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A B S T R A C T

Background: Regulated cell death (RCD) has considerable impact on tumor progress and sensi-
tivity of treatment. Lung adenocarcinoma (LUAD) show a high resistance for conventional ra-
diotherapies and chemotherapies. Currently, regulation of cancer cell death has been emerging as
a new promising therapeutic avenue for LUAD patients. However, the crosstalk in each pattern
RCD is unclear.
Methods: We integrated collected the hub-genes of 12 RCD subroutines and compressively
analyzed these hub-genes synergistic effect in LUAD. The characters of RCD genes expression and
prognosis were developed in The Cancer Genome Atlas (TCGA)-LUAD data. We developed and
validated an RCD risk model based on TCGA and GSE70294 data set, respectively. Functional
annotation and tumor immunotherapy based on the risk model were also investigated.
Results: 28 RCD-related genes and two LUAD molecular cluster were identified. Survival analysis
revealed that the prognosis in high-risk group was worser than those in low-risk group. Functional
enrichment analysis indicated that the RCD risk model correlated with immune responses.
Further analysis indicated that the high-risk group in RCD risk model exhibited an immuno-
suppressive microenvironment and a lowly immunotherapy responder ratio.
Conclusions: We present an RCD risk model which have a promising ability in predicting LUAD
prognosis and immunotherapy response.

1. Introdution

Lung cancer, the second frequently occurring cancer and the leading cause of cancer death in 2020, is classified into small-cell lung
cancer (15 % of total diagnoses) and non-small-cell lung cancer (85 % of total diagnoses), which is subdivided into squamous and non-
squamous histology that dominated by adenocarcinomas [1,2]. Often, lung cancer is not diagnosed until advanced-stage, which partly
determines its high mortality [3]. Fortunately, low-dose CT-based screening in asymptomatic individuals substantially reduced lung
cancer mortality [4]. The treatment strategy in patients with lung cancer is guided by the disease subtype and stage [5,6]. With the
advent of targeted therapy, including immunotherapy, substantial progress has achieved in the medical therapy of lung cancer during
the last decade. And knowledge of the molecular characteristics of a tumor reflected by specific biomarkers becomes an essential
component of the more targeted therapeutic approach [7].
Regulated cell death (RCD) refers to the autonomous and orderly death of cells controlled by genes in order to maintain the stability
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of the internal environment. RCD encompasses orchestrate subroutines, including apoptosis, autophagy, necroptosis, pyroptosis,
ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) and so on. In the aspect of molecular mechanism,
each of RCD patterns exhibited a considerable degree of interconnection [8,9]. Accumulating evidence has revealed that abnormal
RCD subroutines are the key features of tumorigenesis [10]. Apoptosis, as a natural barrier that protects against cancer development, is
responsible for the programmed culling of cells during normal eukaryotic development and maintenance of organismal homeostasis
[11,12]. Apoptosis evasion and resistance are indisputable hallmarks of cancer, that induced tumorigenesis and drug resistance [13,
14]. Pyroptosis is redefined as gasdermin-mediated programmed necrosis and is accompanied by the release of inflammatory cytokines
such as IL-1β and IL-18 [15]. Nowadays, the role of pyroptosis in cancer is two-sided. Pyroptosis may promote tumor growth by
providing an inflammatory microenvironment [16]. The expression of GSDMD (the classical executioner of pyroptosis) was positively
correlated with tumor-node-metastasis staging in non-small cell lung cancer [17]. However, pyroptosis also inhibited tumor growth by
triggering cell death, which was one principle for anti-tumor durg to work [18,19]. Ferroptosis, an iron-dependent form of non-
apoptotic cell death serves a vital role in tumor suppression [20,21]. Several regulators, such as KRAS, TP53, NFE2L2, YAP, NFS1,
STYK1, LSH, RNF113A, and non-coding RNA participate in lung cancer development via shaping ferroptosis sensitivity. Moreover,
traditional chemotherapeutic drugs or immunotherapy combined with can synergistically inhibit tumor proliferation during lung
cancer therapy [22].
However, the orchestrate subroutines of RCD have not explored comprehensively in lung adenocarcinoma. Hereto, we integrated

collected the hub-genes of RCD subroutines and compressively analyzed these hub-genes synergistic effect in predicting LUAD
prognosis and immunotherapy benefit.

