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Compound marine heatwaves and ocean
acidity extremes

Friedrich A. Burger 1,2 , Jens Terhaar 1,2 & Thomas L. Frölicher1,2

Compound MHW-OAX events, during which marine heatwaves (MHWs) co-
occur with ocean acidity extreme (OAX) events, can have larger impacts on
marine ecosystems than the individual extremes. Using monthly open-ocean
observations over the period 1982–2019, we show that globally 1.8 in
100 months (or about one out of five present-day MHW months) are com-
poundMHW-OAX event months under a present-day baseline, almost twice as
many as expected for 90th percentile extreme event exceedances if MHWs
and OAX events were statistically independent. Compound MHW-OAX events
are most likely in the subtropics (2.7 in 100months; 10°−40° latitude) and less
likely in the equatorial Pacific and themid-to-high latitudes (0.7 in 100months;
>40° latitude). The likelihood pattern results from opposing effects of tem-
perature and dissolved inorganic carbon on [H+]. The likelihood is higher
where the positive effect on [H+] from increased temperatures during MHWs
outweighs the negative effect on [H+] fromco-occurringdecreases in dissolved
inorganic carbon. Daily model output from a large-ensemble simulation of an
Earth systemmodel is analyzed to assess changes in the MHW-OAX likelihood
under climate change. The projected long-term mean warming and acidifica-
tion trends have the largest effect on the number of MHW-OAX days per year,
increasing it from 12 to 265 days per year at 2 °C global warming relative to a
fixed pre-industrial baseline. Even when long-term trends are removed, an
increase in [H+] variability leads to a 60% increase in the number of MHW-OAX
days under 2 °C global warming. These projected increases may cause severe
impacts on marine ecosystems.

Anthropogenic climate change has led to an increase in frequency and
intensity of ocean extreme events, such as marine heatwaves1–7 and
oceanacidity extremes8,9, a trend that is projected to continue over the
21st century3,9. The predominantly harmful impacts of such individual
extreme events on marine ecosystems10–12 may become more severe
when two extreme events occur together13–15. These so-called com-
pound events16,17 have been vastly studied on land18,19, whereas marine
compound events, such as compound MHW-OAX events (events of
unusually high temperature and hydrogen ion concentration, [H+]), are
just starting to receive more attention20,21.

The impact of compoundMHW-OAX events on marine biota may
exceed the impact from individual MHW or OAX events since co-
occurring extremes can interact synergistically22. For example, the
combination of high temperature and acidity conditions negatively
impacted pteropods across cellular, physiological, and population
levels in the California Current System in 201613,15, and some of the
devastating impacts of the Northeast Pacific 2013–2015 MHW23 may
have been amplified by the co-occurring extreme OA conditions21.
Such rare observations and modeling studies of MHW-OAX events in
the ocean are further corroborated by laboratory experiments
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showing synergistic negative effects on calcification, reproduction,
and survival24, and trends towards lower survival, growth, and
development25 for many species under compound MHW-OAX condi-
tions compared to single extreme conditions, and by mesocosm
experiments showing shifts in community structure26,27.

The likelihood of compound MHW-OAX event occurrence is
influenced by a complex interplay of direct and indirect effects of high
temperatures on [H+] during MHWs. While hot temperatures directly
lead to increases in [H+] via changes in the carbonate chemistry
equilibrium28, they can also modulate [H+] indirectly via changes in
dissolved inorganic carbon (CT)

21. These indirect changes of [H+] dur-
ing MHWs include a reduction of the CO2 solubility in surface waters29

and an associated net release of oceanic CO2 to the atmosphere that
reduces CT and [H+]30, an increase in upper ocean thermal
stratification5 resulting in suppressed mixing of surface waters with
carbon-rich subsurface waters and hence a reduction in surface ocean
CT and [H+]31, as well as changes in organic matter production that
reduce CT and [H+] if production increases31. The knowledge on com-
poundMHW-OAX events and their drivers is currently very limited due
to a lack of direct observations. However, novel observational-based
data products9,32,33 and large-ensemble simulations of comprehensive
Earth System Models (ESMs)34,35 permit us now to study compound
MHW-OAX events globally.

Here, we characterize patterns, identify drivers, and assess future
changes of compound MHW-OAX events using (i) global monthly
gridded observation-based sea surface temperature (SST)33 and sur-
face [H+] data9 from 1982 to 2019, (ii) time-series data of temperature
and [H+] fromfifteenocean stationswith either approximatelymonthly
or 3-hourlymeasurement frequency collectedbetween 1983 and 2020,
and (iii) output from30 ensemblemembers of the Earth SystemModel
GFDL ESM2M36,37 at daily-mean resolution covering the period from
1861 to 2100 (see “Methods”). The analysis is restricted to the open
ocean, since the high variability and locally important processes in
coastal oceans, such as riverine fluxes or shelf and coastal dynamics,
are neither captured by the gridded observation-based product32,38 nor
by the GFDL ESM2M model37. Extreme events in SST and [H+] are
defined with respect to seasonally varying 90th percentiles (see
Methods). The percentile thresholds are determined from the shortest
available timestep, i.e., monthly for observations and daily for the
model output. In this study, compound MHW and OAX events are
multivariate compound events19 during which both extreme hot tem-
perature and high acidity conditions co-occur in space and time. We
refer to them simply as “compound MHW-OAX events”. We here
quantify the number of MHW-OAX months per year (for the
observation-based data) and the number of MHW-OAX days per year
(daily-mean model output), irrespective of whether these months or
days belong to the sameongoingMHW-OAXevent. Similarly, wedefine
the likelihoodmultiplication factor (LMF) that quantifies the likelihood
that a month or day is under MHW-OAX conditions relative to the
expected likelihood if MHWs and OAX events would occur indepen-
dently from each other. The LMF is the ratio between the observed
likelihood of compound event months or days p(MHW-OAX day or
month), calculated as the percentage ofmonths or days that are under
MHW-OAX conditions over a given period, and the theoretical like-
lihood of compound event months or days if SST and [H+] were sta-
tistically independent. The theoretical likelihood of compound event
months or days for statistically independent variables is given by the
product of the individual likelihoods of MHWs and OAX months or
days p(MHW day or month) × p(OAX day or month):39

LMF=
pðMHW -OAX day or monthÞ

pðMHW day or monthÞ×pðOAX day or monthÞ ð1Þ

For our definition of single extreme-event months or days (90th
percentile thresholds), this theoretical likelihood is 10% • 10% = 1%,

corresponding to 0.12months per year formonthly data or 3.65 days
per year for dailymodel output underMHW-OAX conditions. An LMF
higher than 1 indicates that compound event months or days occur
more often than by chance and that more than 1% of all months or
days are under MHW-OAX conditions. An LMF lower than one indi-
cates a reduced likelihood of compound event months or days. As an
example, if four out of 200 months were under MHW-OAX condi-
tions, the LMF would be 2, meaning that the likelihood of a com-
pound event month would be twice as large as under independence.
However, if only one out of 200 months was under MHW-OAX con-
ditions, the LMF would be 0.5, meaning that the likelihood of a
compound event month would be only half as large as under
independence.

