
Vol.:(0123456789)1 3

Infection (2022) 50:1255–1266 
https://doi.org/10.1007/s15010-022-01802-1

ORIGINAL PAPER

Higher vaccination rates predict reduction in SARS‑CoV‑2 transmission 
across the United States

Jacky Au1 

Received: 22 December 2021 / Accepted: 7 March 2022 / Published online: 22 March 2022 
© The Author(s) 2022

Abstract
Purpose  The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began proliferating widely throughout the 
world in late 2019/early 2020, creating a global pandemic and health crisis. Although vaccines became available to the 
public approximately 1 year after the onset of the pandemic, there still remains much hesitancy surrounding vaccination. 
One key concern comes from reports of breakthrough infections among the vaccinated that show comparable levels of peak 
viral load as the unvaccinated, calling into question the ability of vaccines to prevent transmission. Therefore young, healthy 
individuals who are at low risk of serious complications themselves have little incentive to receive a vaccine that they are 
not convinced will protect others around them. To address this important concern, this study aimed to evaluate the extent to 
which vaccination rates are associated with reduced SARS-CoV-2 transmission among the unvaccinated population.
Methods  An observational study was conducted in the United States of America throughout the months of June through 
September, 2021. Vaccination rate and incidence of coronavirus disease 2019 (COVID-19) were obtained for each state, 
along with a number of important control variables. Panel data regression was used to predict incidence among the unvac-
cinated based on each state’s vaccination rate.
Results  States with a higher proportion of fully vaccinated individuals reported fewer new cases among the remaining 
unvaccinated population.
Conclusion  These data add to accumulating evidence that COVID-19 vaccinations can indeed slow the spread of SARS-
CoV-2, and are an important tool in society’s arsenal to put this pandemic behind us.

Keywords  COVID-19 · SARS-CoV-2 · Pandemic · Vaccines

Introduction

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) causes a respiratory disease known as coro-
navirus disease 2019 (COVID-19). Symptoms include fever, 
difficulty breathing, loss of smell or taste, and a host of other 
ailments ranging from minor to severe. This is an urgent 
global health crisis, resulting in over 251 million infec-
tions and over 5 million deaths worldwide at the time of 
writing, with the United States alone contributing roughly 
1/6 of these numbers (46.7 million infections and 758,000 
deaths). Fortunately, the recent development and distribu-
tion of vaccines has done much to curtail this issue, with 

initial clinical trials showing remarkable efficacy in prevent-
ing hospitalizations and deaths [1, 2]. A few months after 
mass distribution of vaccines began in the United States, 
many states began to relax lockdown regulations such as 
removing mask requirements to allow some semblance of 
pre-pandemic life to resume. However, with the recent surge 
of new mutations such as the Delta variant and persistent 
vaccine hesitancy among a large portion of the population 
[3], this global health crisis is far from over. One prominent 
case in the highly vaccinated state of Massachusetts received 
national attention in July 2021 when an outbreak occurred 
in Barnstable county, despite the majority of infected indi-
viduals being fully vaccinated [4]. Moreover, the Centers 
for Disease Control (CDC) report on this case went on to 
find comparable levels of viral load in the nose and throat 
of vaccinated and unvaccinated individuals based on PCR 
cycle threshold values, which indicates the possibility that 
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even vaccinated individuals carry a significant risk of trans-
mitting the virus [4].

Based in large part on the results of this report, the CDC 
went on to adjust their guidance to re-recommend universal 
indoor masking. This series of news events, along with the 
CDC’s response, has caused understandable concern among 
many and has raised questions regarding the true extent to 
which vaccines prevent individuals from contracting and 
spreading the virus. Claims have even arisen among those 
opposed to or hesitant about vaccines that vaccination only 
serves to increase the spread of SARS-CoV-2 since vacci-
nated individuals are running around with comparable viral 
load to the unvaccinated but fewer symptoms to indicate the 
presence of infection. Despite the abundance of evidence 
that has since come out suggesting that the vaccinated actu-
ally have lower overall infection rates, both symptomatic 
and asymptomatic [5–7] as well as faster recovery times that 
shorten the window of infectiousness [8, 9], such beliefs 
about vaccine ineffectiveness still persist and stymie mass 
vaccination efforts [10]. Although evidence that vaccines 
protect the individual from severe illness and hospitaliza-
tions [1, 2, 7, 11] is generally accepted and relatively non-
controversial, there has been less focus on the effectiveness 
of vaccines in preventing transmission to others [12, but see 
13]. However, this is a critical and timely issue to address, 
especially for the young and healthy unvaccinated individu-
als who are at the lowest risk of serious health complica-
tions from SARS-CoV-2 but have the highest propensity to 
transmit to others [14].