2. Materials and methods

2.1. Raw data

The RNA sequence data (FPKM and Counts values) and clinical information in TCGA-LUAD cohort (59 normal tissue and 526 lung
adenocarcinoma tumor tissue) were downloaded from the UCSC Xena database (http://xena.ucsc.edu/). GSE70294 containing gene
expression arrays and survival data in 442 lung adenocarcinoma patients were picked out for the analysis. Missing survival time or less
than 30 days were excluded from the analysis. Twelve regulated cell death (RCD) patterns (Pyroptosis, Parthanatos, Oxeiptosis, Netotic
cell death, Necroptosis, Lysosome-dependent cell death, Ferroptosis, Entotic cell death, Cuproptosis, Autophagy, Apoptosis and
Alkaliptosis) related genes were extracted from previous study [23] and FerrDb database (http://www.zhounan.org/ferrdb). Alto-
gether, 1254 concatenated genes related to RCD were brought into the following analysis.

2.2. RCD genes expression and prognosis analysis in LUAD

The sample distribution pattern in TCGA-LUAD cohort was used the principal component analysis (PCA). |logFC| > 1 and FDR
value < 0.05as the cutoff point to recognize the differentially expressed RCD-related genes (DEGs) through R package “limma”,
“deseq2” and “edgeR”. The heatmap and Venn diagramwas applied to visualize the result. Univariate Cox regression and Kaplan-Meier
(KM) analysis was used to determine the DEGs associated with patients’ overall survival (OS) time.

2.3. Unsupervised clustering

The univariate Cox algorithm was employed to screen out the RCD genes associated with overall survival time, and genes with p
value< 0.05 were selected for non-negative matrix factorization (NMF) unsupervised clustering. We select values of k as the best rank
value where the magnitude of the cophenetic correlation coefficient begins to fall.The Kaplan Meier method was used to estimate the
difference in overall survival (OS) between different clusters.

2.4. Construction the RCD-related risk model

Removing the tumor samples with missing survival information, we constructed the risk model based on the data of 513 LUAD
patients in TCGA cohort, and the data of GSE70294 as a validation cohort. Uni-cox and KM analysis using the survival R package to
screen RCD genes associated with patients’ prognosis from TCGA and GSE70294 datasets with an inclusion criteria p value < 0.05.
Then, the intersection genes from the above two datasets were analyzed by the LASSO regression to narrow the range of prognostic
RCD genes. The Akaike information criterion (AIC) method of multivariate Cox regression analysis was applied to develop an optimal
risk model based on the AIC value and concordance index. The risk score was calculated as follows:

Risk score=
∑N

i=1
( coefi× expi)

where coefi is multivariate Cox regression coefficient and expi is the expression of RCD genes. To investigate the independent
prognostic factors for LUAD patients, univariate and multivariable Cox regression analyses were used.
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2.5. Development and assessment the nomogram

Integrating all independent prognostic factors, the R package “RMS” was used to develop a nomogram model. Nomogram
calculated the probability of clinical events via integrating scores for each influencing factor in the prediction model. Calibration
curves and time ROC curves were leveraged to assess accuracy of the nomogram.

2.6. Functional annotation based on the risk model

Functional enrichment between high- and low-risk group according to the risk model was investigated using the “clusterProfiler”,
“pathview”, “limma”, “msigdbr” and “GSVA” packages. The “limma” package determined DEGs in different risk groups with a logFC of
1 and a p value of <0.05. p value was adjused by BH methods. Subsequently, the “clusterProfiler” and “pathview” package recognized
the distinct GO biological processes and KEGG pathways enriched in the high-risk and low-risk groups based on DEGs set. The GSVA
algorithm followed steps: “msigdbr” R package retrieved and download the GO and KEGG gene set from GSEA website (https://www.
gsea-msigdb.org/). And then, “GSVA” packages calculated function annotation enrichment score for each sample. Finally, “limma”
package compared the differentially expression pathway in different risk groups and select top 20 pathway to draw heat map.

