÞ ∣ >0:5 were defined
as the statistical threshold. All DEGs in these two datasets
were subjected to the hierarchical clustering analysis using
the pheatmap package of R (version 1.0.8; https://cran.r-
project.org/web/packages/pheatmap), and the heat map gen-
erated was used to assess the heterogeneity of gene expression
patterns between RC and controls. The Draw Venn Diagram
online tool (http://bioinformatics.psb.ugent.be/webtools/
Venn) was utilized to identify the shared DEGs between
TCGA-READ and GSE123390 datasets. The functions of
common DEGs were analyzed using the gProfiler tool
(http://biit.cs.ut.ee/gprofiler/gost). Gene Ontology (GO)
terms, Kyoto Encyclopedia of Genes and Genomes (KEGG),
and Reactome pathways with an FDR < 0:05 were considered
to be statistically significant.

2.3. WGCNA. To screen genes associated with the develop-
ment of RC, WGCNA was performed using the WGCNA
package in R (version 1.61; https://cran.r-project.org/web/
packages/WGCNA/index.html) [14], by which highly corre-
lated mRNAs could be clustered into the same coexpression
modules. WGCNA included six steps: (1) calculation of the
expression and connectivity correlations of mRNAs between
TCGA-READ and GSE123390 datasets; (2) selection of the
soft threshold power (β) according to the scale-free topology
criterion; (3) calculation of the topological overlap matrix
dissimilarity between genes in TCGA-READ to build the den-
drogram and identification of modules (cutHeight = 0:995
and minSize ≥ 50) by the Dynamic Tree Cut method [18];
(4) assessment of the preservation (Z‐score > 5 and p < 0:05)
of modules in two datasets using the modulePreservation
statistics [19]; (5) enrichment of DEGs to modules using the
hypergeometric algorithm ½ f ðk,N ,M, nÞ = Cðk,MÞ ∗ Cðn −
k,N −MÞ/Cðn,NÞ� [20]; and (6) association of coexpression
modules with clinical information.

2.4. Protein-Protein Interaction (PPI) Network. The PPI pairs
among DEGs in crucial modules were identified using the
Search Tool for the Retrieval of Interacting Genes (STRING;
version 11.0; https://string-db.org) database [21]. Only
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interactions with a combined score > 0:4 were selected to
construct the PPI network using Cytoscape software (version
3.4; http://www.cytoscape.org/) [22]. The functions of genes
in the PPI network were analyzed using the KEGG, GO,
and Reactome implements in the STRING. Significant GO
terms, KEGG pathways, and Reactome pathways were cho-
sen using an FDR < 0:05 as the statistical threshold.

2.5. Development of the Prognostic Signature Panel. The uni-
variate Cox regression analysis was used to screen OS-
associated genes from the DEGs in the preserved modules.
The DEGs with a log-rank p < 0:05 in the univariate analysis
were entered into the multivariate Cox regression model to
identify independent predictors. An L1-penalized (LASSO)
Cox proportional hazard model in the penalized package
(version 0.9-5; http://bioconductor.org/packages/penalized/)
[15, 16] was further applied on these independent prognostic
DEGs to select the optimal subset of signature panels. The
risk score model was established based on the expression
levels of prognostic DEGs (ExpDEGs) and their LASSO coeffi-
cients (βDEGs):

Risk score = βmRNA1 × ExpmRNA1+⋯βmRNAn × ExpmRNAn:

ð1Þ

The patients were divided into the high-risk group and
the low-risk group by using the median risk score as the cut-
off. The OS differences between the high-risk group and the
low-risk group were compared according to the Kaplan-
Meier survival curve analysis and log-rank test. The predic-
tive accuracy of the risk score was estimated through the
AUC calculated from the ROC curve. These analyses were
first carried out for TCGA-READ dataset and then validated
in the GSE56699 dataset.

Moreover, univariate and multivariate Cox analyses were
applied using TCGA-READ cohort to evaluate whether the
risk score was independent of other clinical variables for
the prognosis prediction. Kaplan-Meier survival curve analy-
sis was used to identify whether the risk score was also an
effective tool for stratification of patients with the same clin-
ical characteristics. A nomogram that incorporated the risk
score and clinical prognostic factors was developed for the
prediction of 3-year and 5-year OS rates. The predictive
power of the nomogram was assessed in terms of the AUC
and the C-index (which was calculated using the survcomp
package, http://www.bioconductor.org/packages/release/
bioc/html/survcomp.html).