The purpose of this report, therefore, is to conduct a 
large-scale, nation-wide analysis on the association between 
a state’s vaccination rate and the development of new 
COVID-19 cases (incidence) among the remaining unvac-
cinated population. To answer this question, I used empiri-
cal real-world data on COVID-19 incidence and vaccination 
rates provided by the CDC for each of the 50 states in the 
United States of America, as well as Washington D.C. For 
ease of readability, references to states or state-level analyses 
in the remainder of the.

manuscript will implicitly also include Washington D.C. 
Data were analyzed starting from June, approximately 
1 month after vaccines became widely available to the gen-
eral public in the United States, through the present (Sep-
tember 2021 at the time of writing). Furthermore, several 
important confounds were considered for inclusion in the 
model as controls (see Variable Selection in Methods), such 
as population density or willingness to comply with other 
pandemic policies that have been shown to reduce transmis-
sion such as staying at home [15, 16] or wearing masks in 
public [17, 18]. Testing frequency was also considered, since 
states that conduct more random testing of asymptomatic 
individuals would be more likely to report higher overall 
case numbers. However, perhaps the most important variable 

to control was previous incidence during the same months in 
the preceding year. Since the same state-specific idiosyncra-
sies that contributed to case load last year, such as political 
attitudes [19], tourist hotspots, regional climate [20], demo-
graphics [21], and many others likely also contribute to case 
load this year, controlling for previous incidence allows for 
the model to account for the aggregated variation from these 
state-specific idiosyncrasies without the risk of overfitting 
the model by including each one individually.

The main hypothesis of these analyses is that states with 
higher vaccination rates will also report fewer new COVID-
19 cases, which would lend support to the idea that getting 
vaccinated can protect others as well as oneself. However, 
there are two other possible outcomes as well. There could 
be no relationship, which may indicate that the effect of vac-
cination on community transmission is too small or non-
existent to be detected through the noise of the myriad other 
nation-wide factors that contribute to viral transmission. Or 
there could even be a positive relationship such that more 
vaccinated states report more new cases rather than less. 
This would lend support to the idea often promulgated by 
vaccine skeptics that vaccination does nothing to slow down 
spread or infection, but does alter the behaviors of the vac-
cinated by masking symptoms and making them more likely 
to resume life as normal.

Methods

Data aggregation

Primary variables

Data on vaccination rates1 and COVID incidence,2 the 
primary independent and dependent variables of interest, 
respectively, were obtained using publicly available data-
sets from the CDC. Vaccination rate was defined as the per-
centage of a state’s population that was fully vaccinated at 
the beginning of a particular month. The criteria to be fully 
vaccinated followed the guidelines of the CDC during the 
observation period, which included individuals with one 
shot of the Johnson and Johnson JNJ-78436735 vaccine or 
two shots of the Pfizer BNT162b2 or Moderna mRNA-1273 

1   Centers for Disease Control and Prevention. United States COVID-
19 Cases and Deaths by State over Time (Data Set) 2021. https://​
data.​cdc.​gov/​Case-​Surve​illan​ce/​United-​States-​COVID-​19-​Cases-​and-​
Deaths-​by-​State-o/​9mfq-​cb36 (Accessed Oct 29 2021).
2   Centers for Disease Control and Prevention. COVID-19 Vac-
cinations in the United States,Jurisdiction | Data | Centers for Dis-
ease Control and Prevention 2021. https://​data.​cdc.​gov/​Vacci​natio​
ns/​COVID-​19-​Vacci​natio​ns-​in-​the-​United-​States- Jurisdi/unsk-b7fc 
(Accessed Oct 30 2021).