Results
Present-day pattern of compound MHW-OAX event occurrence
The global gridded observation-based data shows that globally 1.8 in
100 months are compound MHW-OAX events (Fig. 1). This is 1.8 times
more often (LMF= 1.8) than expected if variations in SST and [H+]
anomalies were statistically independent. The LMF is larger than one
over 65% of the ocean surface area. Compound MHW-OAX extremes
are most frequent in the subtropical regions (2.7 in 100 months or
LMF = 2.7 over 40°−10° latitude) and least frequent in the equatorial
Pacific (0.8 in 100 months or LMF =0.8 over 10°S–10°N latitude) and
the high latitudes (0.7 in 100 months or LMF=0.7 over 40°−80° lati-
tude; Fig. 1). These regions are separated by the contour of LMF equal
to one (thin gray contour line in Fig. 1) that follows closely the subpolar
fronts in both hemispheres and the El Niño/Southern Oscillation
region in the central and eastern tropical Pacific.

Potential drivers of MHW-OAX events
To better understand the regional differences in the occurrence of
MHW-OAX events and possible future changes, we now quantify the
underlying drivers and discuss physical and biogeochemical pro-
cesses. Mathematically, the LMF of MHW-OAX events cannot be
decomposed into contributions from its drivers. However, the LMFcan
be estimated from the Pearson correlation coefficient (in the following
simply correlation coefficient) of SST and [H+] anomalies (Supple-
mentary Fig. 1; see “Methods”), which can be mathematically decom-
posed. The contributions to the correlation coefficient (Fig. 2a) include
the direct contribution from variations in SST (Fig. 2b), the contribu-
tion from variations in salinity-normalized dissolved inorganic carbon
(sCT; Fig. 2c), as well as smaller contributions from variations in
salinity-normalized alkalinity (sAT) and a freshwater cycling term (see
“Methods” and Supplementary Fig. 2). The freshwater cycling term
quantifies the direct impact from salinity variations (through changes
in precipitation or evaporation, or changes in ocean circulation) and
the changes in CT and AT that are proportional to these salinity varia-
tions. Globally, the SST contribution increases the correlation coeffi-
cient and LMF everywhere (Fig. 2b), and the sCT contribution reduces
the correlation coefficient and LMF everywhere (Fig. 2c).

The pattern of the correlation coefficient and LMF depends
mainly on the regional balance between the SST and sCT contributions.
The direct contribution from SST to the correlation coefficient of SST
and [H+] is everywhere positive because an increase in temperature
directly causes a rise in [H+]28 (Fig. 2b). Thus, positive anomalies in SST
also cause positive anomalies in [H+], thereby increasing the likelihood
and LMF of compound MHW-OAX events. Conversely, the contribu-
tion of sCT to the correlation coefficient is everywhere negative
(Fig. 2c) because SST and sCT anomalies are everywhere negatively
correlated (Supplementary Fig. 3f)40. Negative anomalies of sCT during
MHWs (high SST) thus reduce [H+] and reduce the likelihood and LMF
of compound MHW-OAX events. The regionally varying magnitude of
the positive SST and negative sCT contributions (Fig. 2b, c) is mainly
determined by the ratios between the variabilities in SST and sCT
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anomalies and the variability in [H+] anomalies in the respective region
(Eq. (5) and Supplementary Fig. 3).

To understand the LMF pattern, it is thus essential to understand
the processes that cause variability in SST and sCT. Here we qualita-
tively describe the contributions of the different processes, but amore
quantitative understanding is needed in subsequent studies. Varia-
bility in SST and sCT results from changes in circulation, mixing, and
air–sea fluxes41,42. Variability in surface sCT is also caused by changes in
biological activity, most importantly net primary production42.

Positive anomalies in SST, such as during MHWs, are often connected
to negative anomalies in sCT as the aforementioned physical and bio-
geochemical processes often lead to opposite changes in temperature
and sCT. For example, weaker surface winds and a deepening ther-
mocline in the central and eastern tropical Pacific during El Niño
conditions drive high sea surface temperatures5,7,43,44 but at the same
time low sCT due to reductions in mixing and upwelling of colder sCT-
rich waters. Likewise, poleward advection of warm, low CT waters in
the western boundary currents45 lead to opposite changes in

Fig. 2 | The observation-based correlation coefficient of sea surface tempera-
ture and [H+] anomalies and its drivers from 1982 to 2019. a Pearson correlation
coefficient of sea surface temperature (SST) and surface [H+] anomalies. The

contributions from b variations in SST and c variations in salinity-normalized CT to
the correlation coefficient (the sumofpanelsb and c approximately equals to panel
a; see “Methods”). The data were linearly detrended prior to the analysis.

Fig. 1 | The observation-based likelihood multiplication factor of compound
MHW-OAX events over the years 1982–2019.Mapof the likelihoodmultiplication
factor (LMF) based on the global monthly gridded observation-based SST and
surface [H+] data. The baseline period 1982–2019 was used to define the extreme
events. Warm colors indicate LMF > 1 and cold colors indicate LMF < 1. These
regions are separated by the thin gray contour line. The color bar also indicates the

respective number of compound eventmonths per year. The colored dots indicate
the location and the estimated LMFs from 15 observation stations (see “Methods”).
SST and [H+] anomalies and the Pearson correlation coefficient (r) from eight SST
and [H+] time series are shown around the map. All data were linearly detrended
prior to the analysis.
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temperature and sCT. The sign of the change in net primary production
during positive SST anomalies depends on the regional surface nutri-
ent availability and temperature. In warm, nutrient-poor regions
(40°S–10°S; 10°N–40 °N), high-temperature anomaliesmay reduce the
nutrient supply from mixing due to an increase in thermal stratifica-
tion, causing a reduction in chlorophyll (Fig. 3a), possibly co-occurring
with a reduction in net primary production, and a coincident increase
in sCT

20,43,46. In colder high-latitude regions (>40° latitude), however,
where nutrients are more abundant47, increasing temperatures can
stimulate phytoplankton growth and can reduce the light limitation
through a shoaling of the mixed layer and possible increased short-
wave radiation44 and are thus associated with higher chlorophyll and
primary production (Fig. 3a)20,46 and reduced sCT (see contour lines for
mean nitrate concentrations in Fig. 3a).