2.7. Estimation of tumor immunity characteristics

The Cancer-Immunity cycle is a series of stepwise antitumor events, which initiated by oncogenesis [2]. The Cancer-Immunity
Cycle can be divided into seven major steps, and each step requires the coordination of numerous factors, both stimulatory and
inhibitory in nature. Dysfunction of inhibitory factors reduce immune activity and provide convenience for tumor escape. To screen
potential immunosuppressive targets, the expressed levels of these inhibitory genes were explored on basis of RCD-risk signatures.
These inhibitory genes were retrieved from TIP database (http://biocc.hrbmu.edu.cn/TIP/). The infraction of immune cell as a key
step in Cancer-Immunity Cycle, single sample gene set enrichment analysis (ssGSEA) was adopted to quantify the enrichment level of
immune cells in the tumor microenvironment.

2.8. Evaluation of tumor immunotherapy based on risk model

The association of immune checkpoint inhibitors (ICIs), including PCDD1, CTLA4, CD274, CD40, CD160, TNFSF15, LAG3,
KIR3DL1, ADORA2A, TIGIT, and DCD1LG2, with the risk score were estimated by R package “corrplot”. The benefit of ICIs was
compared between high-risk and low-risk group on basis of The Cancer Immunome Database (TCIA) (https://tcia.at/home) and TIDE
website (http://tide.dfci.harvard.edu/).

2.9. Cell culture and transfection

The human bronchial epithelial cell line 16HBE and Lung cancer cell lines, including NCI-H1975 and A549, were purchased from
Cell Bank/Stem Cell Bank, Chinese Academy of Sciences (Shanghai, China) and were cultured in DMEM (Gibco, USA) supplemented
with 10 % FBS (Gibco), and 1 % penicillin/streptomycin (Solarbio, China) at 37 ◦C in a humidified incubator with 5 % CO2. Small
interfering RNAs (siRNAs) were obtained from RiboBio (Guangzhou, China) and transfection was performed using Lipofectamine 3000
(Invitrogen, USA) following the manufacturer’s instructions.

2.10. RNA isolation and quantitative real-time PCR assay

Total RNA was isolated from cells with TRIzol reagent (Takara, Japan), and cDNA was generated using the PrimeScript™ RT kit
(Takara). Real-time PCR was performed in TB Green Premix Ex Taq (TaKaRa) in accordance with the protocol. The relative expression
levels of the target genes were determined by the 2− ΔΔCT method, and GAPDH was employed as the internal control. The primer we
use is as follows:

GAPDH: 5’ - 3′ Forward: GGAGCGAGATCCCTCCAAAAT, Reverse: GGCTGTTGTCATACTTCTCATGG.
KRT8: 5’ - 3′ Forward: TCCTCAGGCAGCTATATGAAGAG, Reverse: GGTTGGCAATATCCTCGTACTGT.

2.11. Western blot

Cells were lysed in RIPA lysis buffer (Beyotime Biotechnology, China) supplemented with PMSF (Solarbio, China). Proteins were
resolved on SDS-PAGE gel and then transferred onto PVDF membranes (Millipore, USA). Subsequently, the transfer membrane was
blocked with 5 % non-fat milk at room temperature, further incubated overnight at 4 ◦C with the specific primary antibodies (anti-
KRT8 and anti-β-actin). The protein bands were displayed with enhanced ECL chemiluminescence detection reagent (Beyotime
Biotechnology).

