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The Poincaré plot is a geometrical technique used to visualize and quantify the
correlation between two consecutive data points in a time-series. Since the dynamics
of fluctuations in physiological rhythms exhibit long-term correlation and memory,
this study aimed to extend the Poincaré plot by calculating the correlation between
sequential data points in a time-series, rather than between two consecutive points. By
incorporating this so-called lag, we hope to integrate a temporal aspect into quantifying
the correlation, to depict whether a physiological system holds prolonged association
between events separated by time. In doing so, it attempts to instantaneously
characterize the intrinsic behavior of a complex system. We tested this hypothesis
on three different physiological time-series: heart rate variability in patients with liver
cirrhosis, respiratory rhythm in asthma and body temperature fluctuation in patients
with cirrhosis, to evaluate the potential application of the extended Poincaré method
in clinical practice. When studying the cardiac inter-beat intervals, the extended
Poincaré plot revealed a stronger autocorrelation for patients with decompensated
liver cirrhosis compared to less severe cases using Pearson’s correlation coefficient.
In addition, long-term variability (known as SD2 in the extended Poincaré plot) appeared
as an independent prognostic variable. This holds significance by acting as a non-
invasive tool to evaluate patients with chronic liver disease and potentially facilitate
transplant selection as an adjuvant to traditional criteria. For asthmatics, employing the
extended Poincaré plot allowed for a non-invasive tool to differentially diagnose various
classifications of respiratory disease. In the respiratory inter-breath interval analysis, the
receiver operating characteristic (ROC) curve provided evidence that the extension of the
Poincaré plot holds a greater advantage in the classification of asthmatic patients, over
the traditional Poincaré plot. Lastly, the analysis of body temperature from patients using
the extended Poincaré plot helped identify inpatients from outpatients with cirrhosis.
Through these analyses, the extended Poincaré plot provided unique and additional
information which could potentially make a difference in clinical practice. Conclusively,
the potential use of our work lies in its possible application of predicting mortality for
the organ allocation procedure in patients with cirrhosis and non-invasively distinguish
between atopic and non-atopic asthma.
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INTRODUCTION

The Poincaré plot is a scatter graph that visualizes the correlation
between two consecutive data points in a time-series (i.e., x-axis:
An versus y-axis: An+1). In the past, it has extensively been
used in the analysis of physiological fluctuations (e.g., heart
rate variability analysis) and has enabled researchers to measure
short- and long-term variability separately (Mani et al., 2009).
Moreover, the Poincaré plot has the ability to assess the strength
of correlation between consecutive points in a time-series (i.e., by
calculating the Pearson’s correlation coefficient, r).

In this study, we utilize the Poincaré plot by extending it,
which essentially compares sequential data points in a time-series
(i.e., x-axis: An versus y-axis: An + k, where k can take any discrete
value), rather than between two consecutive data points in the
traditional plot (Figure 1A). Thus, due to the incorporation of
this temporal aspect to the non-linear analysis, we can obtain
the autocorrelation between two data points with a time lag.
This can be considered as vital to clinical and physiological
understanding, since a greater correlation between the present
and past suggests the presence of memory in a time-series (Shirazi
et al., 2013). In fact, in accordance to control theory, it is more
difficult to manage a system which has a strong correlation
with its past.

As physiological processes with stronger memory for a longer
period of time are often deemed as less controllable (Shirazi
et al., 2013; Mazloom et al., 2014; Ghafari et al., 2017), we
expect the extended Poincaré plot to potentially act as an
indicator of long-term correlation in a physiological time-
series. Thereby, to test the credibility of our method, we used
simulated noises to serve as our standard controls. An example
of the latter, is the well-known memoryless phenomenon,
white noise, where current events ‘forget their past’ in a
random time-series. Contrariwise, if the current status of a
system is more correlated, it relies on past events, though
dependency could possibly be restricted to a limited number
of past steps. In addition, we examined three physiological
time-series, with the intention to provide a more advanced
and comprehensive view on physiology. The clinical groups
are as follows:

(1) Heart Rate Variability (HRV) data from patients with liver
cirrhosis: Decreased HRV holds prognostic significance in
chronic liver disease (Bhogal et al., 2018; Mani et al., 2009).
A variety of different methods have been developed for
complexity analysis of HRV including multiscale entropy
and multifractal analysis (Peng et al., 1995; Costa et al.,
2005; Zheng et al., 2010; Bian et al., 2012; Jiang et al.,
2013; Song et al., 2013), however, recent studies revealed
that the Poincaré plot provides better prognostic value
in patients with liver disease in comparison with entropy
and fractal indices of HRV (Bhogal et al., 2018). In this
study, HRV is analyzed using the extended Poincaré plot
to determine if the greater correlation between sequential
inter-beat intervals predict mortality for non-invasive
patient monitoring.

(2) Inter-breath interval (IBI) data from asthmatics: Asthma
being a heterogeneous disease in nature, means there
is difficulty in distinguishing between atopic and non-
atopic as well as controlled and uncontrolled asthma non-
invasively. It is of interest in this study to determine
whether a strong autocorrelation in IBI time-series is
identified in the most pathological form of asthma and of
which specific stage of the lag in the extended Poincaré
plot is best for diagnosing between the different forms that
asthma can present as, as non-invasive tool.