https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States
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vaccines. Incidence was defined as the proportion of new 
cases that arose in a particular state in a particular month per 
100,000 unvaccinated individuals. Incidence for New York 
and New York City were reported separately in the CDC 
dataset, but were aggregated together in the current analyses 
to represent the incidence for the entire state of New York. 
A small, but unknown, number of the cases recorded in the 
CDC dataset consisted of breakthrough infections among 
the vaccinated. Since the CDC only tracks severe break-
through infections that lead to hospitalizations or deaths, 
and do not report these at the state level, it is impossible to 
disaggregate the number of breakthrough infections from the 
total number of new cases each month within this dataset. I 
therefore estimated breakthrough rates based on partial data 
provided elsewhere.3 Unfortunately, these data were only 
limited to the first half of 2021, and were largely unavail-
able for the months of interest (June through September). 
Moreover, data from half the states were not reported. Thus, 
the number of breakthrough infections in the current analy-
ses is only a crude estimate, extrapolating from the rate of 
breakthrough infections in the beginning of the year, and 
applying mean substitution to the states that did not report 
data. Although these assumptions are tenuous at best, I argue 
that this makes very little difference to the overall analyses, 
as the overwhelming majority of new cases reported to the 
CDC occurred among the unvaccinated. On average, only 
1.7% of new reported cases occurred among the vaccinated 
while 98.3% occurred among the unvaccinated, based on the 
25 states that reported data in the first half of 2021. Thus, 
I argue that any range of plausible breakthrough infection 
rates represents just a drop in the bucket when subtracted 
from the much larger pool of unvaccinated cases. To sub-
stantiate this argument, I provide sensitivity analyses where 
I run Monte Carlo simulations using randomly generated 
breakthrough infection rates for each state ranging from 0.4 
to 12%, varying in increments of 0.01%. These boundaries 
were chosen based on conservatively doubling the mini-
mum and maximum reported breakthrough infection rates, 
to account for recent increases in transmissibility due to the 
surge of the Delta variant. These values also match with 
breakthrough infection rates reported in the literature, which 
range from 0.02 to 13.3% [22–28], but mostly skew towards 
the lower end especially when taken from a random sam-
ple rather than high-exposure groups such as health care 
workers. Thus, these are conservative estimates that are 
more likely to overestimate than underestimate the effect 

of breakthrough infections on the current analyses. 10,000 
simulations were run.

Finally, after calculating incidence in the preceding 
manner, a z transformation was applied separately for each 
month. This transformation was critical to standardize values 
between months and make valid comparisons because of the 
surge in cases over time due to the increasing spread of the 
Delta variant and other factors [29]. Without this transfor-
mation, a spurious correlation would occur in which inci-
dence would appear to rise even as vaccination rates increase 
over the summer.

Control variables

Previous incidence from 2020 was calculated exactly as 
above, with the exception that cases were taken as a pro-
portion of the entire population of a given state rather than 
the unvaccinated population since vaccines were not avail-
able then. The remaining control variables were extracted 
from various sources as follows. Population density, as well 
as the total population of each state, were extracted from 
World Population Review4 using 2021 estimates, since the 
official US Census data for 2021 are not available at the time 
of writing. Testing frequency was measured as the num-
ber of PCR diagnostic laboratory tests performed in each 
state, excluding a minority of results from non-laboratory 
or point-of-care settings, expressed as a percentage of that 
state’s population.5 Mobility was determined via GPS data 
from mobile devices that tracked the number of individuals 
in each state who stayed home on a particular day, summed 
over the course of each month and expressed as a percent-
age of the total number of mobile phones tracked in that 
state.6 Finally, data on mask compliance were provided by 
the Delphi Research Group at Carnegie Mellon University, 
who in partnership with Facebook, administered massive 
daily surveys starting from September 2020 asking about 
whether an individual wore a mask most or all of the time in 
public over the last 5–7 days.7 On average, each day included 
roughly 3840 responses per state. The daily percentage 
estimates provided by the Delphi group were weighted by 

3   Kaiser Family Foundation. COVID-19 Vaccine Breakthrough 
Cases: Data from the States. KFF 2021.
  https://​www.​kff.​org/​policy-​watch/​covid-​19-​vacci​ne-​break​throu​gh-​
cases-​data-​from-​the-​states/ (Accessed Oct 30 2021).