2.6. Analysis of Immune Cell Infiltration. The associations
between the expression of selected prognostic genes and the
abundance of six tumor-infiltrating immune cells in
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Figure 1: A study flowchart for our analysis.
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TCGA-PRAD (B cells, CD4+ T cells, CD8+ T cells, neutro-
phils, macrophages, and dendritic cells) were estimated from
the Tumor Immune Estimation Resource (TIMER; https://
cistrome.shinyapps.io/timer/) based on Spearman’s correla-
tion test. p < 0:05 adjusted by the tumor purity was consid-
ered significant.

2.7. Verification of Protein Expressions of Prognostic Genes.
The immunohistochemical results for the prognostic-
related DEGs and their interaction genes in rectal and nor-
mal tissues were downloaded from the Human Protein Atlas
(HPA) to confirm their protein expression levels.

3. Results

3.1. DEGs between RC and Normal Controls. Based on the
threshold of ∣log2FC ∣ >0:5 and FDR < 0:05, 1053 DEGs
(including 830 downregulated and 223 upregulated) were
screened between 162 RC tissues and 10 normal control tis-
sues of TCGA dataset, while 1711 DEGs (including 728
downregulated and 983 upregulated) were identified between
28 RC tissues and 5 normal control tissues of the GSE123390
dataset. The volcano plot and heat map of these two datasets
are shown in Figures 2(a) and 2(b) and Figures 2(c) and 2(d),
respectively. In addition, the Draw Venn Diagram online tool
was used to investigate the intersection of DEGs in these two
datasets. As a result, 268 overlapped DEGs were found, but
the expression trend was consistent only in 247 DEGs
(Figure 2(e); Table S1).

These 247 genes were subjected to the gProfiler online
toolset for the function enrichment analysis. The results
showed that 9 GO molecular function terms (such as glycos-
aminoglycan binding: ribonuclease A family member 7
(RNASE7)), 57 GO biological process terms (such as
response to endogenous stimuli: calsequestrin 2 (CASQ2),
pyruvate dehydrogenase kinase 4 (PDK4), and C-X-C motif
chemokine ligand 12 (CXCL12); ion transport: CASQ2 and
CXCL12; response to organic substance: CASQ2, TCL1 fam-
ily AKT coactivator A (TCL1A), and CXCL12; response to
chemical: PDK4 and EPH receptor A6 (EPHA6); chemotaxis:
CXCL12 and EPHA6; and regulation of heart contraction:
CASQ2), 7 KEGG pathways (such as calcium signaling path-
way: CASQ2), and 5 Reactome pathways (such as muscle
contraction: CASQ2; GPCR ligand binding: CXCL12) were
enriched (Table S2).

3.2. Identification of RC-Related Modules by WGCNA. The
correlation analysis showed that there were positive correla-
tions in the expression level (cor = 0:46, p < 1e − 200) and
the connectivity (cor = 0:23, p < 8:1e − 100) of RNAs
between the training dataset TCGA and the validation data-
set GSE123390. Using TCGA dataset, the soft threshold
power 10 was chosen to create networks with a scale-free
topology (R2 reached 0.9 for the first time; the mean connec-
tivity was equal to 1). The dendrogram displayed that the
genes were clustered into 9 modules using TCGA dataset
(Figure 3(a)). These modules were also validated in the anal-
ysis of the GSE123390 dataset (Figure 3(b)). Among them,
blue, brown, grey, red, turquoise, and yellow modules were

considered to be preserved because of their Z‐score > 5 and
p value < 0.05 (Table 1). Brown and yellow modules were
significantly enriched by DEGs (enrichment fold > 1 and p
value < 0.05), suggesting they may be particularly crucial
for the development of RC (Table 1). The genes in the brown
and yellow modules were also found to be significantly asso-
ciated with the pathologic M, pathologic N, pathologic T,
pathologic stage, survival time, and death of RC patients
(Figure 3(c)).

3.3. Construction of a PPI Network. The 77 DEGs in the
brown and yellow modules were uploaded to the STRING
database to obtain their interaction relationships. As a result,
281 interaction pairs between 69 DEGs were identified (such
as peripherin- (PRPH-) PTN, ankyrin repeat and SOCS box
containing 2- (ASB2-) CASQ2/PDK4/EPHA6, and G
protein-coupled receptor 15 (GPR15)/TCL1A-CXCL12),
which were used to construct the PPI network (Figure S1).
Function enrichment analysis obtained 30 GO biological
process terms (such as regulation of heart contraction:
CASQ2; regulation of ion transport: CASQ2 and CXCL12;
regulation of tissue remodeling: PDK4; negative regulation
of leukocyte tethering or rolling: CXCL12; and negative
regulation of dendritic cell apoptotic process: CXCL12), 4
KEGG pathways (such as metabolism of xenobiotics by
cytochrome P450 and chemical carcinogenesis), and 4
Reactome pathways (such as muscle contraction: CASQ2)
(Table S3).