(3) Body temperature fluctuations from patients with liver
cirrhosis: Temperature is regulated by both circadian and
homeostatic processes that intercalate during health and
disease. There is evidence to suggest that the pattern
of body temperature fluctuation is different in patients
with cirrhosis in comparison with healthy individuals
(Garrido et al., 2017). Extended Poincaré plot allows
further insight into the dynamics of thermoregulation
by unraveling the presence of autocorrelation in body
temperature time-series.

MATERIALS AND METHODS

Extended Poincaré Plot
As discussed before, the Poincaré plot is a scatter graph
constructed from consecutive data points in a given time-
series [x-axis: An, y-axis: An + 1, (Figure 1A)]. In doing so, it
provides information on correlation (by calculating the Pearson’s
correlation coefficient, r) and an estimation of short- and long-
term variability of a time-series. The latter parameters are defined
by the standard deviation perpendicular to the line of identity
(SD1) and the standard deviation parallel the line of identity
(SD2) (Hsu et al., 2012).

Poincaré plots can be extended by considering a lag (defined
by a number of steps, k) when calculating the correlation
of a time-series. The extension of the Poincaré plot gives
rise to the extended Poincaré plot whereby An is plotted
against An + k, where k steps can take any discrete integer
(Figure 1B); and in this study the range k = {1, 2, 3,
. . ., 20} was used (Figure 1C). By comparing the first An
interval with subsequent An + k intervals (Figure 1D), the
extended Poincaré plot quantifies internal serial correlation (i.e.,
autocorrelation) within a sequential physiological time-series
(Brennan et al., 2001).

In this present study, the extended Poincaré plot analysis was
carried out on 3 different physiological time-series, namely:

(a) Cardiac inter-beat R-R intervals (R-R) recorded from
patients with chronic liver disease

(b) Respiratory IBI recorded from patients with asthma
(c) Body surface temperature (T) recorded from patients

with chronic liver disease. Furthermore, three types of
stimulated noise (white, pink and Brownian) were also
assessed using the extended Poincaré plot. All physiological
recordings were approved by regional ethics committee and
conducted in accordance to the Declaration of Helsinki
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FIGURE 1 | Poincaré plot shown which was used to study the correlation between R-Rn and R-Rn + k intervals. (A) k = 1 (conventional Poincaré plot), (B) k = 3, (C)
k = 20 (extended Poincaré plot). r Describes the Pearson’s correlation coefficient. (D) Schematic diagram representing how the data points per extended Poincaré
plot is derived.

(Hong Kong Amendment) and Good Clinical Practice
guidelines.

Outcome Measures of the Extended
Poincaré Plot
MATLAB programming language was used for the
implementation of all algorithms used in this study (see
Supplementary Material 1 for the scripts). Via these algorithms,
for each lag (step, k) in the extended Poincaré plot, the Pearson
correlation coefficient (r), SD1 and SD2 were calculated to
produce a series of numbers corresponding to the outcomes in
association with the extent of the lag (steps, k).

Time-Series
Stimulated Noise
All stimulated noise, in the form of white, Brownian and
pink, were produced via MATLAB (MathWorks, R2017b).
Firstly, gaussian white noise was produced by a MATLAB
embedded random generator to be used as negative control
for comparing a random memoryless process with human data.
Brownian noise, a stochastic process with one step memory,
was created by the integration of white noise, to act as a
positive control for the presence of autocorrelation in a time-
series. Meanwhile, pink noise, a time-series with fractal like 1/f
dynamics, was generated by a MATLAB function created by
Hristo Zhivomirov (2017).

Study Cohort A: Heart Rate Variability Analysis in
Patients With Cirrhosis
Patient population and ethics
All data recordings were in accordance to the recommendations
and approval from the University Hospital of Padova Ethics
Committees. Whilst all patients provided a written informed

consent, 98 patients with liver cirrhosis [mean (±1 SD)
age: 57 (±10.9) years] from the Department of Medicine
outpatient clinic of the University of Padova from 29 June
2009 until 2 May 2011 were enrolled. Patient selection was
based on their etiology, established through clinical, laboratory,
radiological and histological findings. Whereas, severity was
characterized by Pugh’s modification of the Child’s grading
system (Child-Pugh) and the Model for End-Stage Liver Disease
(MELD) scores (Peng et al., 2016). Eligibility was based on
a previously described criterion (Shirazi et al., 2013). 74
patients were eligible for an 18-month follow-up (median:
12 months) [mean (±1SD) age: 56 (±10.8) years] to retrieve
information on the occurrence of death or liver transplantation;
whereby urgent transplants were given to those whom would
be considered ‘dead’ on the day of transplantation and this
data was used for survival analysis. The age-matched controls
comprised of 35 healthy volunteers [mean (±1SD) age: 55
(±11.8) years].

Data collection
Initially, a 10-min single channel ECG was obtained using
conventional ECG electrodes. The data was digitized at a
sampling rate of 256 Hz and detected R peaks attained a
R-R interval time-series, via an ad hoc computer program
(Chart 5, AD-Instrument, Australia). By visual inspection, 8-
min artifact-free continuous R-R interval sections were used
for analysis.