The resulting correlation coefficient of SST and [H+] anomalies
and hence the LMF (Fig. 2a) depends on the regional balance between
these opposing contributions from variations in SST and in sCT. In the
tropical Pacific, for example, the correlation of SST and [H+] anomalies
is negative (Fig. 2a) corresponding to a low likelihood of MHW-OAX
events (LMF < 1) (Fig. 1), although the direct effect of temperature
(Fig. 2b) and the indirect effect of suppressed chlorophyll and biolo-
gical production (Fig. 3a) increase the likelihood of compound MHW-
OAX events in this region. Thus, the reduction in sCT and hence [H+]
during MHWs in this region due to suppressed upwelling that coin-
cides with a deepening thermocline must be large enough to over-
compensate the positive temperature and biology contributions to [H
+] and ultimately result in an LMF below 1. In the subtropical gyres,
however, the correlation of SST and [H+] anomalies is positive,

resulting in a high likelihood of MHW-OAX events (LMF > 1) (Fig. 2a).
There, the combined positive effect from enhanced temperature
(Fig. 2b) and suppressed chlorophyll (Fig. 3a) on [H+]must therefore be
larger than the negative effect from circulation andmixing. In the high
latitudes, the correlation coefficient becomes negative again and
compound MHW-OAX events become less likely (Fig. 2a). In these
colder waters, increases in chlorophyll (Fig. 3a) and changes in circu-
lation and mixing reduce sCT and hence [H+] during MHWs more than
temperature increases it and cause a lower LMF (Fig. 2b).

In addition to circulation, mixing, biological activity, and the
direct temperature effect on [H+] that determine the sign of the cor-
relation coefficient of SST and [H+] anomalies, the magnitude of the
correlation and the LMF is furthermodulated by the changes in air–sea
CO2 flux (Fig. 3b). Globally, [H+] and pCO2 anomalies are strongly
positively correlated (r =0.96). In regions where [H+] is
usually increased during high temperatures, pCO2 is also increased,
resulting in an outgassing of CO2 and a reduction in sCT and [H+]. In
contrast, air–sea CO2 flux increases [H+] in regions where [H+] is
usually decreased during high temperatures (Fig. 3b). Consequently,
air–sea CO2 flux reduces correlations between SST and [H+] where they
are positive, and it increases them where they are negative.

Changes in MHW-OAX event occurrence with climate change
The occurrence ofMHW-OAX days is projected to change with climate
change (Fig. 4) and the capacity for marine organisms to adapt to the
extreme events will vary. Changes in compound MHW-OAX occur-
rence arise from an increase in themean state of temperature and [H+],
from changes in the variability of temperature and [H+], as well as
changes in the bivariate tail dependence of temperature and [H+]. To
consider different adaption capabilities of organisms and ecosystems,
we define changes in the number of MHW-OAX days per year with
respect to three different baselines7,9,21: relative to a fixed preindustrial
baseline, relative to a shifting-mean baseline, and relative to a fully
adapting baseline (see “Methods”). When defined with respect to a
fixed preindustrial baseline, the largest changes in the number of
MHW-OAX days by far are expected from long-term ocean warming
and acidification trends3,9,50. This baseline is chosen to show the overall
changes in MHW-OAX occurrence and because the fixed baseline is
expected to be the most relevant baseline definition in many cases, in
particular when projecting impacts for less resilient and less mobile
organisms such aswarmwater corals11,51 or other sessile organisms that
cannot adapt to long-term ocean warming and acidification or cannot
relocate to favorable ocean habitats7. Under the shifting-mean base-
line, long-term warming and acidification trends are removed. Hence,
extremes are defined as extreme deviations from themean conditions
that themselves change over time7,9,21,52–54. Changes in compound
MHW-OAX event occurrence are here mainly caused by changes in
temperature and especially [H+] variability7,9. This baseline is chosen to
analyze the role of changes in variability and to quantify the stress for
organisms due to increases in extreme deviations from the mean
conditions. It is most meaningful for organisms that may adapt to the
long-termwarming and acidification trends55. Furthermore, itmay also
be more meaningful for mobile species, such as fishes or marine
mammals, because these species may relocate along gradients in the
mean conditions but may still be impacted by more frequent
variability-driven extremes7,56,57, in particular if relocation is not pos-
sible on the short timescales of individual events. In addition to the two
above-mentioned definitions, we also assess changes in the number of
MHW-OAX days relative to a fully adapting baseline58. Under this
baseline definition, the univariate extreme-event likelihood (e.g., the
likelihood of individual marine heatwaves or ocean acidity extreme
events) does not change. Instead, changes in compound MHW-OAX
likelihood only arise from changes in the tail dependence between
temperature and [H+], altering the likelihood that MHWs and OAX
events occur together. This definition is chosen to gain additional

Fig. 3 | Correlation of sea-surface temperature anomalies with chlorophyll and
air-sea CO2 flux anomalies. The observation-based correlation coefficient of
monthly sea surface temperature anomalies and monthly (a) chlorophyll con-
centration anomalies over 1998–2018 and b air–sea CO2 flux anomalies over
1982–2019 (see “Methods”). The data were linearly detrended prior to the analysis.
A negative correlation between SST and chlorophyll anomalies indicates that
chlorophyll, and possibly net primary production, is reduced and hence CT

enhanced during MHWs. A negative correlation between SST and air–sea CO2 flux
anomalies indicates that CT is reduced duringMHWs. The contour lines in a display
mean nitrate concentrations from theWorld OceanAtlas 2018 (dotted: 3μmol kg−1,
dashed: 10μmol kg−1, solid: 20 μmol kg−1). Net primary production is here
approximated by observation-based chlorophyll concentration48, although chlor-
ophyll is not always correlated with net primary production, particularly in sub-
tropical regions49.
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insights about the drivers of changes, i.e., to identify the impact of
changes in statistical dependence between SST and [H+] anomalies on
MHW-OAX event likelihood.

Relative to a fixed preindustrial baseline (see “Methods”), [H+]
reaches a near-permanent extreme-event state of more than
360 days per year already at global warming of 0.3 °C when atmo-
spheric CO2 exceeds 340 ppm (Fig. 4a), due to the large increase in
mean [H+] compared to the natural variability in [H+] anomalies. A
near-permanent [H+] extreme state causes, by definition, all MHW
days to be also MHW-OAX event days (Fig. 4a). As a result, the
increase in compound MHW-OAX event days per year is mainly
determined by the increase in MHWs and therefore long-term
ocean warming3,50. The occurrence of MHW-OAX event days per
year is simulated to have increased 14-fold at 1 °C global warming,
from 12 days per year on average at preindustrial to 167 days per
year (165–169, 90% confidence interval) (Fig. 4a). Under continued
global warming, MHW-OAX occurrence is projected to increase to
265 (263–266; 22-fold increase) days per year for 2 °C warming and
to 307 (307–308; 26-fold increase) days per year for 3 °C. The lar-
gest increases inMHW-OAX event days per year are projected in the
tropical regions of the Atlantic, the western Pacific, and the Indian
Ocean (Fig. 4d). There, increasing temperatures exceed the rela-
tively small natural variability earlier than in most other places59

and thus lead to relatively larger increases in MHW-OAX event days
per year and even near-permanent MHW-OAX events (hatched area
in Fig. 4d). These near-permanent MHW-OAX events are projected
to occur in 42 (42–43)% of the ocean surface area under 3 °C
warming but can be largely avoided under 2 °C warming (10
(9–10)%). In regions where SST is projected to decrease over the

21st century, such as in the North Atlantic south of Greenland60,61

and parts of the Southern Ocean62,63, the number of MHW and
compound MHW-OAX event days per year decreases (Fig. 4d). The
decrease in MHW-OAX days occurs as a result of the strong
decrease in MHW days and despite the co-occurring transition to
near-permanent OAX events.

