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Abstract

A challenge in bulk gene differential expression analysis is to differentiate changes due
to cell type-specific gene expression and cell type proportions. SCADIE is an iterative
algorithm that simultaneously estimates cell type-specific gene expression profiles and
cell type proportions, and performs cell type-specific differential expression analysis at
the group level. Through its unique penalty and objective function, SCADIE more
accurately identifies cell type-specific differentially expressed genes than existing
methods, including those that may be missed from single cell RNA-Seq data. SCADIE
has robust performance with respect to the choice of deconvolution methods and the
sources and quality of input data.

Keywords: Deconvolution, RNA-Seq, scRNA-seq, Cell type-specific differential
expression, SCAD

Background

The past three decades have seen rapid development in gene expression analysis using
microarray and sequencing technologies, where bulk samples are analyzed to answer spe-
cific biological questions, e.g., to identify genes with different expression levels between
cancer samples versus controls. Because bulk samples contain many distinct cell types,
such analyses only provide limited granularity. Most differential expression analyses on
bulk samples often assume that the measured gene expression is from the primary cell
type, e.g., tumor cell in bulk tumor sample.

Recent progresses in single-cell RNA-sequencing (scRNA-seq) techniques have demon-
strated substantial heterogeneity in bulk samples. However due to the high cost and
complexity for scRNA-seq, most available data have remained to be from bulk samples.
To make better use of bulk sample data, many in silico deconvolution methods have been
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proposed to infer cell type proportions from bulk data. Most deconvolution methods
assume that the observed bulk gene expression profile is a convex mixture of cell-type
specific gene expression profiles, i.e.,
k
Y=W-H, W eR"™ T HeRM and > Hy= 1. 1)
i=1

Here Y is the bulk gene expression matrix with m genes and #n samples, W is the cell
type-specific gene expression matrix of the k component cell types, and each column in
H represents the cell type proportions for the corresponding bulk sample. All entries in
these matrices are non-negative, which is indicated by the “+” sign in the notations.

The principle behind the designs of most existing deconvolution methods is to utilize
genes that have distinct expression levels across cell types to infer cell type proportions.
To this end, some methods curate a signature matrix W e R”s4*K with only a subset
of cell type-specific genes and gather their expression profiles either from pure cell types
[24, 29, 41] or scRNA-seq data [4]; others use all genes but assign higher weights to genes
with more differentiating power to produce a weighted version W e Rmxk [42]. Both
genres of methods then solve the constraint regression problem specified in the following
Eqgs. 2-(3) with a variety of techniques [24, 37, 40, 42].

k
Y=W-H, YeR"M&>M W et e REODY N Hy=1,¥, (2
i=1
5 5 k
Y=W-.H, YeR™M WeR™WOT HeRPMH N "H; =1, (3)
i=1

Although enormous insights on cell type proportion changes have been drawn from the
applications of these deconvolution methods, most of these downstream analyses were
performed under the scheme of single signature matrix, i.e., the same signature matrix
was used for different groups of bulk data. In real data analyses, a more appropriate
model would be that the observed differences in the bulk samples result from not only cell
type compositional changes, but also from changes in cell type-specific gene expression
profiles. In mathematical terms, it is Y7 = W1 H; and Yo = W) Hy, when an analysis is per-
formed assuming W; = W, it intrinsically over-attributes changes to cell type proportion
changes.

In this article, we aim to simultaneously estimate group-specific Ws and Hs in a
two-group comparison setting, thus to accurately infer cell type-specific differentially
expressed genes (DEGs) as well as cell type proportion changes. To this end, we present
a smoothly clipped absolute deviation-based (SCAD) iterative estimation (SCADIE)
framework that can address this challenging problem.

The SCAD penalty and weighted £; penalty using the derivative of SCAD are widely
used in the penalization methods [7, 21]. SCAD is defined as

Snlxl if |x| < ¢,
P, (x) = | (2atulx| —x* — ¢2) /2@ — 1D} if & < x| < agy
tHa+1)/2 otherwise,

where a, ¢, > 0 are parameters to be tuned. SCAD can be viewed as a hybrid of £y and
£ regularizers in the sense that it resembles the £; norm in a neighborhood of the origin,
but stabilizes to constant at larger values [21]. Although the nonconvexity of the SCAD
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leads to the nonconvex optimization problem, various empirical studies have shown that
it often produces estimators with smaller estimation error than the estimators via the
convex £1 penalty.

At high level, SCADIE is built on existing supervised deconvolution methods. It takes
bulk gene expression along with a common signature matrix or initial cell type propor-
tions as input and then estimates group specific W's and Hs. Its underlying assumption is
that the cell type-specific Wi, W, are reasonably similar but not exactly the same, thus it
is possible to initialize with the same W and use an iterative algorithm to search for opti-
mal group-specific Ws. Through comprehensive simulation and real data analyses, we
demonstrate that SCADIE is capable of identifying cell type-specific DEGs between W's
while maintaining high accuracy in estimating Hs.

Results

Overview of SCADIE

The goal of the SCADIE framework is to estimate matched Wy, H; and W5, Hy from bulk
data Y7, Y5 and then perform hypothesis tests to identify cell type-specific DEGs. In the
most common deconvolution scenario, only Y7, Y3 and a shared signature matrix W are
provided, going from shared W;,;, with only signature genes to group-specific Wi, W
containing all genes remains to be a challenge.

In view of this challenge, we assume the following conditions hold in our estimation
setting: First, most entries in W; and W5 are not differentially expressed. This should
especially hold for signature genes in W, and W,. In the case where systematic changes
in expression profile occur across all cell types, neither should we use shared Wy, for
initialization, nor is SCADIE applicable. Second, the compositional cell types in W1, W,
should remain the same; otherwise, different models should be used for group 1 and group
2. Common applicable scenarios include tumor microenvironments between different
responding groups, or different subtypes of the same disease.