4   World Population Review. US States - Ranked by Population 2021. 
https://​world​popul​ation​review.​com/​states (Accessed Oct
  30 2021).
5   US Department of Health and Human Services. COVID-19 Diag-
nostic Laboratory Testing (PCR Testing) Time Series |
  HealthData.gov n.d. https://​healt​hdata.​gov/​datas​et/​COVID-​19-​Diagn​
ostic-​Labor​atory-​Testi​ng-​PCR-​Testi​ng/​j8mb-​icvb (Accessed
  Oct 30 2021).
6   Bureau of Transportation Statistics. Trips by Distance | Open Data 
| Socrata n.d. https://​data.​bts.​gov/​Resea​rch-​and-
  Statistics/Trips-by-Distance/w96p-f2qv (Accessed Oct 30 2021).
7   Delphi Group D. COVIDcast Export Data n.d. https://​delphi.​cmu.​
edu/​covid​cast/​export/ (Accessed Nov 30 2021).

https://www.kff.org/policy-watch/covid-19-vaccine-breakthrough-cases-data-from-the-states/
https://www.kff.org/policy-watch/covid-19-vaccine-breakthrough-cases-data-from-the-states/
https://worldpopulationreview.com/states
https://healthdata.gov/dataset/COVID-19-Diagnostic-Laboratory-Testing-PCR-Testing/j8mb-icvb
https://healthdata.gov/dataset/COVID-19-Diagnostic-Laboratory-Testing-PCR-Testing/j8mb-icvb
https://data.bts.gov/Research-and
https://delphi.cmu.edu/covidcast/export/
https://delphi.cmu.edu/covidcast/export/
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the demographic breakdown of a particular state to pro-
vide a representative sample from that particular state. I 
then weighted these daily estimates by the sample size of 
respondents on that day and averaged over the entire year 
from September 2020 to September 2021 to produce one 
time-invariant measure per state that reflected the general 
propensity to wear masks in public over the past year. This 
was done instead of calculating dynamic monthly estimates 
of mask use specifically for the months of June through Sep-
tember for two reasons. First, previous research has shown 
mask use to predict lower COVID-19 incidence in 2020 
[17, 18], but mask use has dropped off considerably since 
the widespread availability of vaccines in 2021, especially 
among the vaccinated. Thus, this variable might be measur-
ing different things in 2021 compared to 2020, and averaging 
over the entire year smooths out the signal. Second, doing 
so provided stronger correlations with the other variables, 
especially vaccination rate. A stronger correlation produces 
a more meaningful, and often more conservative, analysis 
because the regression partials out the correlated variable 
and estimates the unique variance of vaccination rate over 
and above mask usage.

Variable selection

Although all control variables were selected on strong theo-
retical grounds, care was taken to avoid overfitting the model 
with too many unnecessary variables. Thus, an inclusion 
criterion was set such that a variable must be significantly 
correlated with either the dependent variable (incidence) or 
the primary independent variable (vaccination rate) to be 
included in the final model [30, 31]. A test of variance infla-
tion factors (VIF) was also carried out to rule out multicol-
linearity. All variables were averaged across months to test 
their correlations during this model selection process.

Statistical analysis

All statistical analyses were conducted using Stata version 
13.0 (StataCorp, 2013). I first performed a series of simple 
ordinary least-squares regressions for each month from June, 
2021 through September, 2021. The dependent variable was 
the untransformed COVID-19 incidence and the independent 
variable was vaccination rate. This analysis was conducted 
to establish the existence of a simple relationship between 
vaccination rate and incidence, uninfluenced by any other 
extraneous variables, as per previous recommendations [30].

After establishing this simple relationship across all 
months of interest, I re-analyzed the data with a single 
model, while controlling for potential confounds. To do so, 
I used a random effects panel regression using month-aggre-
gated data as the within-unit estimator of time and state as 

the cross-sectional between-unit estimator, according to the 
following model:

I​nci​den​ce​it = β0 + β1VaxRateit + β2-4Monthit + β5-7Va
xRateit*Monthit + β8Maskit + β9Testingit + β10Incidence 
2020it + ui + εit.

Where the dependent variable, Incidenceit, refers to the 
z-transformed incidence for state i during month t. β0 rep-
resents the overall regression intercept, β1 represents the 
coefficient for vaccination rate, β2-4 represent a 3 × 1 vec-
tor of coefficients for each month dummy variable, omitting 
the first one, June, β5-7 similarly represent a 3 × 1 vector of 
coefficients for the interaction of vaccination rate and each 
month dummy, β8 represents the coefficient for mask usage, 
β9 represents the coefficient for testing frequency, and β10 
represents the coefficient for 2020 incidence. ui + εit repre-
sents the composite error term where ui represents a random 
intercept for each state and εit is the idiosyncratic error of 
each state for each month. Hausman’s test was used to test 
the existence of a correlation between ui. and the other inde-
pendent variables to determine the appropriateness of the 
random effects model.