When defining extreme events relative to a shifting-meanbaseline
(see “Methods”), the occurrence of compound MHW-OAX event days
is also projected to increase (Fig. 4b, e), from 12 compound event days
per year at preindustrial to 19 (19–20) days per year at 2 °C warming
(1.6-fold increase), and to 23 (22–23) days per year under 3 °Cwarming
(1.9-fold increase; Fig. 4b). As opposed to the fixed baseline, the
increase in MHW-OAX extreme-event occurrence under the shifting-
mean baseline definition is mainly caused by a rising number of OAX
events days (Fig. 4b) due to enhanced [H+] variability in waters with
more CT

9,64. The strongest increase in compound MHW-OAX event
days per year is projected for the Arctic Ocean north of 66 °N (Fig. 4e),
where the reduction of sea ice leads to large increases in temperature3

and [H+]9,65 variability. Although the increase in compound MHW-OAX
events days per year under the shifting-mean baseline is highest there,
the increase at 2 °C warming is still on average only 7% of the increase
under the fixed baseline. In most other regions, the ratio between
increases under the shifting-mean baseline and the fixed baseline is
even smaller. An exception is the western boundary current region of
the North Atlantic, where relatively large shifting-mean baseline
changes exceed 10% of the fixed-baseline changes. The overall much
lower increase in MHW-OAX days under a shifting-mean baseline
(caused by changes in variability) than under a fixed baseline (caused
by changes in mean and in variability) reflects the dominant role of

Fig. 4 | Projected changes in the number of MHW-OAX event days per year
under global warming. a–c Global-mean number of yearly extreme-event days
relative to global warming levelswith respect to preindustrial conditions forMHWs
(red lines), OAXevents (blue lines), and compoundMHW-OAX events (purple lines)
for a fixed preindustrial baselines, b shifting-mean baselines, and c fully adapting
baselines. The time series are smoothed with a 21-year running mean filter. Thick
lines display the ensemble means and shaded areas depict the 10th and 90th per-
centile ranges of the 30 ensemble member simulations over the 1861–2100 period
following the RCP8.5 scenario during the period 2006–2100. The dashed lines in
a–c show ensemble-mean changes relative to warming levels under the

RCP2.6 scenario. Differences between the RCP8.5 and RCP2.6 greenhouse gas
scenarios are barely visible because the scenario spread is much smaller than the
ensemble spread, indicating that the projected changes in MHW3, OAX, and com-
pound MHW-OAX events under global warming are independent of the warming
path. d–f Regional changes in compound event days relative to the preindustrial
period at 2 °C global warming for d fixed preindustrial baselines, e shifting-mean
baselines, and f fully adapting baselines. Hatching in d indicates areas with year-
round compound events (i.e., more than 360 days per year). Only results of the
high-emissions scenario RCP8.5 scenario are shown in d–f, because the changes in
globally averaged MHW-OAX occurrence are independent of the warming path.
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mean changes for the evolution of MHW-OAX events under a fixed
baseline.

When defining extreme events relative to a fully adapting baseline
(see “Methods”), the occurrence of MHW-OAX event days is projected
to slightly decrease, from 12 days per year at preindustrial to 10 (10–11)
days per year under 2 °C global warming and to 9 (9–10) days per year
under 3 °C global warming (Fig. 4c). The decrease in MHW-OAX event
days per year relative to the fully adapting baseline is equivalent to a
reduction in the numerator of the LMF (see Eq. (1)) between the two
periods and indicates that SST and [H+] anomalies become less cor-
related. The reduction in correlationmay be attributed to the relatively
larger increase in the [H+] sensitivity with respect to CT than in the [H+]
sensitivity with respect to temperature in warmer, high CT waters66.
This relative increase in [H+] sensitivity to CT is globally 75% larger than
the relative increase in [H+] sensitivity to the temperature at 2 °C global
warming in the GFDL ESM2M simulation (Supplementary Fig. 5).
Exceptions to the general decrease in correlation andMHW-OAX event
days per year are upwelling regions, such as the eastern equatorial
Pacific and the eastern boundaryupwelling systems,where a reduction
in sCT variability is simulated, and the Arctic Ocean, where an increase
in SST-sCT correlation is simulated (Fig. 4f). In some regions, the
changes in MHW-OAX events days per year relative to a fully adapting
baseline can be of similar magnitude as those relative to a shifting-
mean baseline. For example, in the subtropical North Atlantic
(15°N–30°N, 65°W–25°W), the occurrence of MHW-OAX increases by
10 days per year relative to a shifting-mean baseline, while it decreases
by 5 days relative to a fully adapting baseline under 2 °C global
warming. This indicates that the reductions in the dependence of SST
and [H+] that reduce MHW-OAX event occurrence are over-
compensated by an increase in [H+] and SST variability, resulting in a
net increase in MHW-OAX event days per year relative to a shifting-
mean baseline.

Discussion
The robustness of the results presented here depends on the quality of
the underlying global gridded observation-based [H+] product and the
fidelity of the GFDL ESM2M model. The global observation-based
product was evaluated with in situ time-series data from 15 ocean
stations (panel and dots in Fig. 1 and Supplementary Tables 1 and 2).
The differences between the LMFs estimated from the gridded
observation-based product and the time series are insignificant at 14 of
15 stations (5% significance level) when accounting for the large sta-
tistical uncertainties (see “Methods”). Furthermore, the time-series
estimates show a similar spatial pattern, corroborating our confidence
in the gridded observation-based product9. Locally, the observation-
based estimates are uncertain in the SouthernOcean, especially during
austral winter, due to a lack of observational pCO2 data32,67. Another
potential caveat is that we derive [H+], among other variables, from
SST, which might cause an automatic correlation between both vari-
ables and hence gives an inaccurate representation of the LMF. How-
ever, multiple lines of evidence suggest that this is not the case. First,
the LMF pattern (Fig. 1) and the correlation coefficient of SST and
surface [H+] anomalies basedonobservations (Fig. 2a) look very similar
to the correlation coefficient based on simulated [H+] and SST (Sup-
plementary Fig. 6b). Second, the simulated pattern does not change
either if AT is derived from simulated SST and salinity, or if directly
simulated AT is used (Supplementary Fig. 8). Third and most impor-
tant, the LMFs atocean stations thatprovidedirectlymeasured [H+] are
similar to the LMFs calculated from measured SST, salinity, and pCO2

at these stations. An additional caveat might be that our analysis of
gridded observational data is limited to monthly-mean resolution,
because most data are not available at higher temporal resolution.
However, a comparison to the high temporal resolution model and
buoy data suggests that the pattern of compound event occurrence is
relatively insensitive to the temporal resolution (Supplementary

Table 1). We conclude that the used global gridded observation-based
[H+] product is well suited to analyze compound MHW-OAX events.