With the above assumptions, we propose a smoothly clipped absolute deviation (SCAD)
penalty-based iterative estimation procedure (SCADIE) that consists of the following
steps:

1  Jointly estimate cell type proportions for both groups, obtaining H’ {0) and Héo) . Any
deconvolution method can be used in this step, and by joint estimation, we assume
that both groups share the same signature gene matrix W (Fig. 1 (a)). Users can
also directly input H fo) and Héo) from other methods.

2 Obtain the initial estimates of WI(O) and WZ(O) separately, then iteratively update
Ws and Hs for a few rounds using non-negative least squares (NNLS).

3 Derive the weight matrix E used for the main estimation procedure with the
derivative of SCAD function [7] (Fig. 1 (b), section “Warm-up run and weight
matrix derivation”). We justify the choice of the SCAD derivative based penalty in
the “Rationale behind SCAD penalty” section.

4 After completing steps 1 to 3, the main SCADIE estimation procedure consists of
iteratively updating H; and Hy using NNLS, respectively, and jointly updating W1
and W» with a SCAD-based matrix factorization. A parallel leave-one-out jackknife
procedure is also run to obtain entry-level standard error for all entries in
W1 — Wh, and these standard errors can be summarized in a matrix Xy, —w;,

(Fig. 1 (c) and section “Update W and H”).
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Fig. 1 Schematic diagram for SCADIE: (a) SCADIE requires either (1) bulk gene expression matrices and cell
type proportions or (2) bulk gene expression matrices and shared signature matrix as input; the cell type
proportions can be obtained by any deconvolution method. (b) The initial full W matrices and weights are
obtained by a few rounds of NNLS-based iterative updates. (c) The main iterative procedure consists of two
parts: one iterative run for estimating Wy, W, and n (sample size) additional runs for leave-one-out jackknife
estimation for standard error Xy, —, . (d) With point estimates and entry-wise standard errors, DEGs can thus
be identified

5  For each pair of entries W, and W5, we can calculate their z-score based on the
standard errors of their difference E&]_WZ and then obtain a p-value for testing
differential expression.

The above procedure outputs Hy, 1:12, Wy, Wg, and Xw,_w,. Among these, Hy and H,
can be used for cell type proportion comparison; Wl, \572, in combination with Xy, _w,,
can be used to perform hypothesis testing for cell type-specific differential expression

analysis between the two groups.
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Simulation results

SCADIE maintains high cell proportion estimation accuracy

One concern of SCADIE’s algorithm is that its iterative procedure and full W-based
H update might result in reduced H estimation accuracy. To evaluate SCADIE’s per-
formance on cell type proportion estimates, we benchmarked SCADIE against four
deconvolution algorithms, including DWLS[40], CIBERSORTx[25], MuSiC[42], and a
naive version of SCADIE using NNLS in updating W. We tested these four methods on
a simulated data set, a pseudo-bulk data set[43], and a bulk microarray data with known
cell type proportions[34]. We used two metrics to evaluate the accuracy of the estimated
Hs: K-L divergence and root-mean-squared error (RMSE). K-L divergence is a suitable
measure because it measures the distance between two sum-to-1 discrete distributions,
which are the same format as cell proportions, while RMSE is widely used by previous
deconvolution methods.

Additional File 1: Supplementary Fig. S3ab shows the final output H accuracy compared
to CIBERSORTx, DWLS, MuSiC, and NNLS-iteration, measured by K-L Divergence and
RMSE, respectively. The overall result patterns between these two metrics are very con-
sistent. In terms of performance, SCADIE showed equal or better accuracies than the
other four methods except in the mouse ISC pseudo bulk dataset, where MuSiC substan-
tially outperformed all other methods. MuSiC is specifically tailored for single cell count
data, and its significantly better performance in the single cell data suggests the same.
Besides, although the NNLS iteration only differs from SCADIE in its W-update step, the
results were substantially inferior. This was due to the uncontrolled changes in W's over
iteration and it highlights the importance of using the SCAD penalty (this will be dis-
cussed in detail in the section “Rationale behind SCAD penalty”). Further, the accuracy of
the estimated H was stable over iterations (Additional File 1: Supplementary Fig. S3cde).
Specifically, the results for the true bulk data were flat because there was only one group
of samples; thus, there was no separate updating.

These results suggest that although our iterative procedure uses full W to update H,
it would not negatively impact cell type proportion estimation. However, to accommo-
date potentially different needs, we also made signature-only updates as an option in the
SCADIE package.

SCADIE can better identify DEGs

One of SCADIE'’s key features is to estimate condition-specific W matrices. To demon-
strate the efficacy of SCADIE’s framework for this feature, we next compared its
performance with four other methods with similar functions.

The most straightforward way to estimate W is by solving Y7 = HT W7 using NNLS.
We implemented this method in our SCADIE package and labeled it as “NNLS” A
similar technique using ordinary regression was adopted in a microarray deconvolu-
tion method called csSAM from [34]. A recently proposed statistical framework named
TOAST that aims at performing hypothesis testing for cell type-specific gene expression
[16] is also included. Finally, CIBERSORTXx has a high resolution mode for sample-specific
W estimate, whose results can also be used for DEG analysis.

Here we benchmarked SCADIE against the above four methods on one simulated
dataset and two pseudo-bulk datasets generated from scRNA-seq data. Because these
were simulated data with known DEG statuses, we were able to measure the true-positive
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and false-positive rates (see the “Methods” section for more details). We plot the true-
positive rates against false-positive rates over a range of p-values (from 10~'2 to 0.5) for
each method on each dataset in Fig. 2.