2.12. Cell migration and invasion assays

Cell migration and invasion assays were performed using 24-well transwell chambers (Corning, USA) with or without Matrigel.
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After 48 h of incubation, cells in the upper chamber migrated or invaded the lower surface, which were fixed and stained. These cells
were subsequently counted and compared. Wound healing assay was conducted to determine the ability of cells to migrate. The tip of a
10-μL pipette was used to create a gap, and serum-free medium was added to the cells for a further 48 h.

2.13. Colony formation assays

NCI-H1975 or A549 cells were inoculated into 6-well plates at 1 × 103 cells per well for 10 days. After fixing and staining, the
number of clones was counted and analyzed by microscope.

Fig. 1. Identification the DEGs and prognostic genes (a) PCA showed the sample distribution pattern in TCGA-LUAD (b) Heatmap (blue: low
expression level; red: high expression level) of the RCD-related genes between the normal and tumor group (c) The intersected DEGs on basis of R
package “Deseq”, “limma”, and “edegeR” (d) Interactions among 28 prognostic DEGs.
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2.14. Statistical analysis

All data processing, statistical analysis, and plotting were performed using R software (version 4.2.3). Comparisons between groups
were assessed using the Student’s t-test and one-way ANOVA. GraphPad Prism 8.3.0 software was used to analyze the data and plot the
diagrams. P value < 0.05 was considered statistically significant in all results.

Fig. 2. Identification the molecular cluster based on the expression of RCD genes (a) Selection of optimal κvalue in NMF rank survey (b) 503 LUAD
patients were divided into cluster 1 and cluster 2 according to the optimal κ = 2 (c) Heatmap (blue: low expression level; red: high expression level)
of key NMF clustering signatures between the cluster1 and cluster 2 (d) The survival analysis between cluster 1 and cluster 2.
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3. Results

3.1. Identification the DEGs and prognostic genes

The sample distribution pattern in TCGA-LUAD was shown in Fig. 1A. The heat map of the full range of RCD genes was shown in
Fig. 1B. Using an p value < 0.05 and |log FC| > 1 as the cutoff criteria, a total of 181 DEGs, including 102 upregulated genes and 79
downregulated genes, were picked out (Fig. 1C). The Kaplan Meier method and unicox identified 28 prognostic genes from the DEGs in
p value < 0.05, and the interaction network in 28 genes was showed in Fig. 1D.

3.2. Identification the molecular cluster based on the expression of RCD genes

Using univariate Cox regression survival analysis with P < 0.05 as the cutoff criteria, a total of 208 RCD genes were performed the
NMF clustering. The rank value was the optimal, when the cophenetic value was 2 (Fig. 2A). 503 LUAD patients were divided into
cluster 1 and cluster 2 based on 6 key signatures (CD74, NAPSA, NPC2, S100A9, GAPDH, and KRT8) (Fig. 2B and C). The LUAD
patients in cluster 2 had a worse prognosis compared with the patients in cluster1 (Fig. 2D).

3.3. Establishment risk model based on seven RCD-related gene signatures

1254 RCD genes were subjected to univariate Cox and K-M analysis in TCGA and GSE70294 datasets, and a total 57 genes were
determined (Fig. 3A). Subsequently, 18 lasso genes with the best lambda value were screen out following LASSO analysis (Fig. 3B and

Fig. 3. Construction the optimal risk model (a) Intersecting genes associated with LUAD patients’ overall survival in the TCGA and GSE70294 (b)
LASSO coefficient profiles of the 57 prognostic RCD genes in the TCGA cohort (c) Selection of the optimal lambda (d) The AIC method of multi-
variate Cox regression analysis select 7 risk signatures to establish the optimal risk model.
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C). To construct the optimal risk model, the AIC method of multivariate Cox regression analysis chose 7 genes returned from the 18
lasso genes (Fig. 3D). Among 7 genes, VDAC1, KRT8, and RBCK1 were risk factors for LUAD patients’ OS, and PRKCD, PEBP1, LIPT1
and RRAGD were protective factors. A risk score was assigned to each LUAD patient according to the constructed prognostic model
(Risk score= 0.4253* VDAC1 expression+ − 0.4659* PRKCD expression+ 0.1753* KRT8 expression+ − 0.3397* PEBP1 expression+
− 0.5256* LIPT1 expression + − 0.1914* RRAGD expression + 0.2166* RBCK1expression), and LUAD patients were categorized into
high-risk and low-risk groups according the medium of risk score. The KM survival curve revealed that high-risk group in the TCGA
cohort and GSE70294 cohort had poorer prognosis than the low-risk group. The AUC of time-dependent receiver operating charac-
teristics curve predicted 1-, 3-, and 5 years OS. The corresponding AUC values in the TCGA cohort was 0.72, 0.70, and 0.67,
respectively (Fig. 4C), while those in the GSE70294 cohort were 0.73, 0.74, and 0.72 (Fig. 4D).