Outcome measures
From the extended Poincaré plot, the parameters obtained were
Pearson’s r, SD1 and SD2. In addition, Cox’s proportional hazards
ratio was calculated in the survival analysis to statistically analyze
if the latter indices predict mortality.
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Study Cohort B: Respiration Inter-breath Intervals
From Patients With Asthma
Patient population and ethics
The study for this cohort was approved by an institutional
review board and the ethics committee at Tarbiat Modares
University and all participants signed written informed
consent prior to data collection. 40 age-matched men,
aged between 21 and 39 years, participated in this study
during June 2010 to February 2011, in accordance to the
eligibility criteria defined by Raoufy et al. (2016), including
10 healthy volunteers and 30 asthmatics from the outpatient
clinic of Masih Daneshvari Lung Hospital (Tehran, Iran).
Here, asthma was categorized by whether or not it was
controlled based on the National Asthma Education and
Prevention Program (NAEPP) guidelines, thereby leading
to further classifications of 10 patients as having controlled
atopic asthma (CAA), 10 patients with uncontrolled atopic
asthma (UAA), and 10 patients with uncontrolled non-atopic
asthma (UNAA).

Data collection
Respiratory IBIs were recorded to create a time series as
subjects laid supine for about 70 min, whilst continuous
respiratory signals were collected using respiratory inductive
plethysmography, as described by Raoufy et al. (2016).

Outcomes measures
Again, the Pearson’s r, SD1 and SD2 were attained from the
extended Poincaré plot algorithm output. Furthermore, a receiver
operating characteristic (ROC) curve was used to determine
the sensitivity and specificity of whether the plots extension,
demonstrated by the lag (steps, k), were appropriate or not for
distinguishing between different asthma classifications.

Study Cohort C: Body Surface Temperature
Fluctuations in Liver Cirrhosis
Patient population and ethics
This particular study was approved by Padova University
Hospital ethics committee. All participants provided written
informed consent. Fifty three patients were recruited, however,
45 subjects were used for analysis based on the exclusion
criteria stated by Garrido et al. (2017). The classification of
liver cirrhosis was identified using various pathological findings
as described above in Section “Stimulated Noise.” Therefore,
12 were outpatients with cirrhosis, 12 were inpatients with
cirrhosis, 11 were inpatients without cirrhosis and 10 were
healthy volunteers.

Data collection
The temperature recordings were as described by Garrido et al.
(2017). In brief, the proximal skin temperature was recorded
using the iButton (model no. DS1922L-F5, Maxim Integrated,
San Jose, CA, United States) with a sampling rate of one sample
per 3 min, with a resolution of 0.0625◦C. The temperature
recordings by the loggers were carried out over 24 h.

Outcomes measures
The Pearson’s r, SD1 and SD2 for this given time-series
were calculated.

Statistical Analysis
Data was statistically analyzed by a two-way ANOVA with
Tukey’s post hoc test. P-values less than 0.05 were considered
statistically significant. Cox’s proportional hazards model was
used to assess the prognostic value of the Poincaré plot indices
in patients with liver disease. The ROC curve was used to
study the diagnostic ability of each step (k) in predication
of different classes of asthma (e.g., atopic from non-atopic
and controlled from uncontrolled asthma). The area under
the ROC curve is a measure of how well a parameter can
distinguish between two diagnostic groups (e.g., atopic versus
non-atopic asthma). When there is a perfect separation of the
values of the two groups, i.e., there no overlapping of the
distributions, the area under the ROC curve equals 1. When
the parameter cannot distinguish between the two groups the
area will be equal to 0.5. Area under the curve and its p-value
(null hypothesis: area = 0.5) were calculated using IBM SPSS
Statistics 24. The ample size for each cohort was calculated
based on a 0.05 significance level (error type I) and 0.80 power
(1-error type II).

RESULTS

Through the extension of the Poincaré plot, the lag affects
the elliptical shape of the plot. As the lag increases, the linear
correlation generally decreases whilst SD1 and SD2 change in an
inversely proportional manner (Figure 1).

Stimulated Noise
Pearson’s r correctly identified models of colored noise,
proving its reliability (Figure 2). With white noise being a
completely memoryless phenomenon, r fluctuated around 0,
since subsequent steps are not correlated with the first interval.
Contrariwise, Brownian noise exhibited serial correlation,
verifying that it holds memory. As we expected, pink noise lies
in between the two latter extremes, namely white and Brownian
noise (Halley and Kunin, 1999) as shown in Figure 2.

Study Cohort A: Heart Rate Variability
Analysis in Patients With Cirrhosis
Extended Poincaré Plot Outcome Measures
Regarding Pearson’s r, the two-way ANOVA confirmed a
significant difference between at least one sub-population group
(Fgroup = 28.63, P < 0.0001). It is clear that the most severe
class of cirrhosis (Child C) is distinctly disparate from all other
subjects in the study, by shifting toward the Brownian noise
spectrum, illustrating a more correlated rhythm across lag-r,
also known as the extended Poincaré plot (Figure 3A). In other
words, Person’s r can only distinguish Child C patients from
other groups. Even though there is a significant effect for k
(Flag = 53.5, P < 0.0001), there was no interaction between
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FIGURE 2 | Pearson’s r from the extended Poincaré plot demonstrates the relationship between An and An + k (kmax = 20) in white noise (a random and memoryless
process), pink noise (a process with 1/f dynamics) and Brown noise (stochastic process with memory).

FIGURE 3 | (A) Pearson’s r from the extended Poincaré plot demonstrates the relationship between R-Rn and R-Rn + k (kmax = 20) in healthy volunteers and
patients with liver cirrhosis from the least severe (Child A), moderate (Child B) and in the most severe cases (Child C). (B) The SD1 calculated in the extended
Poincaré plot is shown. (C) The SD2 calculated in the extended Poincaré plot is shown.

patient groups and lag across the range of values for k and
thus, Pearson’s r exhibits the same trend across all groups in
respect to k.