As shown in Fig. 2, SCADIE performed the best for all three datasets in identifying both
up-DEGs and down-DEGs. Specifically, SCADIE outperformed CIBERSORTX, csSAM,
and TOAST in both true-positive identification and false-positive control. It should be
noted that since CIBERSORTX high resolution mode is not designed to impute group-
specific gene expression levels for whole transcriptome, only a small fraction of W's was
output from it, and the missing results for most genes were reflected in the overall low
true-positive and false-positive rates. When compared to the NNLS W-update, SCADIE
showed similar power in true-positive identification, but better false-positive controls.
This is consistent with our understanding of SCAD-penalty’s advantage, which is also
shown in simulation results from Fig. S2 (where false positives measured by PPV): as
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separate NNLS W-update may cause too much divergence between W7 and W, over
iterations, leading to more false positive results.

SCADIE can improve the estimates from other methods
We next asked the question whether the initial results from CIBERSOTx and csSAM
can be improved via SCADIE’s iterative procedure. To investigate this, we initialized
the SCADIE algorithm with output from CIBERSORTx and csSAM on the same three
datasets above and used SCADIE to iteratively estimate Ws and Hs, followed by DEG
analysis with SCADIE'’s framework. TOAST was not included in this analysis because it
only performs hypothesis test without providing point estimates for W's.

As can be seen from Fig. 3, the accuracy of DEG improved in 11 out of 12 cases (includ-
ing both down- and up-DEGs) through this scheme. This demonstrates the efficacy of
SCADIEs iterative procedure in improving DEG identification accuracy.

Robustness with respect to ¢,

Since the parameter ¢, of the SCAD as in (6) (see the “Methods” section at the end)
plays a crucial role in defining similarity penalty via SCAD, it is important to examine
the robustness of SCADIE with respect to the choice of ¢,. To this end, we performed
comprehensive sensitivity analyses on both simulation and real data for a wide range of ¢,
(Additional File 1: Supplementary section S3.2). The results suggest that when ¢, is within
areasonable range (from 1 to 8), SCADIE’s output is highly robust in terms of H estimates,
W estimates, and the DEG identifications (see Additional File 1: Supplementary section
S3.2 for more details).
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SCADIE’s performance on real data

In the previous sections, we examined SCADIE’s performance extensively through sim-
ulation and pseudo-bulk data. Compared to simulated data, real datasets rarely come
with ground truth cell type proportions nor cell type-specific gene expression. In addi-
tion, biopsy heterogeneity and platform/technical variation present huge uncertainty in
estimation outcome.

To evaluate SCADIE’s performance on real datasets, we applied SCADIE on four bulk
datasets with distinct features, from microarray to post-mortem RNA-Seq. Due to the
lack of groundtruth, we primarily evaluated from the following four aspects: 1. Can
SCADIE identify biologically meaningful cell type proportion changes? 2. Can SCADIE
identify known cell type-specific DEGs? 3. For DEGs identified from SCADIE, are they
associated with known biological processes? and 4. Can the iterative procedure improve
estimation accuracy?

SCADIE accurately infers cell type proportions and cell type-specific genes in chronic
obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease and a leading
cause of death. Many efforts have been made to profile the transcriptomes from COPD
patients [1, 14, 28, 32]. To assess SCAIDE'’s performance on COPD data, we derived sig-
nature matrix from a COPD single cell dataset [1] and performed deconvolution on an
independent bulk data set [14] with both COPD and control samples (98 COPD samples;
91 control samples), for five major cell types (stromal, myeloid, lymphoid, epithelial, and
endothelial) as clustered in [32].

Although COPD causes pathological changes in several myeloid, epithelial, and
endothelial cell types, previous studies did not find any systematic changes in cell type
proportions associated with COPD [28, 32]. Reasons for this include the high heterogene-
ity of disease [26], as well as high variability in cell type compositions across specimens,
which makes it difficult to identify consistent patterns. Cell type proportions estimated
from SCADIE suggest similar pattern, where the mean cell type proportions are consis-
tent between the COPD and control groups (Fig. 4a), while individual compositions varied
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Fig. 4 SCADIE-estimated cell proportions in control and COPD samples: a Mean proportions of the five cell
types in control and COPD samples. b Boxplot for each cell type's proportions across all individuals in the two
cohorts
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across samples (Fig. 4b). The epithelial proportion varied most, as it is not only associated
with biopsy spatial location, but also with disease severity [39].

We next evaluated SCADIE’s performance in identifying cell type-specific DEGs from
bulk data. “Ground truth” cell type-specific DEGs were first obtained by performing dif-
ferential expression analysis on the COPD-Control single cell data cohort[32] for the
five major cell types. Their log2 fold changes as well as p values are shown in volcano
plots in Fig. 5a to e. Across all cell types, more than 60% of the single cell-identified
DEGs showed concordant directional changes from SCADIE output. In terms of signif-
icant DEGs, 9-33% of single cell identified DEGs were also inferred to be significant
DEGs by SCADIE from bulk data (Additional File 1: Supplementary Fig. S4). Since
there were only fewer than half of single cell DEGs replicated in bulk data, we next
asked the question of whether it was due to data heterogeneity or method deficiency.
To this end, we compared SCADIE with TOAST in terms of correct direction percent-
age (percentage of single cell derived cell type-specific DEGs that have same directional
change from SCADIE or TOAST) and correct significant DEGs percentage (percent-
age of single cell derived cell type-specific DEGs that are also identified significant
from SCADIE or TOAST). SCADIE consistently outperformed TOAST by significant
margins in both aspects (see Fig. 5f). This result suggests that there is indeed signifi-
cant heterogeneity between these two unrelated single cell and bulk data cohorts, and
SCADIE outperformed existing method even under this noisy circumstance. Here we
only included TOAST in comparisons because csSAM only works on microarray data,
while CIBERSORTXx does not infer cell type-specific DEGs at the whole transcriptome
level.
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the log2 fold-change from SCADIE, and y-axis represents each gene’s p-value from SCADIE. f A summary table
for benchmarking SCADIE against TOAST using the same COPD datasets, the first two columns summarize the
percentages of single cell DEGs that were of concordant directional changes from bulk data, and the last two
columns summarize the percentages of single cell DEGs that were correctly identified as DEGs from bulk data
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Note that from Supplementary Fig. S4 there is a substantial number of SCADIE-inferred
DEGs that were not present in single cell DEGs; it is important to find out whether the
large proportion of non-overlapping DEGs was due to false positives. To this regard, we
ran Gene Set Enrichment Analysis (GSEA) on single cell and SCADIE-derived DEGs
separately and compared their top enriched pathways. Results from Additional File 1:
Supplementary Fig. S5 show that the top pathways from single cell and SCADIE were sig-
nificantly more overlapped than that expected by chance, indicating that the underlying
biological signals do share consistent patterns even the actual DEG sets differ.