3.4. Construction and evaluation of the nomogram

Based on the result of multivariate Cox analysis, nomogram was leveraged to accurately predict the overall survival rate for 1-, 3-,
and 5-year (Fig. 5A) via quantifying the contributions of stage and risk score. The calibration curves constructed on basis of the TCGA
cohort demonstrated that the predictive OS value and observed OS value were highly identical (Fig. 5B). Furthermore, the AUC for 1-,
3-, and 5-year were 0.756, 0.741 and 0.711, respectively (Fig. 5C). These results were consistent with those obtained GSE70294 cohort
(Fig. 5D–F), implying that the constructed nomogram have a promising ability to predicting the overall survival rate for LUAD.

Fig. 4. The evaluation of risk model (a,b) The Kaplan-Meier survival curve with different risk groups in the (a)TCGA cohort and (b) GSE70294 (c, d)
The ROC of risk model in the (c) TCGA cohort and (d) GSE70294 cohort.
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3.5. Functional enrichment based on risk model

To explain differences in high- and low-risk group based on the risk mode, we utilized the GO and KEGG analysis based on the DEGs
to investigate the potential molecular mechanism. The result of GO revealed that humoral response, platelet degranulation, colla-
gen− containing extracellular matrix, platelet alpha granule and endopeptidase inhibitor activity were mainly enriched (Fig. 6A).
Meanwhile, KEGG revealed that DEGs were mainly enriched in complement and coagulation cascades, Amoebiasis and
alpha− Linolenic acid metabolism (Fig. 6B). The GSVA result revealed that folate biosynthesis pathway, pentose phosphate pathway,
galactose metabolism pathway, p53 signaling pathway significantly enriched in high-risk group, while proteasome pathway and
pathogenic Escherichia coli infection pathway significantly enriched in low-risk group (Fig. 6C).

Fig. 5. Establishment and assessment the nomogram (a) Construction the nomogram based on the TCGA dataset (b) Calibration curve and (c) time
ROC curve assessed the accuracy of TCGA-nomogram (d) Construction the nomogram based on the GSE70294 dataset (e) Calibration curve and (f)
time ROC curve assessed the accuracy of GEO-nomogram.

Fig. 6. Functional annotation based on risk model (a) GO term and (b) KEGG pathway enrichment according to the DEGs in different risk group (c)
GSVA enrichment analysis.
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3.6. Interaction of RCD risk signature and tumor immunity

The expression of Cancer-Immunity Cycle suppressor (BTLA, CD160, CD244, CXCL12, IDO2, TIMD4) in TCGA and GSE70294
cohorts were highly expressed in the low-risk group, while the expression of EZH2 and VEGFA were lowly expressed in high-risk group
(Fig. 7A and B). Multiple immune cell such as immature dendritic cell, Eosinophil, Mast cell, immature B cell, Activated B cell,

Fig. 7. The tumor immunity analysis. (A) The expression of Cancer-Immunity Cycle suppressor (BTLA, CD160, CD244, CXCL12, IDO2, TIMD4) in
TCGA cohort and (B) GSE70294 cohort; (C) The fraction of tumor-infiltrating immune cells in TCGA cohort and (D) GSE70294 cohort.