3.4. Development of a Prognostic Risk Score. The univariate
Cox regression analysis identified that 35 DEGs were signifi-
cantly associated with OS, including EPHA6 (hazard ratio ð
HRÞ = 1:11), CASQ2 (HR = 1:12), and PDK4 (HR = 1:45)
(Table S4). Eight of them were screened as independent
prognostic predictors after the multivariate Cox regression
analysis (Table S5). The use of a LASSO-based Cox PH
model further identified that 5 DEGs (ASB2, GPR15,
PRPH, RNASE7, and TCL1A) might constitute the optimal
signature panel for the prognosis prediction (Table 2).

The prognostic risk score was estimated for each patient
in the training TCGA dataset and the validation GSE56699
dataset by the following formula: ð0:3082 × expression of
ASB2Þ + ð−0:0651 × expression of GPR15Þ + ð0:0701 ×
expression of PRPHÞ + ð−0:1112 × expression of RNASE7Þ
+ ð−0:1428 × expression of TCL1AÞ. Based on the median
value of the risk score, the patients were divided into the
low-risk group and the high-risk group. Kaplan-Meier curve
analysis showed that patients in the high-risk group had a
significantly poorer prognostic outcome than those in the
low-risk group (TCGA: HR = 5:001, 95% confidence interval
ðCIÞ = 1:681-14.88, and p = 9:727e − 04, Figure 4(a);
GSE56699: HR = 5:499, 95% CI = 1:186-25.50, and p =
1:205e − 02, Figure 4(b)). ROC curve analysis demonstrated
that this risk score had high predictive accuracy for unfavor-
able prognosis, with the AUC of 0.915 (Figure 4(c)) and 0.827
(Figure 4(d)) for TCGA and GSE56699 datasets, respectively.

Univariate and multivariate Cox regression analyses were
also performed using the risk score and other clinical factors
to confirm the independence of our five-mRNA signature
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Figure 2: Identification of differentially expressed mRNAs in two datasets. (a) A volcano plot of differentially expressed RNAs between 162
rectal cancer tissues and 10 normal control tissues of TCGA dataset. (b) A volcano plot of differentially expressed RNAs between 28 rectal
cancer tissues and 5 normal control tissues of the GSE123390 dataset. (c) A heat map of differentially expressed RNAs in TCGA dataset.
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panel. The results displayed that after multivariable adjust-
ments for clinicopathological factors, the risk score remained
significantly associated with patients’ OS (Table 3), suggest-
ing this five-mRNA-based classifier was an independent
prognostic factor. In addition, the risk score was shown to
have the ability to further classify the population with age

above 65 years (p = 2:606e − 03), pathologic M0
(p = 1:013e − 04), pathologic N0 (p = 1:353 − 02), and patho-
logic stage II (p = 1:158e − 02) and predict their different
prognosis results (Figure 5), indicating its prognostic superi-
ority to routine clinical factors. Moreover, the time-
dependent ROC curve analysis also demonstrated that the

Gene dendrogram and module colors (TCGA)
H

ei
gh

t

Modules

0.75

0.80

0.85

0.90

0.95

1.00

(a)

0.75

0.80

0.65

0.70

0.85

0.90

0.95

1.00
Gene dendrogram and module colors (GSE123390)

H
ei

gh
t

Modules

(b)

Module−trait relationships

−1

−0.5

0

0.5

1

MEbrown

MEpink

MEblue

MEgreen

MEred

MEyellow

MEblack

MEturquoise

MEgrey

0.11
(2e−15)

−0.061
(2e−05)

0.16
(8e−30)

0.027
(0.06)

0.034
(0.02)

−0.048
(7e−04)

−0.14
(5e−22)

−0.053
(2e−04)

−0.01
(0.5)

−0.59
(0)

−0.17
(3e−34)

−0.21
(3e−51)

0.25
(9e−70)

−0.15
(8e−27)

0.038
(0.007)

0.1
(4e−13)

0.083
(4e−09)

0.0014
(0.9)

−0.079
(2e−08)

0.035
(0.01)

0.047
(0.001)

−0.23
(3e−59)

−0.015
(0.3)