Figure 3B unveiled significant differences in the sample
groups (Fgroup = 186.3, P < 0.0001) and subsequent steps,
k, (Flag = 5.462, P < 0.0001) for SD1. SD1 could separate
different classes of cirrhosis with the lowest value being for
Child C and the highest for healthy individuals as shown
Figure 3B. SD1 increased in parallel with an increasing value
of k, with the greatest gross increase in healthy individuals.
However, there is no interaction between lag-k and the
subpopulation groups since the variables are parallel to one
another (two-way ANOVA).

Likewise, SD2 can also separate different classes of cirrhosis
from the healthy group of individuals (Figure 3C). On
the contrary, SD2 decreased by an average of 17.4% across
all subjects as k approaches 20 (Figure 3B). There is
a significant difference between groups (Fgroup = 234.9,
P < 0.0001), however, there is no significant difference
between the individual steps (Flag = 1.536, P = 0.0641)
(two-way ANOVA). Moreover, in respect to r, there is no

significant difference in trend between the sample groups
as k increases.

Survival Analysis
Study participants were followed up for 18-months post-ECG
recording to obtain their survival outcomes for use in our
mortality studies. Cox’s regression analysis was used to assess
whether HRV indices predicated mortality. The hazard ration
[Exp(β)] was calculated. In this analysis, Exp(β) = 1, which
indicates no effect in predicating mortality, whilst Exp(β) < 1
or Exp(β) > 1 indicate whether the index is either protective or
hazardous respectively, when predicating survival.

Pearson’s r presented no prognostic capacity, as it did not
predict the 18-month survival outcome (P > 0.05) and all the
95% confidence intervals crossed the no effect size. The lowest
p-value was 0.089 (95% confidence interval: 0.757–49.670) at
k = 5 (Figure 4A).

Nevertheless, Figures 4B,C shows SD1 and SD2 respectively,
both of which significantly predict mortality with an increasing
k (P < 0.05). SD2 generally was more significant than
SD1 throughout the lag-k. As expected the indices of the
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FIGURE 4 | Cox-proportional hazards model was used to determine if the extended Poincaré plot parameters predict mortality in patients with cirrhosis. Data
expressed as: Exp(β), (95% confidence interval, CI). If indices predict mortality, the confidence interval will not cross Exp(β) = 1. (A) Pearson’s r did not predict
mortality, whilst (B) SD1, and (C) SD2 did.
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TABLE 1 | Bivariate Cox-regression to determine SD1 and SD2’s dependency on
the MELD score when predicting mortality (k∗ = independent).