Fig. 8. The expression of ICs and IPS score analysis in risk model. (A) The relationship between risk score and ICIs expression; (B–E) Comparation
IPS score in different risk groups.
As shown in Fig Figs. S1A–E, qRT-PCR and Western blot assays indicated that KRT8 expression was significantly higher in NCI-H1975 and A549 than
that in normal human bronchial epithelial cells (16HBE). To investigate the biological function of KRT8 in lung cancer cells, si-KRT8# 1 and si-
KRT8#2 was adopted to decrease the expression of KRT8. After transfection, KRT8 expression was significantly decreased to varying degree.
Transwell assays (Figs. S2A–D) and the wound healing assay (Figs. S3A and B) showed that KRT8 knockdown markedly repressed the migration and
invasion of NCI-H1975 and A549 cells. Furthermore, we found that colony formation ability was effectively inhibited when KRT8 was down-
regulated in lung cancer cells (Figs. S4A and B). The expression of C-Myc, CDK4 and Cyclin D1/E1 in NCI-H1975 and A549 was measured by
Western blot assay after KRT8 knockdown. The results revealed that C-Myc, CDK4 and Cyclin D1/E1 expressions were significantly decreased in the
KRT8 knockdown group compared with the control group (Figs. S5A–C). It demonstrates that KRT8 is strongly associated with cell cycle process.
Collectively, we conclude that KRT8 is involved in the regulation of lung cancer and contribute to lung cancer progression.
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Plasmacytoid dendritic cell, Natural killer cell, T follicular helper cell, were also found to be enriched in the low-risk groups (Fig. 7C
and D). In addition to Cancer-Immunity Cycle suppressor gene mentioned above, ICs also suppress the tumor immunity. Therefore, we
also probe into the association between the expression of ICs and risk score and found the expression levels of ICs were negatively
associated with risk score (Fig. 8A). Considering the vital roles played by ICs in tumor immunotherapy, we further compared the ICs
response in the high- and low-risk groups via TCIA and TIDE databases. In the TCIA data, the low-risk group showed a better
immunotherapeutic effect (Fig. 8B–E). Meanwhile, the patients with low risk had a higher responder ratio than those with high risk
from the TIDE (Fig. 9A and B). Furthermore, the high-risk group exhibited a higher possibility of immune escape (Fig. 9B–D).

3.7. KRT8 exerts an oncogenic role in lung cancer

As shown in Figure S1 A-E, qRT-PCR andWestern blot assays indicated that KRT8 expression was significantly higher in NCI-H1975
and A549 than that in normal human bronchial epithelial cells (16HBE). To investigate the biological function of KRT8 in lung cancer
cells, si-KRT8# 1 and si-KRT8#2 was adopted to decrease the expression of KRT8. After transfection, KRT8 expression was signifi-
cantly decreased to varying degrees. Transwell assays (Figs. S2A–D) and the wound healing assay (Figs. S3A and B) showed that KRT8
knockdown markedly repressed the migration and invasion of NCI-H1975 and A549 cells. Furthermore, we found that colony for-
mation ability was effectively inhibited when KRT8was downregulated in lung cancer cells (Figs. S4A and B). The expression of C-Myc,
CDK4 and Cyclin D1/E1 in NCI-H1975 and A549 was measured byWestern blot assay after KRT8 knockdown. The results revealed that

Fig. 9. Predicting immunotherapy response in different groups. (A) Comparing the responder ration in high-risk and low-risk groups; (B) ROC
evaluated the accuracy of risk score in predicting immunotherapy response.
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C-Myc, CDK4 and Cyclin D1/E1 expressions were significantly decreased in the KRT8 knockdown group compared with the control
group (Figs. S5A–C). It demonstrates that KRT8 is strongly associated with cell cycle process. Collectively, we conclude that KRT8 is
involved in the regulation of lung cancer and contribute to lung cancer progression.