Results

Descriptive statistics

Incidence and vaccination rates are reported in Table 1 
for each state, along with overall summary statistics. Raw 
data for all other variables can be found in Supplementary 
Table S1

Correlations between variables

Table 2 shows a pairwise correlation matrix between the 
dependent and all independent variables considered in the 
model. Population density and mobility were dropped from 
the final model due to a lack of significant correlations with 
both incidence as well as vaccination rates (p’s > 0.081). All 
other variables were retained.

Due to the significant correlations between the remain-
ing variables, VIFs were tested to ensure multicollinearity 
was not present in the model. All variables had a VIF under 
10–Vaccination rate: 3.19, 2020 Incidence: 2.48, Mask Rate: 
1.78, Testing Frequency: 1.43, Mean VIF: 2.22.

Simple linear regression

Simple ordinary least-squares linear regressions were run 
separately for each month, regressing incidence on vacci-
nation rate (Fig. 1). To facilitate interpretation, the depend-
ent variable was left untransformed in its natural units 
(cases per 100,000 unvaccinated people) for this analysis. 
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All months showed significant negative associations: June 
(b = − 6.530, p = 0.002, r2 = 0.184), July (b = − 28.210, 
p < 0.001, r2 = 0.250), August (b = − 67.685, p < 0.001, 
r2 = 0.280), and September (b = −  44.010, p = 0.004, 
r2 = 0.155).

Panel data regression

Panel data regression was used to confirm the effects of the 
simple linear regression (Table 3). Hausman’s test detected 
no significant endogeneity (χ2 (9) = 10.13, p = 0.340), and 

Table 2   Correlation Matrix

Incidence is the dependent variable and vaccination rate is the primary independent variable of interest. P values are included in parentheses

Variables (1) (2) (3) (4) (5) (6) (7)

(1) Incidence 1.000
(2) Mask usage − 0.265 (0.060) 1.000
(3) Testing frequency − 0.116 (0.418) 0.472 (0.000) 1.000
(4) Mobility − 0.010 (0.490) 0.503 (0.000) 0.529 (0.000) 1.000
(5) Population density − 0.220 (0.121) 0.311 (0.026) 0.523 (0.000) 0.505 (0.000) 1.000
(6) Incidence2020 0.479 (0.000) − 0.376 (0.006) − 0.437 (0.001) − 0.334 (0.017) − 0.148 1.000 (0.301)
(7) Vaccination rate − 0.611 (0.000) 0.603 (0.000) 0.452 (0.001) 0.248 (0.080) 0.183 (0.198) − 0.753 (0.000) 1.000

Fig. 1   Vaccination rate predicts lower incidence. Significant negative 
associations between vaccination rate and COVID-19 incidence were 
found during the months of June through September, with vaccination 
rate explaining between 15.5 and 28% of the variance in COVID-19 

incidence. For ease of interpretation, the y-axis is unstandardized in 
these figures, and left in its natural units (number of new cases per 
100,000 unvaccinated people)
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thus the random effects model was chosen over fixed effects. 
In concordance with the simple linear regression models, the 
random effects panel regression model showed a significant 
partial effect of vaccination rate (b = − 0.055, z = − 2.79, 
p = 0.005) referenced to the month of June, with no signifi-
cant interactions for the months of July (b = 0.004, z = 0.18, 
p = 0.856), August (b = −  0.0001, z = 0.00, p = 0.996), 
or September (b = 0.003, z = 0.14, p = 0.890), suggesting 
comparable effects of vaccination on COVID-19 incidence 
across all months. Previous incidence rates from 2020 were 
also predictive of current incidence rates (b = 0.230, z = 2.73, 
p = 0.006), as was testing frequency (b = 0.028, z = 2.16, 
p = 0.031). The between R-squared value for the model was 
0.399, suggesting almost 40% of the variation in COVID 
incidence between states can be explained by the variables 
in this model. Given the lack of interactions with month, I 
re-ran the above regression without the interaction terms to 
arrive at a main effect of vaccination rate across all months: 
(b = − 0.050, z = − 3.51, p < 0.001).