Finally, we asked the question whether SCADIE can infer DEGs that were not identified
in single cell data. To answer this question, we looked into the top 10 SCADIE-inferred
down DEGs in each cell type. Among the 50 genes, only 8 of them were also identi-
fied from single cell DE analysis. Among the 42 DEGs unique to SCADIE, 39 were also
present in the single cell dataset, and 33 showed concordant cell type-specific directional
changes as SCADIE. This finding suggests that the cell type-specific expression changes
from SCADIE were likely true signals, and the main reason they were missed in single
cell data was the limited power due to data sparsity (See Additional File 2: Supplementary
Table S1 for details). In addition, literature search showed that 19 out of the 42 SCADIE-
unique genes were associated with COPD from previous studies (See Additional File 2:
Supplementary Table S1 for details). This suggests that SCADIE is capable of mining DEG
information that is too sparse to be identified in single cell data.

In summary, SCADIE is not only capable of identifying known cell type proportion
patterns and cell type-specific DEGs, it can also infer DEGs that may be missed by single
cell data due to the high noise and drop-out in single cell data.

SCADIE reveals biologically meaningful composition and expression differences in DLBLC
subtypes

Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lym-
phoma and can be classified into two main subtypes based on gene expression: germinal
center-like (GCB) and activated B cell-like (ABC) DLBCL [2, 19]. Traditionally DLBCL
patients were treated with cyclophosphamide, doxorubicin, vincristine, and prednisone
(CHOP), and in recent years CHOP in combination with immunotherapeutic drug rit-
uximab (R-CHOP) has gained more popularity due to its benefit in clinical outcome
[33].

Here we analyzed a dataset consisting of 414 samples from both subtypes who received
either CHOP or R-CHOP [15]. Inspired by a previous analysis from [25], we first asked the
question whether the DEGs between GCB and ABC can be attributed mostly to B cells. To
this regard, we applied SCADIE to all samples and compared the cell type-specific DEGs
by treatment groups using the same cell type characterization and signature matrix from
[25]. From Fig. 6ab, we can observe distinct DEG composition patterns between CHOP
and R-CHOP patients: in the CHOP group, DEGs of GCB are dominantly by genes from
B cells, and those of ABC are also from B cells or activated B cells (plasma cell), while in
the R-CHOP group, there is a substantial reduction in B cell DEGs and most DEGs are
instead from T cells. While this may seem counterintuitive at first, given the rituximab’s
nature as an antibody against B cells, it is consistent with several lines of previous studies
[18, 30] that rituximab reduces B cell proportion substantially in the GCB group (Fig. 6d)
and alters T cells gene expressions more than B cells.
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Next, we compiled a list of validated markers for GCB and ABC from published studies
[2, 10] (see a list of all genes at [38]) and examined if SCADIE could accurately infer their
distinct expressions. The log2 fold changes in the estimated B cell expressions between
ABC and GCB are shown in Fig.6c, where we can see that not only all markers show
higher expression levels in their corresponding cell types; their estimated fold changes in
B cell are also higher compared to those in the bulk data.

Unlike previous analyses, although in real data we do not have comprehensive differ-
ential expression ground truth for all genes, we are able to demonstrate that the cell
type proportions and cell type-specific DEGs inferred from SCADIE align well with the

literature.

SCADIE improves AD-associated cell type-specific DEG estimation

Alzheimer’s disease (AD) is a leading threat to global elder population and has been under
intensive research over decades. However, gene expression analyses remain challenging
due to the difficulty in accessing samples and the low quality of post-mortem RNA-
Seq samples. To examine SCADIE’s performance on these challenging data, we applied
SCADIE to an AD bulk RNA-Seq dataset where the cell type proportions had been mea-
sured by immunohistochemistry (IHC) [27]. The dataset contains RNA-Seq samples from
31 healthy individuals and 18 AD patients. We initialized W's with the IHC-estimated
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proportions and ran the iterative procedure subsequently. Due to different cell type cat-
egorizations between the IHC study [27] and DEG study [22], we only examined the
three overlapped cell types: astrocyte, oligodendrocyte, and microglia (see the section
“Methods—Real data processing and analyses” for details.)

To evaluate SCADIE’s performance, we obtained a list of cell type-specific DEGs from
[22] and tested if SCADIE could correctly identify them. Figure 7 shows the estimated
expression levels for those known up- and down-DEGs in the initial and final W',
respectively. In the initial Ws, 34%, 20%, and 14% of known DEGs were estimated to
have fold-changes in the opposite directions (i.e., up(down)-DEGs were estimated to be
down(up)-regulated) with |log, FC| > 1) in astrocyte, oligodendrocyte, and microglia.
After SCADIE procedure, these ratios reduced to 5%, 9%, and 7%, respectively (Fig. 7).