The simulations of the GFDL ESM2M model can be considered
robust for two reasons. First, the simulated correlation of SST and [H+]
anomalies for the present-day shows good agreement with the spatial
pattern of the gridded observational product, albeit with a general
positive bias in the simulated correlation coefficient in the GFDL
model, which is also present in other ESMs from the sixth phase of the
Coupled Model Intercomparison Project (CMIP6; Supplementary
Fig. 6). This bias suggests that the ESMs generally overestimate the
effect of temperature on [H+] or underestimate the effect of sCT var-
iations. Second, the future projections based on fixed and shifting-
mean baselines rely mostly on well-understood long-term ocean
warming and acidification trends65,68, as well as changes in [H+] varia-
bility with increasing CO2

9,64, although the exact numbers of MHW-
OAX changes may depend on the model used. Under a fixed baseline,
the projected changes in compound MHW-OAX events are mainly
driven by secular trends in oceanwarming and acidification, which are
well simulated by the GFDL ESM2Mmodel over the historical period68.
The fixed-baseline projections are insensitive to the simulated positive
bias in the correlation coefficient of SST and [H+] anomalies after the
onset of near-permanent [H+] extreme events at around 0.3 °C global
warming. Under a shifting-mean baseline, projected changes in MHW-
OAX events stem mainly from an increase in [H+] variability, which is
also considered to be qualitatively robust since it is rooted in the
nonlinear response of carbonate chemistry to increasing CT

9,64. How-
ever, a slight positive bias in the number of compound event daysmay
be simulated due to the positive bias in correlation of SST and [H+].
Furthermore, the projected global decline in MHW-OAX events with
respect to a fully adapting baseline is likely robust, because it is
simulated by all CMIP6models (Supplementary Fig. 7), and because of
theover-proportional increase inCT sensitivity of [H

+] compared to the
temperature sensitivity under increasing CO2 that is also expected
from carbonate chemistry28 (Supplementary Fig. 5). However, there is
much less agreement between models on the regional scale (Supple-
mentary Fig. 7) as these regional trends can be caused by variability
changes in SST or sCT, by correlation changes between SST and sCT, or
by a combination of these factors. Analysis of these changes in each
model is beyond the scope of the paper calling for further analysis.

Here, we have analyzed compoundmarine heatwave andhigh [H+]
extreme events, but ocean acidification can also affect marine organ-
isms via increases in pCO2 or reductions in calcium carbonate satura-
tion states. Due to the high correlation between [H+] and pCO2

anomalies (r =0.96 on global average), compound events in [H+] and
temperature are often also compound events in pCO2 and tempera-
ture as indicated by a very similar LMF pattern for high SST and high
pCO2 compound events (Supplementary Fig. 10). On global average,
78% of the months with SST-[H+] compound events in the gridded
observation-based data are also identified as months with extremely
high pCO2, potentially causing three-fold stress on ecosystems. Much
larger discrepancies are found when analyzing compound low arago-
nite saturation state andhigh-temperature events. Due to the generally
positive correlation of saturation state and temperature, the occur-
rence of such compound events is very rare (LMF =0.03 on global
average). This contrasts with the MHW-OAX events analyzed in this
study, where high-[H+] and high-temperature events overlap relatively
often due to the positive temperature dependency of [H+]69. Thus, on
global average only 2% ofmonthswith high SST-[H+] compound events
are also months with extremely low aragonite saturation state. That
MHW-OAX events are usually not accompanied by an extremely low
calcium carbonate saturation state may prevent calcifying organisms
from additional stress due to impacts on calcification and shell
dissolution25. However, the long-term declining trend in aragonite
saturation state that is expected for the 21st centurywill likely result in
more frequent compound extremes in temperature and aragonite
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saturation state relative to fixed baselines and to more frequent
occurrence of co-occurring high temperatures and aragonite under-
saturation (where aragonite saturation state is below one) in polar and
coastal oceans.

The combination of observations and models allowed the identi-
fication of hotspots of MHW-OAX events, estimate their frequency,
better understand their drivers, and to project their development in a
changing climate. Our results indicate that MHWs and OAX events are
not independent and often occur together. This suggests that some of
the observed MHWs6 were also compound MHW-OAX events, in par-
ticular in the low-to-mid latitudes, where we find that one out of four
MHWs are also compound MHW-OAX events when extremes are
defined with respect to the 1982–2019 reference period. The reported
impacts of some low-latitude MHWs on marine organisms and
ecosystems10 may therefore be also connected to additional stress
from high acidity events70. Furthermore, also other co-occurring bio-
geochemical extreme events such as low oxygen events21 or low net
primary production events20 may add to the stress during MHWs. To
shed light on different aspects of changes in compound MHW-OAX
occurrence under climate change, changes were assessed with respect
to three different baselines. CompoundMHW-OAX days are projected
to becomemore frequent when considering the trends in SST and [H+]
as well as increases in their variabilities.When definedwith respect to a
fixed baseline, the occurrence of MHW-OAX events is projected to
strongly increase, with unknown, potentially devastating effects on
marine biota. Even if organisms can acclimate and adapt to long-term
ocean warming and acidification or can relocate to favorable habitats,
they may still be impacted by a 60% increase in compoundMHW-OAX
days under 2 °C global warming that emerges mainly from increasing
variability in [H+]. However, we also demonstrate that a decrease in the
dependence of temperature and [H+] anomalies may slightly dampen
the increase in the co-occurrence of hot temperature and high acidity
extremes, but this effect is small at global scale. The biological impacts
of these changes in MHW-OAX events across different species and
ecosystems are currently largely unknown21. The potential threat from
rising numbers ofMHW-OAX days highlights the urgent need to better
understand the organism and ecosystem responses to such ocean
compound events. In particular, the knowledge on the biological
impacts of extreme conditions in [H+] is still limited. A way forward
would be to identify biologically informed thresholds for SST and [H+]
specific to key species of a certain region that directly relate such
events to ecosystem impacts. Future studies on extremeevents should
also carefully choose the baseline depending on the impact which they
analyze and potentially use absolute thresholds for specific species.
Choosing the wrong baseline, shifting-mean for unmovable corals that
are unable to adapt to the long-term trends, or fixed for fish that can
migrate along gradients in mean conditions, may lead to an over-
estimation or underestimation of the impact of changes in extreme
events. Finally, this study alsohighlights theneed for carbonate system
observations on a high temporal and spatial resolution to assess and
quantify biogeochemical compound events, particularly in coastal and
under-sampled high-latitude regions.