Steps (k) Exp(β) 95% CI P-value Ex p(β) 95% CI P-value

(A) MELD SD1

1 1.154 (1.070-1.244) 0.000 0.956 (0.897–1.018) 0.162

2 1.152 (1.069–1.241) 0.000 0.959 (0.912–1.008) 0.103

3 1.156 (1.072–1.246) 0.000 0.963 (0.917–1.012) 0.138

4 1.153 (1.070–1.243) 0.000 0.959 (0.911–1.009) 0.105

5 1.148 (1.066–1.236) 0.000 0.954 (0.907–1.002) 0.063

6 1.152 (1.068–1.242) 0.000 0.964 (0.921–1.010) 0.122

7 1.154 (1.070–1.244) 0.000 0.966 (0.923–1.011) 0.138

8 1.151 (1.067–1.241) 0.000 0.960 (0.916–1.006) 0.089

9 1.148 (1.065–1.237) 0.000 0.955 (0.911–1.002) 0.058

10 1.148 (1.066–1.237) 0.000 0.956 (0.913–1.002) 0.059

11 1.151 (1.069–1.241) 0.000 0.962 (0.920–1.006) 0.089

12 1.151 (1.068–1.240) 0.000 0.961 (0.919–1.004) 0.076

13 1.150 (1.067–1.239) 0.000 0.959 (0.918–1.003) 0.068

14 1.150 (1.068–1.239) 0.000 0.960 (0.918–1.004) 0.071

15 1.149 (1.067–1.238) 0.000 0.959 (0.918–1.002) 0.062

16 1.150 (1.067–1.240) 0.000 0.961 (0.921–1.004) 0.073

17 1.152 (1.069–1.241) 0.000 0.962 (0.921–1.004) 0.079

18 1.153 (1.070–1.242) 0.000 0.963 (0.923–1.005) 0.083

19 1.151 (1.068–1.240) 0.000 0.963 (0.923–1.004) 0.073

20 1.150 (1.068–1.239) 0.000 0.962 (0.922–1.003) 0.069

(B) MELD SD2

1∗ 1.148 (1.066–1.236) 0.000 0.967 (0.935–0.999) 0.043

2∗ 1.148 (1.066–1.236) 0.000 0.965 (0.931–0.999) 0.046

3∗ 1.147 (1.065–1.235) 0.000 0.964 (0.930–0.999) 0.046

4 1.148 (1.065–1.237) 0.000 0.966 (0.932–1.001) 0.057

5 1.148 (1.066–1.237) 0.000 0.965 (0.931–1.001) 0.057

6∗ 1.146 (1.065–1.234) 0.000 0.959 (0.924–0.997) 0.032

7∗ 1.145 (1.064–1.233) 0.000 0.959 (0.922–0.996) 0.031

8∗ 1.147 (1.065–1.235) 0.000 0.962 (0.927–0.999) 0.044

9 1.149 (1.067–1.237) 0.000 0.964 (0.929–1.001) 0.057

10 1.149 (1.066–1.237) 0.000 0.963 (0.927–1.001) 0.056

11∗ 1.147 (1.065–1.235) 0.000 0.960 (0.923–0.998) 0.041

12∗ 1.147 (1.065–1.235) 0.000 0.961 (0.924–1.000) 0.048

13 1.147 (1.065–1.236) 0.000 0.962 (0.925–1.001) 0.053

14∗ 1.148 (1.066–1.236) 0.000 0.962 (0.925–1.000) 0.050

15 1.148 (1.066–1.236) 0.000 0.962 (0.925–1.001) 0.053

16∗ 1.147 (1.066–1.235) 0.000 0.960 (0.923–0.999) 0.047

17∗ 1.146 (1.064–1.234) 0.000 0.960 (0.922–0.999) 0.044

18∗ 1.145 (1.064–1.233) 0.000 0.958 (0.920–0.998) 0.041

19∗ 1.146 (1.064–1.234) 0.000 0.959 (0.920–0.999) 0.046

20 1.147 (1.065–1.235) 0.000 0.960 (0.921–1.000) 0.051

(A) SD1 depends on the MELD score to predict mortality but (B) SD2 does not.

severity of liver dysfunction (MELD and Pugh) could robustly
predict mortality (P < 0.0001). In order to see whether or
not the prognostic value of SD1 and SD2 depend on the
severity of liver dysfunction, we used a multivariate Cox’s
regression analysis. It appears that the ability of SD1 to predict
mortality is dependent on disease severity, across all steps,

since P < 0.0001 for the MELD score, but the p-value was
insignificant for the sole use of SD1 without consideration of
disease severity (P > 0.05, Table 1A). However, SD2 has a
greater ability to predict mortality and also independently to
the MELD score, though varyingly and inconsistently across
lag-k (Table 1B).

Study Cohort B: Respiration Inter-Breath
Intervals From Patients With Asthma
Extended Poincaré Plot Outcome Measures
Pearson’s r demonstrated that there is significant difference
between the lags (steps, k) (Flag = 8.54, P < 0.0001), as well
as the different classification groups of asthma (Fgroup = 170,
P < 0.0001). As seen in Figure 5A, the healthy patients have
the greatest change in autocorrelation and the least change is
seen in the most severe form of asthma, uncontrolled non-atopic
asthma. Yet, there is no interaction between the lag and the
subgroups of asthma.

For both SD1 and SD2, there is a clear distinction between
at least one patient group, i.e., again uncontrolled non-atopic
asthma, from the rest of the study population (Fgroup > 200,
P < 0.0001). However, there is no significant difference
between each step, k, and the interaction also presents as
significant (Figures 5B,C).

Diagnostic Value of the Extended Poincaré Plot in
Different Classes of Asthma
Using the area under the ROC curve, Pearson’s r had the best
sensitivity and specificity at distinguishing between atopic and
non-atopic asthma, at k = 3 (P < 0.0001, The area under the
ROC curves are shown in Supplementary Materials 2a,b). In
addition, k = 2 and k = 12 had the most significant result in
distinguishing between controlled and uncontrolled asthmatic
patients (P = 0.002).

Interestingly, both SD1 and SD2 had consistent diagnostic
ability across all steps (k) for classifying atopic from non-atopic
and uncontrolled from controlled asthma (Supplementary
Materials 2a–c). Boxplots depicting the ROC curves for different
k values are demonstrated in Figures 6, 7).

Study Cohort C: Body Surface
Temperature Fluctuations in Liver
Cirrhosis
Extended Poincaré Plot Outcome Measures
For the temperature fluctuation data from subsets of cirrhotic
patients, Pearson’s r demonstrated to profoundly differentiate
cirrhotic inpatients from other groups (cirrhotic outpatients,
non-cirrhotic inpatients and lastly healthy individuals,
Figure 8A). The two-way ANOVA analysis revealed there are
significant differences between patient groups (Fgroup = 122.1,
P < 0.0001) and steps (k) (Flag = 40.55, P < 0.0001). Yet, there is
no interaction between the two since all patient groups follow a
declining trend across the lag.

As shown in Figure 8B, the SD1 analysis of the data enabled
us to distinguish between inpatients and outpatients (including
healthy volunteers). Similarly, to Pearson’s r, there are significant
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FIGURE 5 | (A) Pearson’s r from the extended Poincaré plot demonstrates the relationship between IBIn and IBIn + k (kmax = 20) in healthy volunteers and patients
with different types of asthma. (B) The SD1 calculated in extended Poincaré plot is shown. (C) The SD2 calculated in extended Poincaré plot is shown.

differences between patient groups (Fgroup = 221.9, P < 0.0001)
and steps (k) (Flag = 41.81, P < 0.0001), however, there is no
interaction between the two (Finteraction = 1.281, P = 0.0840).

Nevertheless, the lag-SD2 (which is depicting long-term
variability) illustrates a slight declining trend that also separates
inpatients from outpatients. Though SD2 uniquely allows for the
segregation of cirrhotic inpatients and non-cirrhotic inpatients,
across the increasing lag (Figure 8C). In fact, there is a significant
difference between patient groups (Fgroup = 272.6, P < 0.0001)
but not between steps (k), meaning that the declination trend
is not significant. With that being said, there is no interaction
between patient groups and steps (k).