These results suggest that, although low initialization quality might limit the perfor-
mance of SCADIE, its iterative procedure could still improve and recover the DEGSs’
directional signals.

DEG identification under poor initialization and limited sample size

Although SCADIE can be well tuned to identify DEGs, it may run the risk of increas-
ing error when the initial W and H deviate from ground truth. In addition, the jackknife
method might perform poorly when sample size is relatively small compared to the
number of cell types. To study the potential impacts of these issues, we first bench-
marked SCADIE’s performances under different initial H accuracy levels and sample
sizes. SCADIE’s accuracy decreases with both the initial H’s accuracy (Additional File 1:
Supplementary Fig. S6) and the reduction in sample size (Additional File 1: Supplemen-
tary section S3.4), while H accuracy has a larger effect. This is in line with our expectation
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because H directly affects point estimates of W's while sample size’s effect is more on
standard error.

On real data performance, we benchmarked SCADIE on a previously studied follicular
lymphoma (FL) bulk dataset with both issues present. FL is a common type of B cell lym-
phoma and can be classified into two subtypes by the presence of CREBBP mutation [9].
We re-analyzed a cohort of 26 samples whose genotypes are known (16 CREBBP-mutant
and 10 CREBBP-wild type) from [25] and benchmarked against a list of known DEGs
identified by [9].

We inferred the initial H via deconvolution using CIBERSORTx’s LM22 signature
matrix. Since this H contains 22 cell types while our sample number and leave-one-out
jackknife require the number of cell type not exceeding 9, we merged H into eight main
cell types based on their abundances and similarities. Then, the initial W's were obtained
for CREBBP-mutant and CREBBP-wild type groups respectively. To measure the quali-
ties of the initial W's, we made the volcano plot for known DEGs in initial W's. The results
show few correctly identified down-DEGs with some false positives (Fig. 8a “SCADIE ini-
tial W”) in the initial W’s. After iteration, the final W's correctly identified more DEGs in
both directions (upregulated and downregulated, see Fig. 8a “SCADIE final W”). This is
consistent with the table in Fig. 8b.

We next compared SCADIE with CIBERSORTx’s high resolution mode and TOAST.
Since CIBERSORTX cannot perform whole-transcriptome imputation, we only input the
467 known DEGs for imputation. The results suggest that although SCADIE’s estimations
had more directional errors, its overall power (Fig. 8a) and number of correctly identi-
fied DEGs (Fig. 8b) exceeded CIBERSORTx. Outcome from TOAST is very similar to
SCADIE’s initial outcome (Fig. 8a), but SCADIE’s final W's can identify more DEGs in
both directions, though at a cost of higher false positives.

The above results suggest that incorrect initialization and limited sample size do lower
the estimation quality of SCADIE; however, SCADIE can still improve and maintain
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competitive performance in these scenarios. It is recommended to consider SCADIE’s
applicability since poor initialization quality or limited sample size is common in real
applications. Though it is usually not possible to evaluate initial H’s quality, we recom-
mend having sample size at least 1.5x the number of cell types when performing DEG
identification with SCADIE.

Discussion

Recent years have seen rapid developments of technologies and computational methods
to enable researchers to identify genes with different expression levels across condi-
tions, either through bulk samples or single cells. When a gene is differentially expressed
between two groups of bulk samples, should we attribute it to cell type proportions
changes, or cell type-specific gene expression changes?

To this end, we have developed SCADIE, an estimation framework to simultaneously
estimate both cell type proportions H and cell type-specific gene expressions W. SCADIE
features an iterative update procedure of W and H, a SCAD-based penalty for simi-
larity control, as well as a jackknife-based standard error estimation. This framework
enjoys several advantages over existing methods. First of all, compared to scRNA-seq,
SCADIE’s cell type proportion estimate is not affected by technical dropouts. Second,
SCADIE has shown better sensitivity and specificity compared to existing methods. In
addition, SCADIE also has certain advantages in functionality compared to other meth-
ods mentioned in this paper: when compared to CIBERSORTx, SCADIE’s design can
estimate and test all the genes to identify DEGs (while CIBERSORTx only imputes a
subset of given genes); it can also accommodate more than microarray data and output
matched cell proportions (while csSAM only works on microarray data); when compared
to TOAST, SCADIE can not only perform hypothesis testing for DEGs, but produce
matched point estimates in the meantime. It is worth mentioning that recently two addi-
tional methods, CellR [5] and CARseq [12], have been proposed to specifically perform
cell type-specific DEG identification based on RNA-Seq raw counts data. We were unable
to include them in our benchmarking because most of the data in our study were only
available either as normalized RNA-Seq or microarray, but they might have superior
performance in heavily normalized brain tissue data where SCADIE’s performance was
not ideal.

Through extensive comparisons using simulated and real datasets, we demonstrated
that SCADIE can not only maintain high cell proportion estimate accuracy;, it can also
effectively identify cell type-specific DEGs. In the cases where initialization quality is
poor or with barely sufficient sample size, SCADIE’s performance will be affected; how-
ever, its iteration procedure can still recover signals to certain extent. We have provided
guidelines regarding SCADIE’s applicability under these extreme situations. Besides, its
performance is highly robust with respect to a range of parameter values. These features
all ensure that SCADIE can be broadly applicable to different settings.