−0.087
(6e−10)

−0.14
(9e−25)

0.057
(6e−05)

−0.016
(0.3)

−0.2
(1e−44)

0.05
(4e−04)

0.069
(1e−06)

0.11
(1e−14)

0.099
(2e−12)

−0.062
(1e−05)

−0.12
(8e−18)

0.25
(2e−74)

0.088
(4e−10)

0.034
(0.02)

0.036
(0.01)

0.049
(6e−04)

−0.054
(1e−04)

−0.028
(0.04)

0.0082
(0.6)

0.089
(3e−10)

−0.0084
(0.6)

−0.012
(0.4)

−0.28
(2e−92)

−0.057
(6e−05)

−0.071
(4e−07)

−0.049
(5e−04)

0.019
(0.2)

−0.084
(2e−09)

0.063
(8e−06)

0.031
(0.03)

0.15
(1e−26)

0.22
(3e−54)

0.094
(2e−11)

−0.047
(8e−04)

0.045
(0.001)

−0.047
(8e−04)

−0.046
(0.001)

−0.029
(0.04)

−0.075
(1e−07)

−0.076
(8e−08)

−0.0021
(0.9)

0.04
(0.004)

0.17
(6e−34)

0.17
(6e−35)

0.093
(5e−11)

−0.081
(1e−08)

−0.45
(2e−250)

0.018
(0.2)

0.048
(7e−04)

−0.17
(8e−36)

0.15
(1e−27)

0.045
(0.001)

−0.12
(4e−18)

−0.043
(0.002)

−0.048
(7e−04)

0.029
(0.04)

0.0031
(0.8)

0.064
(5e−06)

0.45
(4e−254)

0.14
(2e−24)

−0.036
(0.01)

0.13
(1e−20)

−0.025
(0.07)

0.06
(2e−05)

0.23
(4e−62)

−0.0093
(0.5)

−0.057
(5e−05)

−0.05
(4e−04)

−0.0075
(0.6)

0.15
(1e−25)

0.52
(0)

−0.17
(1e−33)

−0.018
(0.2)

−0.048
(6e−04)

−0.079
(2e−08)

−0.052
(2e−04)

−0.024
(0.09)

0.069
(1e−06)

0.17
(5e−35)

0.18
(2e−39)

0.14
(7e−25)

−0.063
(8e−06)

−0.5
(0)

0.084
(2e−09)

0.074
(1e−07)

A
ge

G
en

de
r

Co
lo

n.
po

ly
ps

Ly
m

ph
at

ic
.in

va
sio

n

Pa
th

ol
og

ic
_M

Pa
th

ol
og

ic
_N

Pa
th

ol
og

ic
_T

St
ag

e

Ra
di

at
io

n_
th

er
ap

y

Sa
m

pl
e_

ty
pe

Su
rv

iv
al

.ti
m

e

D
ea

th

(c)

Figure 3: Coexpression modules screened based on the WGCNA. (a) A clustering dendrogram of coexpression modules screened using
TCGA dataset. (b) A dendrogram of coexpression modules screened using the GSE123390 dataset. (c) The association between modules
and clinical information of rectal patients.

6 Analytical Cellular Pathology



predictive accuracy of the risk score (AUC = 0:915; C-index
= 0:824) was higher than that of age (AUC = 0:5; C-index
= 0:569), pathologic M (AUC = 0:503; C-index = 0:555),
pathologic N (AUC = 0:672; C-index = 0:658), and patho-
logic stage (AUC = 0:549; C-index = 0:610) and the model
with all clinical factors (AUC = 0:843; C-index = 0:817)
(Figure 6(a)). Therefore, the risk score should be integrated
with the clinical factors to better predict the prognosis clini-
cally, based on which a prognostic nomogram was developed
(Figure 6(b)). As expected, the AUC (0.976) and the C-index
(0.913) of the nomogram were higher than those of any clin-
ical factor model and the risk score model (Figure 6(a)).

3.5. Correlations between mRNA Levels of Prognostic Genes
and Tumor-Infiltrating Immune Cells. TIMER analysis
revealed that there was a significant correlation between
ASB2/TCL1A expression and B cells, CD4+ T cells, and den-
dritic cells; the expression of GPR15 was positively associated
with the abundance of B cells and dendritic cells (DCs); the
expression of PRPH positively correlated with the infiltration
levels of CD4+ T cells andmacrophages (Figure 7). No signif-
icant association was observed between the expression of
RNASE7 and infiltration levels of all six immune cells
(Figure 7).