4. Discussions

Lung cancer is the second frequently occurring cancer, and LUAD comprises around 40 % of all lung cancer. LUAD as one of the
most aggressive and rapidly fatal tumor types, the overall survival of patients less than 5 years [24]. Moreover, patients with LUAD
show high resistance to conventional radiotherapies and chemotherapies. Based on the current research results, the sensitivity of
treatment and tumor progress were closely related to the susceptibility of LUAD tumor cells to undergo cell death [25]. Considering
different RCD patterns showed a considerable degree of crosstalk, we collected the hub-genes of 12 RCD patterns and compressively
analyzed these hub-genes synergistic effect in predicting LUAD prognosis and immunotherapy benefit.
In present research, we collected 1254 concatenated genes related to 12 RCD patterns. Survival analysis, LASSO and AIC of

multivariate Cox regression analyses were performed successively, and we eventually determined 7 RCD-risk signatures (VDAC1,
KRT8, RBCK1, PRKCD, PEBP1, LIPT1, and RRAGD) and established a risk model. The patients with high-risk exhibited poorly survival.
And GSVA result also revealed that p53 signaling pathway significantly enriched in high-risk group. Of the 7 RCD-risk signatures,
VDAC1, KRT8, and RBCK1 were risk factors for LUAD patients’ OS, and PRKCD, PEBP1, LIPT1 and RRAGD were protective factors.
VDAC1 is a key player in mitochondria-mediated apoptosis and ablation of VDAC1 inhibit multiple cancer cells including lung cancer
cell proliferation, induce the modulation of tumor microenvironment components, and promote metabolic reprogramming and
inflammation, which influences cancer progression, migration, and invasion [26–28]. LUAD patients with high KRT8 expression
significantly reduced overall survival and recurrence-free survival [29]. PRKCD also known as PKCδ promotes non-small-cell lung
cancer cell survival and chemotherapeutic resistance [30]. PEBP1 was a protective factor in LUAD, which was also confirmed by
previous researches [31–33]. LIPT1 overexpression was associated with favorable outcome in breast cancer, clear cell renal cell
carcinoma, ovarian cancer, and gastric cancer [34]. These previous researches were consistent with the result in present study.
KRT8 is a member of the keratin family. Previous research has shown that KRT8 is overexpressed in gastric cancer cells [35]. Wang

et al. found that KRT8 is hypomethylated and highly expressed in lung adenocarcinoma, which is associated with poor prognosis [36].
In our study, we found that KRT8 promotes cell proliferation, migration and invasion of NCI-H1975 and A549 cells and linked to cell
cycle progression.
Function annotation suggested that humoral response, platelet degranulation and complement, and coagulation cascades were

significantly enriched, implying an interaction between RCD related-genes and the LUAD immune response. Furthermore, our research
also explored the expression of Cancer-Immunity Cycle suppressor gene in different risk group. The high-risk group had a lowly
expressed suppressor gene of tumor immunity. These finding were confirmed by previous researches in which RCD can alter tumor
growth via modulating immune responses. In view of the treatment sensitivity may depend on the susceptibility of LUAD cell to
undergo cell death. We further evaluated the risk model in predicting immunotherapy response and observed that the patients in low
risk-risk group had a better response ratio. VDAC1 is involved in affecting inflammatory responses of macrophages, dendritic cells and
CD4+ T cells [37]. PRKCD promotes tumor progression by stimulating extracellular matrix (ECM) and PD-L1 expression which leads to
immune exclusion and assists cancer cell escape from T cell surveillance in EGFR-mutated non–small cell lung cancer. Depletion of
PRKCD enhances the T cell infiltration and significantly sensitizes the tumor to ICIs therapy (αPD-1) in vitro and in vivo [38].The role
of other risk signatures in tumor immune has not been previously studied.

5. Conclusions

Collectively, the risk model based on 7 RCD-related risk signatures had a promising ability in predicting the OS of LUAD patients
and facilitated the recognition of immunotherapy responder. The present study also had some limitations. The expression of prognostic
7 RCD-related risk signatures and the predictive value of the require additional evaluation on basis of the clinical case.
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