Methods
Definition of extreme and compound events
Marine heatwaves (i.e., hot temperature extremes) and high acidity
events (i.e., high [H+] extremes) were defined to exceed the local and
seasonally varying 90th percentiles for SST and surface [H+], respec-
tively. The seasonally varying 90thpercentileswere calculated for each
calendar month (gridded observational data) or calendar day (GFDL
ESM2M model data) separately. Under this definition, extreme events
have the same occurrence probability throughout the year. For the
time-series data, there are often too few measurements for a given
calendar month over the measurement period (sometimes only
10 or less) to calculate statistically meaningful monthly percentile

thresholds (as done for the gridded observation-based data). There-
fore, one annual percentile threshold for monthly anomalies was cal-
culated from all monthly anomalies instead of 12 thresholds for each
month individually. The difference between calculating the LMF using
seasonally varying thresholds and using one annual percentile
threshold for the monthly anomalies is generally small. For example,
the global average differencebetween thesemethods is 0.14 LMF units
when using the gridded data-based product. Monthly anomalies were
calculated by subtracting from each measurement value the mean of
all measurements that were obtained in the same calendarmonth. The
90th percentile was chosen to have a sufficiently large sample size of
observational data for statistical assessments. Sensitivity tests with the
GFDL ESM2M model ensemble show that results are qualitatively
insensitive to the choice of the percentile (e.g., 90th vs. 95th percen-
tile; not shown). The usage of a percentile threshold allows the quan-
tification of MHWs, OAX events, and MHW-OAXs events across
locations that differ in variability. Absolute thresholds are often
determined from the perspective of local impact, but a globally fixed
absolute threshold is only meaningful in some regions, but not in
others.

Compound MHW-OAX events are defined as the days or months
when both SST and surface [H+] are above the 90th percentile at the
same time and location.We do not impose a criterion on theminimum
duration of compound MHW-OAX events, as it is often applied for
MHWs1. While such a criterion would overall reduce the number of
MHW-OAX event days, it would not considerably change the LMF as
can be seen from the insensitivity of the LMF to the temporal resolu-
tion of the data (Supplementary Fig. 9). The data for the present-day
period (gridded observation-based product over the baseline period
1982–2019 and time-series data with varying observation periods
(Supplementary Table 2)) were linearly detrended prior to identifying
the extreme events.

Temporal changes in MHWs, OAX events, and MHW-OAX events
within the large-ensemblemodel simulation were definedwith respect
to (i) fixed preindustrial baselines (called ‘fixed preindustrial baseline’
in Fig. 4), (ii) shifting-mean baselines (‘shifting-mean baseline’), and (iii)
fully adapting baselines (‘fully adapting baseline’). Under a fixed pre-
industrial baseline, the extreme events were defined with respect to
preindustrial seasonally varying 90th percentiles that were deter-
mined from a 500-y-long preindustrial control simulation. Under a
shifting-mean baseline, these percentile thresholds were shifted
according to the ensemble-mean changes with respect to the pre-
industrial mean state9. The ensemble mean was smoothed with a 365-
day running mean filter to remove its seasonal cycle9. Under a fully
adapting baseline, individual thresholds for SST and [H+] were calcu-
lated for each day of the historical, RCP8.5, and RCP2.6 ensemble
simulations. These were determined as the 90th percentiles of the 30-
value ensemble distributions for that day as simulated by the respec-
tive 30-member ensemble simulation. As a result, the probability for
univariate SST and [H+] extreme events is constant over time. Changes
in compound events can thus only arise from changes in the depen-
dence between SST and [H+].

Analysis methods
Extraction of global warming levels. We quantify changes in com-
pound events for different levels of global warming (e.g., in Fig. 4d–f
for 2 °C global warming). To do so, 20-year periods were identified
over which the ensemble-mean change in globally averaged atmo-
spheric near-surface (2m) temperature with respect to preindustrial
conditions is closest to a specific global warming level. In the GFDL
ESM2M model and under the RCP8.5 scenario, these periods are
2007–2026 (1 °C), 2045–2064 (2 °C), and 2075–2094 (3 °C).

Confidence intervals and statistical tests for the LMF estimates.
Confidence intervals for the LMF estimates for the time series, gridded
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data, and GFDL ESM2M ensemble data at the time-series locations
(Supplementary Table 1) are derived by identifying the counted
number of MHW-OAX days/months with the outcome of a binomial
experiment71, where the binomial “success” probability is given by the
conditional probability of observing a MHW-OAX event given a MHW
or OAX event. Here, the probability is assumed to be constant over
time. Using the binom package for R, we calculate the
Clopper–Pearson confidence interval72 for the estimated conditional
probability, which is directly proportional to the LMF since the prob-
ability for MHW and OAX events is a constant, here 0.1. The LMF
confidence interval is then obtained by dividing the lower and upper
bounds of the Clopper–Pearson confidence interval by 0.1. P values for
the difference between the conditional probabilities estimated for the
time series and for the gridded data as well as the GFDL ESM2Mmodel
are calculated using the two-sided Fisher’s exact test73 (fisher.test
function for R). Fisher’s exact test was chosen due to the often low
count of MHW-OAX events in the time-series data74.

Estimation of the LMF from correlation coefficients. The LMF of
MHW-OAX events can be approximated based on the Pearson corre-
lation coefficient of SST and [H+] anomalies. When assuming normally
distributed monthly anomalies of SST and [H+], the estimated LMF
(dLMF) is given by

dLMF=
1

0:12
�
Z 1

x0:90

dx1

Z 1

x0:90

dx2 f x1, x2;r
� �

, ð2Þ

with r denoting the correlation coefficient of SST and [H+] anomalies. f
denotes the bivariate probability density function of two standard
normal distributed variables
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and x0.90 is the 90th percentile of the standard normal distribution.
The integration variables x1 and x2 represent SST and [H+] anomalies,
here assumed to be normally distributed. The overall small difference
between the counted LMF and the dLMF estimated from the correlation
coefficient (global-mean deviation of 0.11) for the observation-based
gridded data over the period 1982–2019 (Supplementary Fig. 1)
suggests that the observed bivariate probability for exceeding the
90th percentile is similar to that assuming normally distributed
temperature and [H+] anomalies and that the correlation coefficient is a
good predictor for MHW-OAX compound events.