3.6. Validation of Protein Expressions of Prognostic Genes.
The expressions of 5 signature genes and their interaction

genes were validated using the immunostaining results from
the HPA database. The results supported the downregulation
of PRPH, RNASE7, CASQ2, EPHA6, and PDK4 in RC com-
pared with normal controls (Figure 8). GPR15, TCL1A, and
PTN were not detected in both RC tissues and normal rectal
tissues. There was no evidence of immunostaining for ASB2
and CXCL12. No rectal samples were collected to investigate
the expression of PDK4 in RC.

4. Discussion

In the present study, we established a risk score model based
on five prognostic DEGs (ASB2, GPR15, PRPH, RNASE7,
and TCL1A). ROC curve analysis indicated that this 5-
mRNA signature panel can accurately predict the prognosis
for patients with RC, with the AUC of 0.915 and 0.827 for
the training and validation datasets, respectively. The prog-
nostic performance of our risk score seemed to be better than
that of previously reported signature panels developed for
CRC (such as 4 genes: AUC = 0:722 for the external dataset
and 0.607 for the internal dataset [4]; 6 genes: AUC = 0:683
[7]; and 9 genes: AUC = 0:741 [23]) or CC (16 gene pairs:
AUC = 0:724 [9]; 9 genes: AUC = 0:676 [22]). In addition,
in the study of Zuo et al. [7], they performed a subgroup anal-
ysis to confirm whether the 6-gene signature panel was effec-
tive for colon adenocarcinoma (COAD) and READ. As a
result, the AUC was, respectively, 0.653 and 0.74 for COAD

Table 1: Preserved modules identified based on weighted gene coexpression network analysis.

ID Color Module size
Preservation infor

#DEGs
Enrichment infor

Z-score p value Enrichment fold (95% CI) phyper

Module 1 Black 99 13.9321 5:30e − 11 — — —

Module 2 Blue 683 13.2267 1:40e − 30 — — —

Module 3 Brown 244 8.3117 4:50e − 19 34 2.838 (1.879-4.181) 1:38e − 06

Module 4 Green 226 0.9366 4:90e − 04 5 0.383 (0.122-0.918) 2:42e − 02

Module 5 Grey 2545 8.1319 6:60e − 32 146 1.169 (0.940-1.448) 1:55e − 01

Module 6 Pink 86 1.0653 1:60e − 02 5 1.184 (0.371-2.911) 6:17e − 01

Module 7 Red 123 10.5572 8:80e − 09 3 0.497 (0.100-1.504) 2:86e − 01

Module 8 Turquoise 796 8.3751 9:20e − 14 11 0.291 (0.143-0.533) 3:75e − 06

Module 9 Yellow 230 12.5199 7:10e − 07 43 3.807 (2.617-5.440) 2:63e − 11

DEGs: differentially expressed genes; CI: confidence interval.

Table 2: The optimal signature for prognosis prediction.

Symbol
TCGA GSE123390 Univariate Cox Multivariate Cox

LASSO coef
Log2FC FDR Log2FC FDR HR p value HR 95% CI p value

ASB2 -0.53 1:11e − 08 -0.76 1:13e − 04 1.43 1:35e − 02 12.505 2.639-59.260 1:46e − 03 0.3082

GPR15 -0.77 6:48e − 21 -1.17 1:56e − 03 0.898 1:75e − 03 0.688 0.540-0.877 2:56e − 03 -0.0651

PRPH -0.81 1:11e − 08 -0.58 3:94e − 02 1.21 4:35e − 02 2.048 1.030-4.069 4:09e − 02 0.0701

RNASE7 -0.51 1:43e − 04 -0.65 2:89e − 03 0.926 3:70e − 02 0.686 0.501-0.939 1:86e − 02 -0.1112

TCL1A -0.98 3:73e − 05 -0.56 3:44e − 02 0.898 4:90e − 03 0.530 0.372-0.754 4:20e − 04 -0.1428