Sensitivity analyses

Re-running the above panel regression using a range of 
different estimates for breakthrough infection rates did not 
change the results. Across 10,000 Monte Carlo simulations, 
the partial effect of vaccination rate for June ranged between 
− 0.049 and − 0.062 standard deviations, with all p values 
showing statistical significance ranging from p = 0.005 to 
p = 0.033. None of the interactions with any other month 
were significant (all p’s < 0.71) with coefficients ranging 

from − 0.001 to 0.007, suggesting comparable effects of 
vaccination rate across all months. The same held true look-
ing at the main effect of vaccination rate by removing inter-
action terms. Over 10,000 simulations, the main effect of 
vaccination rate ranged between − 0.044 and − 0.056, with 
all p values again in the significance range, from p < 0.001 
to p = 0.002.

Discussion

The present analyses provide compelling evidence for the 
real-world effectiveness of COVID-19 vaccines in reduc-
ing community transmission of SARS CoV-2 in the United 
States. Despite rising cases overall throughout the summer 
months due to the Delta surge and other factors, higher vac-
cination rates in a state at the beginning of each month still 
predicted fewer cases during that month relative to other 
states. Critically, COVID-19 incidence was calculated as a 
proportion of the unvaccinated population, not a proportion 
of the total population. Thus, these results go beyond the 
already plentiful evidence that the various COVID-19 vac-
cines are generally effective at protecting vaccinated indi-
viduals from symptomatic infection [1, 2, 7, 11], but also 
provide evidence supporting the effectiveness of vaccines 
in protecting the surrounding unvaccinated community as 
well. Moreover, results held up against a variety of different 
specifications for breakthrough infection rates, which were 
subtracted from the total number of new cases before cal-
culating incidence among the unvaccinated. Although these 
breakthrough rates were not reported in the CDC dataset 
used in the current analyses and had to be roughly estimated, 
they occur so infrequently and are reported even less often, 
that their presence makes very little difference in the overall 
analyses. This was substantiated by Monte Carlo simula-
tions that randomly generated breakthrough infection rates 
for each state using a range of realistic values and found that 
not one of the 10,000 simulations changed the interpretation 
of the results or had any substantial effect on the regression 
estimates (± 0.006 standard deviations for the main effect 
of vaccination rate).

Throughout the observation period during the summer of 
2021 (June through September), each percentage increase 
in a state’s vaccinated population was associated with a 
reduction in new COVID-19 cases by approximately 0.053 
standard deviations. To illustrate the real world implications 
of this, Table 1 shows that one standard deviation through-
out these months averaged to about 492.32 infections per 
100,000 unvaccinated people. Thus, in a hypothetical popu-
lation of 100,000 unvaccinated people, each 1000 (or 1%) of 
them who became fully vaccinated at the beginning of June 
would be associated with an average of 26.09 fewer cases 
per month among their unvaccinated peers. By the end of 

Table 3   Panel regression results

The dependent variable is COVID-19 incidence, z transformed by 
month. Each independent variable is expressed as a percentage, so 
their regression coefficients (b) can be interpreted as standard devia-
tion changes in response to a 1% change in the independent variable. 
The exceptions are Incidence 2020, which is also z transformed into 
standard deviation units, and the month dummies which are coded as 
1’s and 0’s. June was omitted as the reference. SE b is the standard 
error of the regression coefficient.
*represents significant p value < 0.05

Independent variables b SE b p

Vaccination rate − 0.055 0.020 0.005*
July 0.132 0.870 0.879
August 0.273 0.905 0.763
September 0.200 0.941 0.832
Vaccination rate X July 0.004 0.020 0.856
Vaccination rate X August 0.000 0.020 0.996
Vaccination rate X September 0.003 0.020 0.890
Incidence2020 0.230 0.084 0.006*
Mask usage 0.011 0.014 0.423
Testing frequency 0.028 1.292 0.031*
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September, these same 1000 vaccinations would be asso-
ciated with 104.37 fewer infections overall. More impres-
sively, these results span a window of time during which 
the Delta variant was the predominant strain in the United 
States, suggesting that vaccines may be effective at slowing 
spread even against this highly infectious strain.