Decomposition of the correlation coefficient into its drivers. The
observation-based correlation coefficient of SST and [H+] anomalies
was decomposed into the contributions from the direct temperature
dependence of [H+] and contributions from salinity-normalized dis-
solved inorganic carbon (sCT) and total alkalinity (sAT), as well as the
remaining contribution from freshwater variations. For the salinity
normalization, CT and AT were divided by the ratio of salinity (S, in
practical salinity units) to temporal mean salinity. Thus, variations
in CT and AT stemming from variations in freshwater (e.g., precipita-
tion and evaporation) have no effect on sCT and sAT. As the covariance
is linear in its two arguments, covariance of temperature and [H+]
anomalies (covar (SST, [H+]) can be expanded by replacing [H+]
anomaly (denoted by [H+] for simplicity here) with a first-order Taylor
expansion in the anomalies for SST, CT, AT, and S:

½H+ �≈ ∂½H+ �
∂SST

∣SST,... � SST+
∂½H+ �
∂CT

∣SST,... � CT +
∂½H+ �
∂AT

∣SST,... � AT

+
∂½H+ �
∂S

∣SST,... � S:
ð4Þ

The partial derivatives ∂/∂x are evaluated at SST, CT, AT, and �S, the
temporal mean values of the drivers, using mocsy 2.075. Here, it was
assumed that the variations of the partial derivatives over the calendar
months can be ignored. Salinity normalization for CT and AT is intro-
duced. CT anomaly is replaced by sCT+

sCT
�S
� S, with sCT and S denoting

the anomalies in salinity-normalizedCT and salinity, andwith sCT and �S
denoting their temporal mean values, here again assuming that
monthly-mean values for sCT and S can be replaced by the temporal
meanvalues. The anomaly inAT is replaced analogously. Equation (4) is
inserted in covar (SST, [H+]). By using bilinearity of covariance and that
covar (x y) =σxσy·rx,y, with σx denoting the standard deviation and rx,y
denoting the Pearson correlation coefficient, one obtains
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The terms on the right-hand side of Eq. (5) represent the con-
tributions from SST, sCT, sAT, and freshwater variations (from left to
right). The residual of the decomposition (simulated correlation
coefficient minus sum of decomposition terms) for the gridded data
product over the period 1982–2019 (Fig. 2 and Supplementary Fig. 2) is
smaller than 0.1 correlation coefficient units for 99% of the ocean
surface (Supplementary Fig. 2c). The freshwater term only has a small
imprint on SST-[H+] correlation (Supplementary Fig. 2b) since the
direct effect from salinity variations on [H+] is small and because its
effects on CT and AT largely compensate each other. Likewise, the
contribution from sAT is comparably small (Supplementary Fig. 2a).
The approximation of the correlation coefficient by the contributions
of SST and sCT is precise to 0.1 units in 60%of the ocean surface and to
0.4 in 92% of the ocean surface. The sign of the approximated corre-
lation coefficient is correct in 93% of the ocean surface.

Observation-based data
Global sea surface temperature and [H+] data. Global monthly SST
data on a grid with 1° horizontal spacing from 1982 to 2019 from the
version 4.2.1 (EN4.2.1) dataset developed by the Met Office Hadley
Centre33 were used. EN4 is a gridded product that is based on tem-
perature and salinity profiles, with World Ocean Database76 being the
main source of data. SST is here defined asmean temperature over the
uppermost 10m. The global gridded observation-based [H+] (total
scale) dataset covering the period from 1982 to 2019 was recon-
structed in two steps following the method outlined in ref. 9. In a first
step, the SST and surface salinity fields from EN4.2.1 were used to
derive total surface alkalinity (AT) using the LIARv2 total alkalinity
regression algorithm38. In a second step, a monthly [H+] field at 1°
horizontal grid resolution was derived using the CO2SYS carbonate
chemistry package77 from the monthly, gridded surface salinity, SST,
and AT and from the interpolated global surface pCO2 product MPI-
SOMFNN32 that covers the period 1982–2019 with monthly-mean
temporal resolution and is based on data from the Surface Ocean CO2

Atlas version 478.
The accuracy of the LIARv2 algorithm was tested with the GFDL

ESM2Mmodel output by comparing directly simulated AT (AT
sim) with

the AT that was estimated by the LIARv2 algorithm from simulated SST
and surface salinity for one ensemble member over the 1982–2019
period (AT

LIAR). The comparison yields a root-mean-square error
between AT

sim and AT
LIAR of 32mol kg−1. This difference between the

AT
sim and AT

LIAR translates into differences in [H+] and hence into dif-
ferences between the correlation coefficient of SST and [H+] anomalies
and between the LMF. These differences between the correlation
coefficients when using AT

sim and AT
LIAR are below 0.1 units in 99.5% of
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the surfaceocean and the difference in the LMF is below0.5 in 96.5%of
the surface ocean area (Supplementary Fig. 8), indicating that our
estimated observation-based AT from SST and sea surface salinity is
accurate enough to be used in the calculation of observation-based [H
+]. The same comparison was made for ocean stations where direct AT

measurements are available. The LMF using direct AT measurements
slightly differ from the LMFusing estimatedAT (not shown) but remain
within the large uncertainty bounds that exist at these stations due to
the relatively short observational period, indicating that our LMF
results are likely insensitive to the exact choice of estimated AT.

GFDL ESM2M model output suggests that compound MHW-OAX
events are often shorter than one month (Supplementary Fig. 4).
Nevertheless, the LMF of present-day compound events can be
approximated based on monthly (observational-based) data. Com-
parison of the LMF obtained frommonthly-meanmodel output to that
from daily-meanmodel output for the period 1982–2019 yields a root-
mean-square error of 0.2 (Supplementary Fig. 9). This deviation results
mainly from a small bias in the LMF from monthly-mean data com-
pared to daily-mean data (global-mean LMF of 2.7 in monthly-mean
data vs. 2.9 in daily-mean data; Supplementary Fig. 9c). As such, using
monthly datamay slightly underestimate the occurrenceofMHW-OAX
events.

Time series of in situ SST and [H+] data. In situ observations from the
KNOT and K2 stations in the north Pacific, the Hawaii Ocean Time-
series (HOT), the Bermuda Atlantic Time-series Study (BATS), the
European Station for Time series in the OceanCanary Islands (ESTOC),
the 137 °E transect at 30°N and at 5°N, the Munida time series, the
CARIACO time series, and from seven autonomous open-ocean sur-
face buoys were used in this study (Fig. 1 and Supplementary Table 2).
The KNOT and K2 station data were combined due to their spatial
proximity (44°N, 155 °E vs 47°N, 160°E) resulting in a total of 15 time
series. For the seven autonomous open-ocean surface buoys, monthly
means were calculated from the 3-hourly data to match the approx-
imate measurement frequency of the remaining stations. For com-
pleteness, the buoy data was also aggregated to daily means
(Supplementary Table 1). Only buoys providing at least 5 years of data
were analyzed, being KEO (Kuroshio Extension Observatory), Papa
(Ocean Station Papa), Stratus, TAO125W, TAO140W, TAO170W (NDBC
Tropical Atmosphere Ocean 0°N at 125°W, 140°W, and 170°W,
respectively), and WHOTS (Woods Hole Oceanographic Institution
Hawaii Ocean Time-series Station)79.