FDR: false discovery rate; FC: fold change; HR: hazard ratio; CI: confidence interval; LASSO: least absolute shrinkage and selection operator; TCGA: The Cancer
Genome Atlas.
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and READ, which were both lower than that of our signature
panel. Moreover, in line with other signature panels identi-
fied for CRC or CC patients [6–9, 24], our risk score was
demonstrated to be an independent factor for the prognosis
prediction and stratify the survival of patients with the same
TNM stage. Also, the AUC and the C-index of the risk score
were higher than those of age (AUC = 0:5; C-index = 0:569),
pathologic M (AUC = 0:503; C-index = 0:555), pathologic N
(AUC = 0:672; C-index = 0:658), and pathologic stage
(AUC = 0:549; C-index = 0:610) and the model with all clin-
ical factors (AUC = 0:843; C-index = 0:817). These findings
reveal that our risk score may serve as an effective molecular

biomarker to predict the poor prognosis of patients with RC.
To better guide prognostication in clinical practice, some
authors suggest that molecular prognostic models and clini-
copathological models should be combined [24–27], which
showed the highest predictive power compared with anyone.
In agreement with these studies, our results also showed that
the nomogram that integrated the five-mRNA classifier and
four clinical risk factors (age, pathologic M, pathologic N,
and pathologic stage) had the highest AUC (0.976) and C-
index (0.913).

Although all of the 5 signature genes were not included in
the previous signature panels for CRC [6–9, 24], some of

Training set (N = 152)

Overall survival time (months)

Su
rv

iv
al

 ra
tio

Low risk (N = 76)
High risk (N = 76)

p = 9.727e–04

HR:5.001 [1.681–14.88]

TCGA
Validation set (N = 61)

Overall survival time (months)

(a) (b)

Su
rv

iv
al

 ra
tio

Low risk (N = 30)
High risk (N = 31)

p = 1.205e–02
HR:5.499 [1.186–25.50]

GSE56699

Specificity

Se
ns

iti
vi

ty

AUC: 0.915

 (0.931, 0.857)

Specificity

(c) (d)

Se
ns

iti
vi

ty

AUC: 0.827

 (0.880, 0.818)

0 20 40 60 80 0 20 40 60 80100 120

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00.20.40.60.81.00.00.20.40.60.81.0

Figure 4: The prognostic performance of the 5-gene risk score model. (a, b) The Kaplan-Meier survival curve to show the overall survival
differences of patients with the high-risk score and the low-risk score in TCGA (a) and GSE56699 (b) datasets. (c, d) The ROC to
demonstrate the prognostic accuracy of the risk score for the overall survival of patients in TCGA (c) and GSE56699 (d) datasets. TCGA:
The Cancer Genome Atlas; HR: hazard ratio; AUC: area under the receiver operating characteristic (ROC) curve.
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them were found to be associated with the progression and
prognosis of CRC (including ASB2, GPR15, TCL1A, and
PRPH) [28–31]. High ASB2 expression was shown to predict
a short relapse-free survival for patients with CRC [28]. Dele-
tion of ASB2 in hematopoietic cells inhibited the shortening
of the colon and the tumor load in mice. Function analysis
indicated that ASB2 may exert tumor-promoting roles by
decreasing Th1, Th17, and cytotoxic CD8+ T cell response
which are beneficial for protection against tumor progression
[28]. Consistent with the study of Spinner et al. [28], our
results also demonstrated that patients with a high level of
ASB2 may have a 12.505-fold higher risk of possessing a
worse OS rate than those with low expression. Also, ASB2
was predicted to interact with the chemotaxis-associated
EPHA6 gene which could be hypermethylated to result in
downregulated EPHA6 expression by anti-inflammatory
interleukin-6 [32, 33], a Th17 cell biomarker [34]. The
knockdown of EPHA6 decreased prostate cancer cell inva-
sion in vitro and reduced lung and lymph node metastasis
in vivo [35]. High EPHA6 expression was associated with a
lower OS rate in patients with breast cancer [36] and our
RC (HR = 1:11). In addition to EPHA6, we also predicted
that ASB2 may be involved in RC by influencing the expres-
sions of CASQ2 and PDK4. Highly expressed CASQ2 [37]
and PDK4 [38] were reported to be significantly correlated
with poor OS and disease-free survival in cancer patients.
Overexpression of PDK4 promoted cell proliferation, inva-
sion, and tumor growth in vivo [38]. These prognosis conclu-
sions of CASQ2 (HR = 1:12) and PDK4 (HR = 1:45) were
also confirmed in our study on RC. TCL1A is crucial for can-
cer development by expressing in a subpopulation of
immune B cells (CD3-/CD19+/CD10+/CD34-). A high
TCL1A/CD20 (B cell) ratio or TCL1A expression was shown
to correlate with improved survival [39, 40]. In agreement
with other cancers [39, 40], our study also showed that
TCL1A was a protective risk for the survival of RC patients
(HR = 0:530) and positively associated with the abundance