However, it is noteworthy that these results stand in con-
trast to another recent report using a similar approach that 
found no relationship between vaccination rate and COVID-
19 incidence, both internationally and within the United 
States [32]. However, that study has a couple limitations 
that render interpretation difficult. One is that their observa-
tion period is only 7 days, so it is unclear how representative 
their data truly are of the entire year since vaccines have 
become available. This is especially problematic for their 
United States analysis where incidence was calculated at the 
county level. A number of counties in the United States have 
such small populations, in the hundreds or thousands, that a 
mere one-week observation period could result in nonrep-
resentative outliers. For example, many such counties could 
have realistically seen zero cases in that particular week, 
whereas others may have randomly experienced a severe 
outbreak that week, leading to an unusually high percentage 
of their population being infected. In contrast, the analyses 
in the current report which do find an effect of vaccination, 
aggregate data over 4 months and at the state-level, thereby 
smoothing out noise over time and a larger population size. 
Another limitation of this previous report is that their analy-
ses were purely correlational and did not control for alterna-
tive predictors that may covary with either vaccination rate 
or COVID-19 incidence. To give an example from the cur-
rent dataset, Table 2 shows that vaccination rate and testing 
frequency are both correlated (r = 0.452, p = 0.001). This 
is not surprising in that states that are proactive about vac-
cinating their citizens are also proactive about testing their 
citizens in an effort to control the spread. Obviously, con-
ducting more tests will yield more positive cases, so with-
out controlling for the covariation of testing frequency with 
vaccination rate, a spurious correlation could arise where 
regions with higher vaccination rates appear to have more 
new cases. Such controls become even more important at 
the international level, where so many different factors exist 
between countries such as vaccine type, cultural attitudes, 
and even climate [20] that could moderate the effect of vac-
cination on incidence in one direction or the other.

Accordingly, one of the strengths of the current results 
is that they are robust against a variety of important con-
trols, including mask usage, testing frequency, and previ-
ous incidence. Therefore, alternative explanations relating 
to these variables can be ruled out. Most importantly, includ-
ing previous incidence in the model serves as a powerful 
control because it effectively accounts for the aggregated 
variation due to state- and time-specific idiosyncrasies that 

may influence the endemic spread of SARS-CoV-2 within 
a particular state. For example, a state that reported a high 
case load last summer due to large gatherings at popular 
tourist beaches may also report a high case load this year 
due to the same beaches. Or another state typically known 
for its warm and humid summers may create inhospitable 
conditions for the virus to spread both last year and this 
[20]. In support of these idiosyncratic influences, Table 2 
shows a fairly strong correlation between previous and cur-
rent incidence (r = 0.48, p < 0.001). Thus, controlling for 
previous incidence accounts for the aggregated influences 
of these state- and time-specific factors. This is a particularly 
important consideration given that a random-effects model 
was used, which favors more precise coefficient estimates 
compared to a fixed effects model, but at the expense of 
possibly introducing some level of omitted variable bias due 
to correlations between the unit-level (i.e., state) error terms 
and the other independent variables [33]. Controlling for 
state-level idiosyncrasies partially mitigates this issue by 
reducing variation associated with state-level error, achiev-
ing some of the same goals as a fixed effects model in terms 
of offering some level of correction against omitted variable 
bias while maintaining the improved precision of a random 
effects model.

An additional and important consideration is that sum-
mer incidence during 2020 was related not only to sum-
mer incidence during 2021, but also had a strong negative 
correlation with the primary independent variable, vaccina-
tion rate (r = − 0.75, p < 0.001). Therefore, increased vac-
cination rate predicted lower incidence both this year and 
last. Ostensibly, this is problematic since vaccines clearly 
cannot have a retroactive effect; therefore, this independent 
variable must reflect more than just vaccination rate, but 
perhaps also the willingness to employ a constellation of 
other pandemic policies as well that may have influenced 
transmission over the last year. For example, Table 2 shows 
that states with higher vaccination rates this summer also 
wore masks more often throughout the last year (r = 0.603, 
p < 0.001), indicating that a part of the variation in vaccina-
tion rate (r2 = 0.364) overlaps with the variation in mask 
usage. Although there are likely other unmeasured variables 
at play, this is one important factor that could mediate the 
retrospective relationship between vaccination rate and 2020 
incidence, especially given that mask usage has already been 
shown to predict lower COVID-19 incidence in 2020 [17, 
18]. There are two important takeaways from all this. First 
is that vaccines are not the only tool in society’s arsenal to 
stem the tide of the pandemic. Although the present results 
say little about which specific policies and practices, other 
than vaccination, are helpful, the correlations do suggest 
that states that tend to favor vaccination also tend to favor 
other recommendations and guidelines, and ultimately tend 
to fare better. Second, it is important to bear in mind that 
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these correlations do not take away from the main message 
of the manuscript, which is that vaccinations, specifically, 
predict lower COVID-19 incidence. Rather, the results of 
the panel regression show that the effect of vaccination rates 
is robust enough to still uniquely predict current incidence, 
even above and beyond its relationships with the aforemen-
tioned confounds.