[H+] was calculated from measured pH at in situ temperature
where available. If pH at in situ temperature was not available, [H+] was
calculated from sea surface temperature, salinity, AT, phosphate, and
silicate and, depending on the time series, from either measured CT or
pCO2 (Supplementary Table 2). If calculated pH was not provided by
the dataset, mocsy 2.075 was used to calculate [H+] when CT was mea-
sured and CO2SYS77 was used when pCO2 was measured. CO2SYS was
used in the latter case becausemocsy 2.0does not allow the calculation
of [H+] from pCO2. However, differences between the mocsy 2.0 and
CO2SYS for [H+] calculations are small80. Where not available, mean
silicate andphosphate concentrationswere taken from the closest grid
cells of World Ocean Atlas 201881,82. For the seven autonomous open-
ocean surface buoys, AT was estimated from measured sea surface
temperature and salinity using the LIARv2 algorithm38.

Chlorophyll concentration, nitrate, and air–seaCO2flux data. Daily-
meandata-assimilated chlorophyll concentration output (Fig. 3a) from
the NASA Ocean Biogeochemical Model (version NOBM.R2020.1)83

over the period 1998–2018 was used in this study. The model assim-
ilates satellite chlorophyll data from the Sea-viewing Wide Field-of-
view Sensor, the Moderate Resolution Imaging Spectroradiometer
Aqua and the Visible Infrared Imaging Radiometer Suite and provides
daily data within the mixed layer. Monthly-mean values were

calculated prior to the analysis. Mean nitrate concentration data from
the World Ocean Atlas 201881,82 was also used in Fig. 3a. The
observation-based monthly air–sea CO2 flux data product over the
period 1982–2019 shown in Fig. 3b is based on the interpolated pCO2

product32,84 that was used to derive the gridded [H+] product.

GFDL ESM2M large ensemble
Model setup and simulations. The fully coupled GFDL ESM2M Earth
systemmodel36,37, developed at the NOAAGeophysical Fluid Dynamics
Laboratory, was used in this study. The physical ocean component of
the model, the Modular OceanModel (version 4p185), has a nominal 1°
horizontal resolution with increasing resolution near the equator, and
50 vertical levels with vertical resolution decreasing from 10m at the
surface to 300m at 5000m depth. This physical ocean model is cou-
pled to the ocean biogeochemistry model TOPAZv2, which simulates
30 tracers and three phytoplankton groups. Zooplankton grazing is
implicitly simulated. The ocean carbonate chemistry routines are
based on the OCMIP2 protocol86.

A 30-member ensemble simulation from 1861 to 2100 was per-
formed. The large-ensemble size allows for a robust assessment of
changes in compound events (Fig. 4a–c) and is necessary to assess
changes in compound events relative to a shifting and fully adapting
baseline. The 1861–2005 period was forced with prescribed historical
greenhouse gas and aerosol concentrations87. The period from 2006
to 2100 was simulated with greenhouse gas and aerosol concentra-
tions from the low-emissions high mitigation concentration pathway
RCP2.688 and from the high-emissions no mitigation concentration
pathway RCP8.589. However, the main global-mean results shown in
Fig. 4 do not depend on the warming path and are hence independent
from the emission scenario. As a result, Fig. 4 mainly shows results for
the RCP8.5 scenario. However, global-mean changes for the
RCP2.6 scenario are also shown in Fig. 4a–c. A 500-year preindustrial
control simulation was also performed to calculate the fixed pre-
industrial baseline. The initialization procedure of the large-ensemble
simulation is described in Burger et al.9. Daily-meanocean temperature
and [H+] (on the total scale) output from the surface layer of the ocean
model (0–10m) was analyzed.

Model evaluation. The capability of the GFDL ESM2M model to
simulate the mean state and long-term changes in ocean bio-
geochemistry and in particular OA extremes, as well as MHWs, has
been extensively evaluated. The model has been shown to capture the
mean state in [H+]68 and its mean seasonal cycle64, as well as changes in
[H+] seasonality over the last few decades9. Furthermore, the model
reproduces the positive long-term trend in global-mean SST59 and
annual number of MHW days over the satellite period3.

In addition, the model’s performance in simulating compound
MHW-OAX events was evaluated here. The LMF of MHW-OAX events
estimated frommodel output agrees with the estimates from the time-
series data in 14 of 15 cases (differences are insignificant under a 5%
significance level; Supplementary Table 1). As for the gridded
observation-baseddata product, wefinda significant difference for the
HOT station. However, the agreementwith theWHOTS time series that
is measured at the same location may indicate that the differencemay
be due to the temporal resolution of the data: HOT consists of point
measurements while the GFDL ESM2M model data and gridded data
product provide daily and monthly-mean values, as for WHOTS where
monthly-mean values were calculated from 3-hourly measurements.
Moreover, the simulated LMF patterns for MHW-OAX events from the
monthly model output are similar to the patterns estimated from the
gridded observation-based, monthly data product (compare Fig. 1 and
Supplementary Fig. 9b). However, the GFDL ESM2M model over-
estimates the occurrence ofMHW-OAX events at the global scale (LMF
of 2.7 in the GFDL ESM2M model versus 1.8 in the observation-based
product). Locally, the LMF overestimation is especially pronounced in
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the high latitudes such as the Southern Ocean (40°S–81°S; LMF of 1.9
vs 0.7), the North Pacific (40°N–66°N; 1.9 vs 1.0) and theNorth Atlantic
(40°N–66°N; 1.8 vs 0.8). In the Southern Ocean, however, the
observation-based estimates are also uncertain due to a lack of
observational data, especially during austral winter for pCO2

32,67.
Similarly, a bias of too large correlation coefficients of SST and [H+]
anomalies is evident in all here analyzed CMIP6 model simulations
(Supplementary Fig. 6), suggesting that comprehensive ESMs sys-
tematically overestimate the effect of temperature on [H+] (con-
tributing positively to correlation) compared to the effect of sCT

variations (contributing negatively to correlation). Projections based
on fixed baselines are insensitive to this positive bias in correlation
because MHWs always coincide with OAX events already at 0.3 °C
global warming when OAX events become near-permanent. However,
projections relative to shifting-mean baselines may be slightly posi-
tively biased.

When analyzing the correlation coefficient of SST and [H+]
anomalies, the GFDL ESM2M model performs well compared to most
CMIP6models (Supplementary Table 3), in particular in the subtropics
and tropics (red and gray lines in Supplementary Fig. 6k). At the global
scale, theGFDL ESM2Mmodel outperformsmost of the CMIP6models
(red vs. gray stars in Supplementary Fig. 6l).

Overall, the agreement between the simulated present-day com-
poundMHW-OAX event pattern and the observation-based pattern, in
addition to the model’s fidelity in simulating recent trends in MHW
characteristics3 and [H+] seasonality9, gives high confidence in the use
of the GFDL ESM2M model for analyzing patterns and trends in com-
pound MHW-OAX events at the global scale.

Data availability
The data underlying the analyses in this study have been deposited in
the Zenodo repository under https://doi.org/10.5281/zenodo.6655451.

Code availability
The code to generate the results from the underlying data has been
deposited in the Zenodo repository under https://doi.org/10.5281/
zenodo.6655451.
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