Although SCADIE enjoys several advantages over existing methods, there are several
aspects that can be further explored. First, the proposed NMF estimate may involve bias
due to the non-negative constraint and the penalization term. One can consider a de-
biased estimate to fix the potential bias of the proposed penalization method to improve
inference. Second, although SCADIE can take initial input from any deconvolution algo-
rithm, it only uses NNLS in its iterative H-update step. We may expand its modularity



Tang et al. Genome Biology (2022) 23:129 Page 15 of 23

and enable it to fully take advantage of other deconvolution methods (e.g., DWLS for
cases with rare cell types, and weighted NNLS [42] for single cell counts data). It shall
also be noted that although SCADIE is built as a supervised deconvolution tool, it is also
compatible with all the unsupervised deconvolution methods that only require bulk gene
expression data [13, 31, 44] as long as they could provide initial W and H. Unsupervised
methods are useful in situations of cell type discovery or lack of supervising informa-
tion, but as there is no guarantee that their inferred cell types have one-to-one mapping
to actual cell types, annotating cell types remains a challenge. Third, we have shown that
using the full W along with NNLS has provided robust and accurate H estimates over
iteration, further investigation into the mechanism behind this may enlighten the simpli-
fication of deconvolution. Finally, we can improve the DE hypothesis testing procedure by
incorporating more advanced DE techniques and better false discovery control into the
framework.

Conclusions

Simultaneous estimation of cell type proportions and cell type-specific gene expres-
sions from bulk gene expression data remains a challenge due to its non-identifiable
nature. In this article, through our proposed method SCADIE, we demonstrated that
with reasonable assumptions on the similarity between group level cell type-specific gene
expression profiles, proper design of objective function, and reasonable initial deconvolu-
tion accuracy, it is possible to infer cell type proportions along with cell type-specific gene
expressions with robustness and high accuracy. Despite this progress, technical challenges
including multi-group comparison, limited sample size, and poor initialization quality still
remain to be further addressed in the future.

Methods
For a full list of notations, refer to Additional File 1: Supplementary section S1.

Rationale behind SCAD penalty

A key consideration in our proposed method is to maintain a proper dissimilarity level
between W) and W>, where the true DEGs can be identified without introducing many
false-positive DEGs. In our simulation analyses, we found that keeping W7 and W> sim-
ilar by a ridge penalty did increase the accuracy in Hs (Additional File 1: Supplementary
Fig. Slcd). However, the W accuracy and DEG identifying power are reduced (Addi-
tional File 1: Supplementary Figs. S1ab, S2). An intuitive explanation to this is that forcing
W1 and W5 prevents them from being too divergent with each other, thus increasing H
accuracy; however, this penalty also makes W7 and W, over-similar, thus reducing its
sensitivity substantially (Fig. S2).

To combine the advantages with and without ridge penalty, we adopt the SCAD-based
penalty that imposes entry-specific dissimilarity penalty based on the prior difference
between W; and Wh: if the separately estimated W and W5 have similar entries for the
(k,j) component, we put a high but bounded penalty on their difference in our proce-
dure, whereas if the components are quite different, we penalize less on the difference.

2 _ _
Specifically, we penalize ), S Eik ([ Wl]}]; — Wz]}%;) , where Ej = Pén { [WIT — WZT ]}2](}
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and P/Cn (+) is the derivative of the SCAD penalty function as defined in (6). To the best of
our knowledge, weighted €2 penalty using the derivative of SCAD has not been investi-
gated. By doing so, we can incorporate the structure pattern in W; — W5 when estimating
W1 and W» in a more adaptive manner (see the sections “Warm-up run and weight matrix
derivation” and “Update W and H” for more details).

Theoretical analyses suggest that this novel penalty structure can achieve high accuracy
in the estimation of W and H (Additional File 1: Supplementary section S3.1). In addi-
tion, we performed simulations comparing sensitivity, specificity, and positive predictive
rate (PPV) by using the following: (1) independent W3, W5 updates with NNLS, (2) ridge
regression imposing similarity between W) and W», and (3) SCAD-penalty. The results
suggest that SCAD-penalty can keep sensitivity high while in the meantime better control
false positives through its precise penalty (Figs. S1 and S2).

Initialization

For SCADIE’s initialization, users can either input bulk matrices along with correspond-
ing Hs, or input bulk and signature matrices to perform generic deconvolution using
NNLS or DWLS[40]. Given that many deconvolution methods have been proposed to
accommodate various data and conditions, we recommend users provide bulk matrix
along with the best initial Hs available.

In real applications, obtaining accurate deconvolution results is often difficult. We have
shown that although poor initialization does affect SCADIE’s performance, its iterative
procedure could recover the signals and produce decent results (see the section “SCADIE
improves AD-associated cell type-specific DEG estimation” and Fig. 8).

Warm-up run and weight matrix derivation
The proposed penalty requires a prior weight matrix E of the same dimension as W, which
provides prior information on how likely certain entries differ between two W's.

To obtain E, we perform a few steps of “warm-up” iterations:

1 We first obtain full Wl(o) and WZ(O) from solving the NNLS problem
R | - HiT‘ViT“i“’i =12

2 The Hs are subsequently updated by NNLS using full Ys and Ws.
Repeat steps 1-2 for a few rounds (default 5 rounds, but can be manually changed),
and plug in the output VAVf‘[NLS, VAVéVNLS to Eq. 6 in the section “Update W and H”
to obtain the weight matrix E.

Update Wand H
In this subsection, we provide details of updating W and H, which corresponds to step (b)
in Fig. 1.

Note that for the simplicity of notation, we intrinsically assume the sample sizes of
group 1 and group 2 are both 7 throughout analyses in this paper, i.e., Y1, Y, € R+
and Hy, Hy € R®*™+, Although this is not the case in most real applications, making this
assumption does not affect either our theoretic derivation or most implementations. For
scenarios where n; # np makes a difference (e.g., jackknife estimation), we will discuss
our handling of this issue specifically.
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For the update of H in the main iterative procedure, we simply use NNLS to solve for
the problems below for the two groups separately:

min_|Y; = WiHill7,i = 1,2. (4)
H,'GR(/(X”H'

Note that here we use the full Ws instead of signature genes only, and this alteration
still produces good estimation accuracy (see the section “SCADIE maintains high cell
proportion estimation accuracy”).