Furthermore, these findings are in line with recent studies 
that show fewer symptomatic and asymptomatic infections 
among the vaccinated, as assessed by routine laboratory 
PCR testing [5–7, 34]. Thus, states with a more vaccinated 
populace have fewer vectors of transmission, so it is no sur-
prise that they also seem to offer more protection from infec-
tion even to its unvaccinated residents. In addition, evidence 
also shows that aside from being less likely to host the virus 
in the first place, vaccinated individuals with breakthrough 
infections also carry less overall viral load throughout the 
duration of infection, despite having similar peak levels as 
the unvaccinated at the beginning of infection [8, 9, 35]. 
Moreover, even for the same levels of viral load, less infec-
tious virus was found in respiratory samples among the vac-
cinated, indicative of less viral shedding [36, 37]. Therefore, 
while appreciating that breakthrough infections, as well as 
transmission, can and do occur among the vaccinated [8, 
27, 28], several mechanisms seem to be at play that limit the 
spread of virus compared to the unvaccinated. Aside from 
the current study, this reduction in transmission has also 
been borne out empirically in other recent large-scale studies 
in Israel that showed reduced transmission from vaccinated 
individuals to their households compared to the households 
of unvaccinated individuals [12, 13].

Limitations

The empirical results reported herein must be understood in 
the context of several limitations. First, due to the rapidly 
evolving nature of this virus [38], it cannot be certain that 
the protective effect of vaccination on the unvaccinated will 
hold true with future mutations. For example, although the 
observation window of this study is based primarily on the 
Alpha and Delta virus strains, another variant, Omicron, 
has since arisen with an even higher infectivity and vaccine 
resistance than its predecessors [38]. Although preliminary 
evidence suggests vaccination still reduces viral load in 
Omicron breakthrough infections to a comparable amount as 
Delta breakthrough infections [39], it is possible other mech-
anisms of infectivity exist and it is still unclear the extent to 
which vaccine-mediated reductions in transmission can be 
expected during the age of Omicron. Another limitation in 
the current study is the low granularity with respect to type 
of vaccination. Three main vaccines have been used in the 
United States, manufactured by Pfizer, Moderna, and John-
son and Johnson. However, due to the roughly homogenous 

uptake of all three vaccines between states, it is beyond the 
scope of the current study to determine their relative efficacy 
in reducing transmission.

Conclusions

In totality, the evidence that COVID-19 vaccinations reduce 
the spread of SARS-CoV-2, at least among the Alpha and 
Delta variants, is quite strong and consistent. Although the 
public messaging from the government and other authorities 
so far has focused primarily on the effectiveness of COVID-
19 vaccines in protecting the individual, enough evidence 
has accrued now that this message should shift to the effec-
tiveness of vaccines in protecting the community. This mes-
sage would be especially pertinent to young, healthy adults 
who are the least likely to suffer major complications if 
infected, and therefore have the least personal incentive to 
get vaccinated. Although the vaccination of older adults has 
done much to reduce hospital burden and save lives among 
the elderly, it is now the young and healthy that need to be 
prioritized for vaccination. In support of this, an enterpris-
ing study by Monod et al. [14] modeled infection dynamics 
across the nation and correlated this to cell phone mobility 
data. They found that the contact patterns of younger adults, 
aged 20–49 were most predictive of COVID-19 transmis-
sion and deaths than any other age group. Although vaccine 
mandates may be one viable solution to increase vaccination 
rates among younger adults across the country, this has been 
met by severe pushback from many, especially by those who 
consider vaccination to be solely a personal health choice. 
Considering that the strongest and most publicized evidence 
of vaccine effectiveness so far has been the reduction of 
hospitalizations and deaths among the individual [1, 2, 5, 7, 
11, 40], and that the public health narrative from the govern-
ment and CDC has accordingly focused on this, it is perhaps 
not surprising that many would cling to this personal choice 
argument. However, based on the present results as well as 
accumulating evidence from the literature of reductions in 
infectiousness and reductions in community transmission, 
it may be time to refocus this narrative to recognize that 
the benefits of vaccination are not solely personal, but also 
communal as well.
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