DISCUSSION

In this present study, the integrity of homeostasis within three
different physiological time-series were analyzed by the extended
Poincaré plot, by measuring their internal serial correlation.
Through the use of Pearson’s r, the extent of correlation in
a given physiological time-series can be quantified, whereby
a greater value of correlation conveyed prolonged memory
and subsequently impaired homeostasis, as it conveys less
adaptable state (Mazloom et al., 2014). With that being said,
the implementation of Pearson’s r, from the extended Poincaré
plot has not previously been used to quantify memory in a
physiological time-series in the same context and with the same
intention. In addition, to illustrate reliable controls for this study,
stimulated noises were used for referencing the scale of changes
in the time-series.

Firstly, HRV was analyzed in patients with liver cirrhosis.
The magnitude of the inter-beat interval fluctuations in HRV is
a hallmark of disease, where lessened HRV acts as a negative
predictor of patient outcome in liver cirrhosis (Mani et al., 2009;
Bhogal et al., 2018). In consensus with Shirazi et al.’s method,
Pearson’s r revealed that severely cirrhotic patients exhibited
prolonged memory (Shirazi et al., 2013). Furthermore, both
extended-SD1 and SD2 were able to distinguish between different
severities of liver cirrhosis and from their healthy controls.
Though, unlike Pearson’s r, SD1 and SD2 showed prognostic
capacity. The inability of Pearson’s r to predict mortality was

not due to suboptimal study design, as the minimum sample
size was exceeded. Yet, this result verified that enhanced cardiac
autocorrelation was not the main cause of death in liver cirrhosis,
which is supported by the fact that patients are more likely
die from other complications, such as variceal bleeding or
infection/sepsis (O’Brien et al., 2012) and not severe congestive
heart failure (Lee and Liu, 2007). Pearson’s r in the extended
Poincaré plot did not hold prognostic capacity. However, it could
possibly be used in the future to non-invasively determine liver
cirrhosis complications, like cirrhotic cardiomyopathy, which
is more prevalent in decompensated liver cirrhosis. It is also
noteworthy to mention, that till-date complications like cirrhotic
cardiomyopathy have no well-established guideline for diagnosis,
even though such complications negatively impact the prognosis
of liver cirrhotic patients undergoing stressful events, such as liver
transplantation or transjugular intrahepatic portosystemic shunts
(TIPS) (Lee and Liu, 2007; Møller and Lee, 2018).

We also calculated SD2 and SD1 in the extended Poincaré
plot by computing the standard deviation of variations along
or perpendicular to the line of identity. SD1 in the traditional
Poincaré plot is linked with short-term variability and respiratory
sinus arrhythmia (Haddadian et al., 2013). Introducing a lag
in the Poincaré plot shifts short-term variability toward longer
variations. Our results revealed that cirrhotic patients had
a significant reduction in both SD1 and extended-SD1 in
comparison with healthy controls. Extended-SD1 could also
predict survival in this patients’ population. However, the ability
of extended-SD1 to predict mortality was dependent on the
MELD score and thus does not add more information to the
MELD score in prediction of survival. SD2 measures long-
term fluctuations in a time-series and within the context of
HRV is linked with thermoregulation and baroreflex loop.
SD2 surprisingly predicted mortality independent to the MELD
score in liver cirrhosis. The MELD score is currently the main
clinical criteria for the assessment of liver dysfunction for organ
allocation (i.e., in liver transplantation). The extended Poincaré
plot provides indices that predict mortality independent of the
MELD score. Thus, the Poincaré plot has the potential to be used
concomitantly with the MELD score, to increase the accuracy
of finding the most suitable organ recipient for organ allocation
to patients awaiting liver transplantation. This would not be
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FIGURE 6 | Boxplots representing the ROC curves that were used to study
the diagnostic ability of r, SD1, or SD2 in different steps to diagnose atopic
from non-atopic asthma. The area under the ROC curve is a measure of how
well a parameter such as Pearson’s r (A), SD1 (B), or SD2 (C) can distinguish
between atopic and non-atopic asthma. The area under the curves for each
step (k) can be found in Supplementary Material 2.

FIGURE 7 | Boxplots representing the ROC curves that were used to study
the diagnostic ability of r, SD1, or SD2 in different steps to diagnose controlled
from uncontrolled asthma. The area under the ROC curve is a measure of
how well a parameter such as Pearson’s r (A), SD1 (B), or SD2 (C) can
distinguish between controlled and uncontrolled asthma. The area under the
curves for each step (k) can be found in Supplementary Material 2.
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the first adjuvant, since the MELD score has been jointly used
with physio-markers (e.g., EEG) which have been shown to
assist mortality prediction in patients with cirrhosis (Montagnese
et al., 2015). The advantage of the Poincaré plot is that it can
be easily calculated by incorporating a simple computational
script to bedside monitors. Furthermore, this incorporation may
allow for assisting patient selection for stressful procedures such
as liver transplantations or TIPS, as it identifies which patient
is most likely to survive the procedure, Thereby, the extended
Poincaré plot can potentially add value in assisting patient
transplant selection, by combatting the subjective assessment of
clinicians. However, the reason behind the prognostic capacity of
long-term HRV is unknown, though it is thought to be linked
with thermoregulation and, in fact, recent reports indicate that
thermoregulation is impaired in cirrhosis (Garrido et al., 2017;
Mani et al., 2018). Nevertheless, the association between SD2
and core body temperature fluctuations in cirrhosis remains
unstudied and requires further investigation.