To update W7 and W5 simultaneously, we consider the following weighted-regression-
based optimization:

. 1
min

2 1 2 A 2
- YT—HTWTH +7HYT—HTWTH +—HWT—WTH , G
Wl,erRkaHZ’ 1 S e R 2Wa | T o | Wi 2 | gr (5)

where ||W1T - W2T||)23F = Zj,k Ej (WIT — WZT)]zk Note that (5) is not separable with
respect to W7 and W, due to the third term, from which the information is shared
between the two groups.

Let W =[ Wy, W,]T € R+ Ve update each column of W separately. Specifically,
updating the jth column of W is equivalent to solving

. 12
2V = arg min Yo — X(’)xH ,
xeR_z'_kXI F
where
(Y] HT Ok
0= | (] | emei, g0 - | o, W,

Ok.1 Vdiag(/E;) —+/Adiag(\/E;})

where A; represents the jth column of a matrix A. Then the minimizer 20 corresponds to
the jth column of W.
For the weight matrix E € Rk*m e set Ey = P’;n {[V_VIT — V_VZT ]jzk}, where P’{n () is the
derivative of the SCAD penalty function, i.e.,
(atn — x)+1(
(@a—1)¢u

with a regularization parameter ¢, > 0, and Wi and Ws are the separate estimates

Py (%) =I(x < &) + x> Cn)s (6)

obtained from the previous step. We set a = 3.7 as suggested by [8], which is known to
be optimal based on cross-validated empirical studies [20]. For the choice of parameter
¢n, we keep ¢, = 4 throughout all our analyses. We also demonstrate that SCADIE out-
put is robust with respect to ¢, in terms of Hs, W's, and DEG identification, if ¢, is in an
appropriate range. See the section “Robustness with respect to ¢,” and Additional File 1:
Supplementary section S3.2 for more details.

The proposed weighted-regression-based optimization (5) with the weight based on
SCAD derivative function can be understood as the one-step local linear approximation
of the following SCAD penalty [45]:

min  + 7 —H{WEHZ 1 | —H2TW2TH2 +3p; <[\X/1T - WZT]Z) .

W, Wo eRmxk+ 2 F 2 F i " jk
Hence, the proposed weighted regression-based optimization penalizes differently based
on the range of | WIT — WZT ]jx- Compared with the SCAD penalty, the proposed method
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can be efficiently computed and enjoys the same theoretical properties known as “oracle
properties” [45].

The SCAD penalty and weighted ¢; penalty using the derivative of SCAD are widely
used in the penalization methods [7, 21]. SCAD enjoys variable selection consistency and
unbiasedness property by imposing no weights on the signal that is beyond 3.7¢,, which
may reduce bias. By using the weighted Frobenius penalization, we may obtain less biased
estimate compared to that of Frobenius penalization. In theory, we derive the estimation
error bound of the proposed method under certain regularity conditions if ¢, is in an
appropriate range; see Additional File 1: Supplementary section S3.1 for more details.

Jackknife standard error estimation

The above iterative procedure only provides us with point estimates of W1, W, H, and
H,. For differential expression analysis between W; and W5, we use a leave-one-out
jackknife procedure to estimate standard error for W; — W.

For standard error estimation in most real data, Y7 and Y5 have different sample sizes
(number of columns). We denote #; and 7 as column numbers of Y7, Y», respectively, and
let ny = min{n;, ny}. Then we run the iterative procedure 7y times—each time leaving
one sample out from Y3, H; and Yy, Hy, respectively; this will give us ng different Wy —

Wss, and element-wise jackknife standard error estimates can be obtained by: o{kakmﬁa =
”"T:Tol&,j, i=1,..,m;j=1,..k where G; is the sample standard deviation for the jjth entry

from the no V% — Wzs [23]. With these, we can then conduct element-wise hypothesis
testing to identify DEGs between W7 and Wj.

We compared the jackknife standard error estimates with those from bootstrap, and
both led to highly consistent results (Additional File 1: Supplementary section S3.6).
In the R package implementation of SCADIE, bootstrap is also available for standard
error estimation. However, we recommend using jackknife for general purposes to avoid
the potential singularity issue arising from bootstrap’s sampling with replacement; see
Additional File 1: Supplementary section S3.6 for a detailed explanation.

Simulation models and benchmarking

Simulation datasets

The simulation data used in the section “SCADIE maintains high cell proportion estima-
tion accuracy” to section “SCADIE can improve the estimates from other methods” were

generated as follows: first, W; € R5000%5

was generated with all its entries following the
log-normal distribution with mean 8 and standard deviation 3; then to generate W», 2.5%
of the entries in W7 were upregulated to 1.5x or 2x, with another 2.5% downregulated to
0.67x or 0.5x; Hy and H, were generated using two distinct Dirichlet distributions, each
group consisting of 20 samples; bulk expression matrices Y were generated by W - H + ¢,
where ¢ is a Gaussian white noise matrix with sd = 4, if negative entries were present
after adding noise, these entries were reset back to 0.