of B cells. Furthermore, we predicted TCL1A may interact
with CXCL12, a chemokine gene that was speculated to be
involved in the regulation of the dendritic cell apoptotic pro-
cess in our function enrichment analysis. High CXCL12
expression was reported to confer a survival advantage for
breast cancer patients [41] and stage III CC [42]. Silencing
of CXCL12 by transforming growth factor-β in mesenchy-
mal stromal cells of the primary tumor site promoted the
tumor metastasis by increasing the expression of CXCR7, a
CXCL12 receptor [43]. A meta-analysis showed that immu-
notherapy with DCs significantly improved OS at 6 months,
1 year, 3 years, and 5 years of patients with hepatocellular
carcinoma [44]. Coculture of DCs significantly inhibited liver
cancer stem cell growth in vitro and in vivo [45]. Consistent
with these findings, we also found that the expression of
TCL1A was significantly positively correlated with the infil-
tration of DCs. Using TCGA and the genotype-tissue expres-
sion data, Wang and Wang found that GPR15 was
significantly lowly expressed in COAD and READ compared
with normal tissues [30], which was validated in our study.
GPR15 expression was significantly positively correlated with
the prognosis of patients with COAD (that is, the high
expression had a longer OS) [30], which was also observed
in our study of READ. Wang and Wang believed that
GPR15 may be a tumor suppressor by regulating a serial of
genes enriched in immune systems and increasing the infil-
tration of B cells (in neck squamous carcinoma, lung adeno-
carcinoma, and stomach adenocarcinoma), CD4+ T cells,
and DCs (in neck squamous carcinoma and stomach adeno-
carcinoma) [30]. Similarly, we found that the expression of
GPR15 was positively associated with the levels of tumor-
infiltrating immune B cells and DCs and predicted that
GPR15 could interact with DC-related CXCL12 to partici-
pate in RC progression. CD133+ human umbilical hemato-
poietic progenitor cells were revealed to promote the
proliferation and invasion of CRC cells in vitro and enhance
tumor growth and metastasis in vivo by upregulating PRPH

Table 3: Univariate and multivariate Cox regression of the clinical features and risk score.

Clinical characteristics TCGA (N = 152) Univariate Cox Multivariate Cox
HR 95% CI p value HR 95% CI p value

Age (years, mean ± SD) 64:16 ± 11:96 1.100 1.049-1.154 3:40e − 05 1.112 1.056-1.170 6:08e − 05

Gender (female/male) 72/80 0.762 0.321-1.807 5:36e − 01 — — —

Pathologic M (M0/M1/-) 119/21/12 3.081 1.158-8.196 1:77e − 02 8.911 1.065-14.591 4:36e − 02

Pathologic N (N0/N1/N2/-) 80/41/30/1 1.920 1.166-3.160 7:48e − 03 6.169 1.956-19.457 1:91e − 03

Pathologic T (T1/T2/T3/T4) 9/26/104/13 2.147 0.932-4.947 7:63e − 02 1.460 0.563-3.789 4:37e − 01

Pathologic stage (I/II/III/IV/-) 28/49/47/22/6 1.976 1.206-3.238 5:36e − 03 1.197 1.041-1.946 4:24e − 02

Colon polyps present (yes/no/-) 10/57/85 1.006 0.205-4.931 9:95e − 01 — — —

History of colon polyps (yes/no/-) 30/104/18 1.125 0.364-3.48 8:38e − 01 — — —

Recurrence (yes/no/-) 6/36/110 2.828 0.145-55.14 4:80e − 01 — — —

Lymphatic invasion (yes/no/-) 61/75/16 0.885 0.327-2.399 8:10e − 01 — — —

Radiotherapy (yes/no/-) 18/99/35 0.345 0.260-1.094 7:52e − 02 — — —

Risk score model status (high/low) 76/76 5.001 1.681-14.88 9:73e − 04 5.462 1.371-21.754 1:61e − 02

SD: standard deviation; HR: hazard ratio; CI: confidence interval; TCGA: The Cancer Genome Atlas.
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Figure 5: Continued.
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Figure 5: Risk stratification models based on age, pathologic M, pathologic N, and pathologic stage. (a, b) Age stratification (>65 years and
<65 years). (c, d) Pathologic M stratification (M0 and M1). (e–g) Pathologic N stratification (N0, N1, and N2). (h–k) Pathologic stage
stratification (I, II, III, and IV). HR: hazard ratio.
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[31]. However, the mechanisms of PRPH in CRC remained
unclear. In this study, we speculated that PRPHmay function
by interacting with downstream PTN. Tumor-associated