Secondly, IBI data was analyzed from patients with different
classes of asthma to explore the diagnostic capability of the
extended Poincaré plot. The extended Poincaré plot indices,
Pearson’s r, SD1 and SD2, all appeared to distinguish between
controlled and uncontrolled, as well as between atopic and non-
atopic asthma. An important goal of research in the disease,
asthma, is to identify subgroups that respond well to different
types of treatments. Currently, there is no simple test available
to identify patients who do not respond to common therapies
(uncontrolled asthma). Recent investigations in this field are
focused on analyzing bronchoalveolar lavage and its specific
cellular/cytokine profile or plasma/urinary biomarkers (Wedes
et al., 2011; Hosoki et al., 2015). Our results indicate that
the extended Poincaré plot’s analysis of patients’ IBI time-
series data can separate different subgroups of patients with
asthma without the need for clinical invasive means. Pearson’s
r revealed uncontrolled non-atopic asthma to be close to the
memoryless phenomenon, white noise, which seems to maintain
the weakest correlation across the lag (weaker autocorrelation).
The correlation coefficient r, appeared to also hold a non-invasive
diagnostic value when it comes to differentiating between
uncontrolled and -controlled asthma as well as between atopic
and non-atopic asthma, especially at greater steps of lag (k > 1).
The latter, is very important at supporting the fact that the
extended Poincaré plot holds more temporal information, as well
diagnostic significance in comparison to the traditional Poincaré
plot. Furthermore, SD1 and SD2 showed similar results, by again
easily detecting uncontrolled non-atopic asthma from the other
subsets of asthma. The diagnostic ability of the extended Poincaré
plot across the lag was consistent, and was best portrayed by
quantifying correlation to assess the ‘memory’ of the system and
its time-series.

The ROC curve was also implemented to optimize the
sensitivity and specificity of the extended Poincaré plot in the
diagnosis of different types of asthma. Pearson’s r had the best
sensitivity and specificity at distinguishing between atopic and
non-atopic asthma, especially at k = 3. Furthermore, k = 2 and
k = 12 had the most significant result in distinguishing between
controlled and uncontrolled asthma. These results are promising

and also go along with our previous report on the classification
of asthma based on respiratory fluctuation analysis (Raoufy et al.,
2016). In addition, Frey et al. reported that fluctuation analysis
of airway function provides a quantitative basis for objective
risk prediction of asthmatic episodes and also for evaluating the
effectiveness of therapy (Frey et al., 2005). We hypothesize that
the incorporation of the extended Poincaré plot analysis with
routine spirometry/plethysmography could be used in future to
allocate the best therapy for patients and therefore to ultimately
improve patient outcomes. Thus, this allows us to believe that
the impact of the extended Poincaré plot in asthma lies in being
able to provide information computationally, which currently is
not fulfilled. However, a multicenter study with a larger cohort of
patients is required to fully test this hypothesis.

Finally, the body surface temperature fluctuation data
obtained from patients with liver cirrhosis revealed interesting
results. Pearson’s r from the extended Poincaré plot easily
distinguished inpatients with liver cirrhosis from all other subsets
of cirrhotic patients, especially with the increasing lag. The
extended Poincaré plot showed that there was a decrease in
autocorrelation, suggesting that these temperature fluctuations
seemed to be less correlated with previous temperature
recordings in the same time series. This may tie in with
systemic inflammation that occurs with liver cirrhosis, patients
of which are usually hospitalized. Loss of autocorrelation in
body temperature fluctuations goes along with increased entropy
and thus disorder of this time-series; a phenomenon that has
already been reported in patients and animal model of cirrhosis
(Garrido et al., 2017; Mani et al., 2018). It appears that the
extended Poincaré plot depicts that hospitalized patients with
cirrhosis, tend toward the white noise side of the spectrum, which
has high degree of entropy as it’s a memoryless phenomenon,
therefore has no degree of regularity, the inverse of which is used
to quantify entropy. In addition, we also observed a significant
inverse correlation between Person’s r and the sample entropy
of the temperature time-series (data not shown).The weaker
autocorrelation and increased entropy of the body temperature
fluctuations observed, may also indicate a stronger engagement
of the thermoregulatory system due to systemic inflammation
(Garrido et al., 2017). We hypothesize that body temperature
fluctuation analysis could also be used for screening of cirrhotic
patients who have developed inflammation-related complications
(e.g., infection). It appears that the variability analysis gives
more information about the thermoregulatory system, than its
absolute value (Papaioannou et al., 2012). Detection of fever has
historically been used for screening of infection, yet, none of the
patients in this study had fever; however, temperature variability
analysis can distinguish between inpatients and outpatients with
chronic liver disease. Future studies will pave the way to test
the potential application of temperature fluctuation analysis in
the detection of systemic inflammatory response syndrome in
patients with cirrhosis.

Both SD1 and SD2 in the extended Poincaré plot analysis
of body temperature fluctuations are higher in volunteers who
were not hospitalized (i.e., healthy controls and outpatients
with cirrhosis). Since hospitals have a temperature-controlled
environment and patients spend most of their time at their
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FIGURE 8 | (A) Pearson’s r from the extended Poincaré plot demonstrates the relationship between body temperature fluctuations, Tn and Tn + k (kmax = 20) in
healthy volunteers, inpatients and outpatients. (B) The SD1 calculated in the extended Poincaré plot is shown. (C) The SD2 calculated in the extended Poincaré plot
is shown.

bedside bed, it is expected to see less short-term and long-term
temperature variability in hospitalized patients, in comparison
to outpatients and healthy controls. Interestingly both inpatient
groups (cirrhotic and non-cirrhotic) exhibit similar SD1 and
SD2 parameters, whilst their Pearson’s correlation coefficient
is significantly different. This clearly shows that the loss of
autocorrelation in cirrhotic inpatients is not related to less
variation in their temperature profile.