For signature matrix generation, we first obtained W = w and used the top 5%
rows in terms of the largest-entry/second-largest entry ratio as signature gene rows. In H’s
benchmarking, all methods support H estimation with bulk gene expression and signature
matrix as input; since MuSiC only supports count data, we rounded the data before input
into MuSiC.
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Mouse ISC pseudo-bulk data set
The pseudo-bulk data used in the section “SCADIE maintains high cell proportion esti-
mation accuracy” to section “SCADIE can improve the estimates from other methods”
were generated as follows. We downloaded the original ISC scRNA-seq data through
GEO using accession number GSE92865. We clustered its 14 cell types into four major
cell types: ISC, TA, Ent, and other, which was based on the t-SNE results of the paper
[43]. We then separated the scRNA-seq data by treatment status, where the Fc treat-
ment was group 1, the scFv-DKKlc treatment was group 2, and the RSPO2 treatment
was group 3. The corresponding W1, W5, W3 matrices were generated by averaging over
all cells in each major cell type of the same treatment group. H; to H3 were generated
the same way as previous section, also with 20 samples in each group. Finally, Y7 to Y3
were generated by Y; = W; - H; + ¢,i = 1,2, 3, where ¢ is a Gaussian white noise matrix
with sd = 4.

Signature matrix was derived using the buildSignatureMatrixUsingSeurat function
from the DWLS package [32] using all the single cells regardless of their treatment status.

Ground truth DEGs were derived by performing differential expression analysis for each
cell type between group 2 and group 1 and group 3 and group 1, using the DEAnalysis
function in the DWLS package [40].

In the sections “SCADIE can better identify DEGs” and “SCADIE can improve the esti-
mates from other methods,” mouse ISC pseudo-bulk 1 dataset consists of group 1 and
group 2 data, while the pseudo-bulk 2 dataset consists of groupl and group3 data.

Mouse bulk data set

In thesection “SCADIE maintains high cell proportion estimation accuracy,” we used a
mouse brain-liver-lung mixture microarray dataset (referred as mouse bulk); the data
were accessed through GEO using accession number GSE19830. Raw data were prepro-
cessed with the affy package in R and normalized using the rma method. We used rma
normalization to keep the data comparable to [34]. The signature matrix was generated
using the DWLS package [40]. In H’s benchmarking, since MuSiC only supports count
level data, we rounded the bulk matrices and signature gene matrices before input into
MuSiC.

Real data processing and analyses
COPD single cell and bulk data
Raw scRNA-seq data were obtained from [1]. Data preprocessing, quality control, and
normalization were done using Seurat V3 [36] in R. The original data contained samples
of control, COPD, and idiopathic pulmonary fibrosis (IPF), where cells from IPF samples
were excluded in our analysis. There were 37 distinct cell types originally; we used the
five major cell type clusters according to UMAP clustering from [32], and we did not
further sub-divide because (1) there are limited cell numbers in some clusters and (2) the
correlated expression profiles of cell types within each cluster might introduce unwanted
collinearity in W. “Groundtruth” DEGs were identified for each cell type between control
and COPD using the DWLS package[32].

Signature matrices were generated using the CIBERSORTx [25] and DWLS pack-
ages [40]. The cell type proportion results from DWLS were considered better, and we
proceeded with its signature matrix.
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Bulk RNA-Seq data in FPKM was obtained through GEO with accession code
GSE57148, the FPKM matrix was further transformed into log scale to accommodate the
scale of signature matrix.

For benchmarking with TOAST, we input the bulk gene expression and the same initial
Hs as SCADIE; the control and COPD groups were denoted as groups 0 and 1, respec-
tively. We used the output effect size as indication of DEGs’ direction, and p-value to
identify significant DEGs.

For GSEA analysis, we first transformed the single cell and SCADIE-derived DEGs into
z-scores. For single cell DEGs, the z-scores were obtained from normal distribution quan-
tiles of their p-values, while for SCADIE output, since we know the point estimates and
standard error estimates for all genes, we directly calculated their z-scores. The z-score
lists for both groups were sorted and input for pre-ranked GSEA analysis using R’s fgsea
package, and Molecular Signatures Database v7.4 database [17]. For the top enrichment
analysis, pathways of each group were first ranked by their GSEA p values, then the top
5% or 10% were chosen and compared accordingly. The overlapping p-values were calcu-
lated using a binomial distribution, where the model parameter N equals the total number
of shared pathways, while p = 0.01 for top 10% overlapping and p = 0.0025 for top 5%
overlapping under the null hypothesis.

DLBLC data

Raw bulk microarray data were obtained through GEO with accession number GSE10846.
Raw data were preprocessed with affy package in R and normalized using mas5 method.
Sample treatment and subtype information was retrieved using the GEOquery package.
LM22 matrix from [25] was used for initial deconvolution.

Alzheimer’s disease data

Bulk post-mortem RNA-Seq samples of prefrontal cortex were downloaded from the
ROSMAP cohort [3]. We only kept the subset of 49 samples whose cell type proportion
results were measured in [27]. The IHC results measured four major cell types (neuron,
astrocyte, oligodendrocyte and microglia) without differentiating between excitatory and
inhibitory neurons, while the cell type-specific DEGs from [22] did separate these two cell
types. In this regard, we only included results for the three overlapping cell types.

Follicular lymphoma data

The raw bulk microarray data were accessed through GEO with accession number
GSE127462; preprocessing and normalizing were performed the same as the above pro-
cedure for DLBLC. The initial deconvolution used LM22 matrix from [25] and we
merged the cell types into the following 8 major groups (B cell, CD8 T CELL, CD4
T cell, NK, Monocyte/Macrophage, DC cell, Mast, Neutrophil) before inputting this
updated H into SCADIE. For the DEGs comparison, unlike SCADIE’s whole transcrip-
tome approach, we ran CIBERSORTx’s high resolution mode only inputting those known
DEGs. For TOAST run, we input bulk gene expression and initial the same initial H's
as SCADIE and CIBERSORTx; WT group was denoted as group 0, and MT group was
denoted as group 1. The output DEGs’ directions were determined by their effect sizes;
p-values were directly from output. Noted that in our analysis for COPD, we kept its
original effect sizes as fold change measure, instead of trying to transform to log2 fold
change.
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