macrophages increased the proportion of cancer stem cells
in lymphoma by secreting PTN [46]. Upregulated PTN pro-
moted tumor cell proliferation and inhibited apoptosis and
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Figure 6: A prognostic nomogram to predict the survival probability of patients with rectal cancer. (a) Receiver operating characteristic curve
to demonstrate the superiority of the risk score for the prognosis prediction to other clinical factors. (b) A prognostic nomogram. AUC: area
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chemosensitivity by activating the NF-κB pathway [46, 47].
Meta-analysis showed that high expression of PTN was sig-
nificantly associated with an advanced TNM stage and a poor
OS in tumor patients [48]. Similar to these studies, we also
reported that PRPH was positively associated with tumor-
associated macrophages.

Although RNASE7, encoding an antimicrobial peptide,
was not demonstrated to be associated with CRC, the roles

of itself and its family members in other cancers may indi-
rectly verify our conclusions. Scola et al. reported that the
expression of RNASE7 was gradually reduced during the
malignant transformation process, showing the highest
expression in healthy skin and the lowest expression in oral
squamous cell carcinoma [49]. The low expression of RNase
family members contributed to the loss of immune defense
against bacterial infections [50–53], which is an important
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Figure 7: Correlation of mRNA levels of prognostic genes and infiltration levels of immune cells in TCGA-READ samples using the TIMER
database. (a) ASB2. (b) GPR15. (c) PRPH. (d) RNASE7. (e) TCL1A. TCGA: The Cancer Genome Atlas; READ: rectal adenocarcinoma;
TIMER: Tumor Immune Estimation Resource; ASB2: ankyrin repeat and SOCS box containing 2; GPR15: G protein-coupled receptor 15;
PRPH: peripherin; RNASE7: ribonuclease A family member 7; TCL1A: TCL1 family AKT coactivator A.
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cause for the initiation of cancer. The knockdown of RNase L
increased prostate cancer cell migration [54] and enhanced
tumor growth and metastasis following implantation in the
mouse prostate [55], the mechanism of which was related
with an increased cell surface expression of integrin β1 and

activation of the focal adhesion kinase-sarcoma pathway
and the Ras-related C3 botulinum toxin substrate 1-
guanosine triphosphatase activity [54]. Colorectal tumors
with lower levels of RNase H2 exhibited a significantly
shorter survival time [56]. In line with these studies, we also
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Figure 8: Protein expression of prognostic genes and their interaction genes validated using the online HPA database.

14 Analytical Cellular Pathology



demonstrated that RNASE7 was downregulated in RC and
patients with a higher level of RNASE7 had a longer OS com-
pared with controls.

Some limitations should be acknowledged in this study.
First, the prognostic signature panel was developed and vali-
dated based on the survival information retrospectively col-
lected from the public datasets (TCGA and GSE56699).
Prospective trials needed to be performed in our hospital to
further verify the prognostic value of this signature panel.
Second, the expressions of these signature DEGs were also
identified using public TCGA and GSE123390 datasets. In
these datasets, the number of samples in the normal group
was quite smaller than that in the cancer group. This imbal-
ance may cause a statistical problem. Consistent sample size
in the RC and control groups should be designed to further
confirm their expressions. Third, clinical (PCR, immunohis-
tochemistry, and Pearson’s correlation), in vitro (coimmuno-
precipitation, knockdown, overexpression, or coincubation
of immune cells), and in vivo (tumor transplantation,
mimics, siRNA transfection, and immunotherapy) experi-
ments should be conducted to explore the PPI relationships
between our signature genes (PRPH-PTN, ASB2-
CASQ2/PDK4/EPHA67, and GPR15/TCL1A-CXCL12) and
assess the functions of our signature genes in the progression
of RC (especially RNASE7, which was not reported in CRC
previously). Fourth, other grouped variable selection
methods (such as Elastic net and CoxBoost) [57] for identifi-
cation of prognostic signature panels should be used individ-
ually or jointly with LASSO to identify more effective
prognostic indicators for RC. Fifth, the expression, prognos-
tic power, and functions of signature genes should be com-
pared between the CC and RC samples.

5. Conclusion

Our study developed a five-mRNA signature panel (ASB2,
GPR15, PRPH, RNASE7, and TCL1A) as an immune-
related prognostic biomarker for RC. This signature panel
exhibited excellent accuracy to stratify the patients with a
higher death risk. The nomogram that combined the risk
score and clinical features (age, pathologic M, pathologic N,
and pathologic stage) may be more effective in guiding the
clinical decision-making of personalized treatment.
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