The Poincaré plot has numerous applications in different
disciplines and is known by other names such as, return maps,
the Poincaré return plot or Lorenz plot in the mathematics and
physics community. The classical application of return maps is in
detecting non-linearity in deterministic one-dimensional systems
(Kaplan et al., 1996). First-return Poincaré plots have been used
extensively in medicine, not to detect non-linearity but to unravel
the extent of short-term and long-term variability in the time-
series by calculating the standard deviation along the axes of the
plot (e.g., SD1 and SD2). Our aim in the study was to examine
the application of these simple return maps as a first attempt to
quantify autocorrelation which we then used to determine SD1
and SD2. We used the term “extended Poincaré plot” to show
that we have extended the traditional Poincaré plot by looking
at the autocorrelation with a lag as shown in Figure 1. As the
extended Poincaré plot assesses autocorrelation in a time-series,
a higher degree of autocorrelation suggests the presence of an
autoregressive process. An in-depth analysis can provide us more
information about the order of such a process (Ramsey, 1974). In
a first order autoregressive process [AR(1)], the current value of
the process is based on the immediately preceding value, and we
expect to observe the following behavior:

An + 1 = ρAn + ξ [Equation1 : AR(1)process]

Where ξ is a random noise, and ρ is the parameter of the
model and relates to the extent of the correlation (−1< ρ< 1). In
higher order autoregressive processes, we observe more complex
behavior. For example, in a second order autoregressive process
[AR(2)], the current value is based on the previous two values:

An + 2 = ρ1An + 1 + ρ2An + ξ ’[Equation2 : AR(2)process]

Interestingly, in an AR(1) process, An + 2 might still be
correlated with An, as the expansion of Equation 1 gives rise to
Equation 3:

An + 2 = ρ2An + ρξ + ξ ’(Equation3)

This shows that in an AR(1) process, the extent of correlation
between An + 2 and An depends on ρ2 (ρ squared) which is
less than ρ itself. Therefore, observing a correlation between
An + 2 and An does not rule out a first order autocorrelation.
A systematic way to determine the order of an autoregressive
process is using the partial autocorrelation function (Ramsey,
1974). We used this to analyze (see Supplementary Material
3) the three different types of physiological time-series and our
results showed that in most of the time-series that we analyzed,
we encounter an AR(1) process. The R-R interval data exhibit a
low order autoregressive process, with some degree of oscillation,
which might probably be related to the effect of respiration
(respiratory sinus arrhythmia) on the R-R interval variation data
as shown in Supplementary Material 3, the extended Poincaré
plot can be further analyzed to show the partial autocorrelation
of a physiological time-series in addition to extended SD1 and
SD2. Our results show that the order of the autoregressive process
was not markedly different between groups. Thus, the value
of partial autocorrelation analysis in physiological time-series
awaits further investigation.

The Poincaré plot provides a simple visual method that can be
easily applied to bedside tests to aid diagnosis or treatment (e.g.,
in the organ allocation procedure in cirrhosis). In addition to this
classic analytical method, other state of the art visual analytical
methods do exist which are used for analysis of physiological
time-series such as the recurrence plot (Webber and Zbilut, 1994;
Marwan et al., 2002, 2007; Pham, 2018). The recurrence plot, it is
a visual way of characterizing the recurrence, regularity and the
order of the time series, from which recurrence quantification
analysis can be used to determine the entropy (Marwan et al.,
2007). In a recent report we showed that entropy analysis does
not yield significant results in predicting mortality nor in clinical
application in patients with liver disease (Bhogal et al., 2018).
Therefore, we did not pursue the recurrence plot to use in our
study on patients with liver disease. However, future studies are
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required to assess the application of this state of the art method
along with other novel methods in different clinical settings.

CONCLUSION

Our study showed the potential application of the extended
Poincaré plot in analyzing various physiological time-series to
unravel the resiliency and tolerance of a system that operates
against environmental, physiological and pathological challenges.
As some variability and plasticity in physiological rhythms
are unavoidable, due to the balance between adaptation and
memory, physiological controllability can be considered as a
critical aspect of homeostasis, to enhance organismal function.
It appears that the extension of the Poincaré plot can be applied
to current health care challenges, such as the diagnosis of
uncontrolled asthma, prediction of survival and assessment of
thermoregulation in patients with liver disease. As robust as this
present study appears, it lacked multicenter study heterogeneity,
such as varying etiology. Even though it is alleged that predictors
of mortality derived from HRV are irrespective of the etiology
(Saraiva et al., 2001), it would be more appropriate to perform
a multicenter study to momentously promote heterogeneity; as
well as increasing the sample size, to further support the true
clinical ability of Pearson’s r. Another limitation of this study
is that, mathematical models and correlation-based approaches
do not provide full enlightenment of a system’s behavior, as
it oversimplifies critical physiological concepts, by statistically
discriminating against stochastic processes. Moreover, Pearson’s
r was chosen for the linearity seen in Poincaré plot and its
extension as it assumes that the variables in the extended Poincaré

plot exhibit a linear relationship, which limits validity if it does
not yet, it does nonetheless establish immediate new knowledge,
which can potentially be used to solve unmet clinical needs.
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