
entropy

Article

F-Divergences and Cost Function Locality in Generative
Modelling with Quantum Circuits

Chiara Leadbeater 1,† , Louis Sharrock 1,2,† , Brian Coyle 1,3 and Marcello Benedetti 1,*

����������
�������

Citation: Leadbeater, C.; Sharrock, L.;

Coyle, B.; Benedetti, M.

F-Divergences and Cost Function

Locality in Generative Modelling

with Quantum Circuits. Entropy 2021,

23, 1281. https://doi.org/

10.3390/e23101281

Academic Editors: Diego Oliva and

Salvador Miguel Hinojosa Cervantes

Received: 7 September 2021

Accepted: 28 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cambridge Quantum Computing Limited, London SW1E 6DR, UK;
chiara.leadbeater@cambridgequantum.com (C.L.); louis.sharrock@cambridgequantum.com (L.S.);
brian.coyle@cambridgequantum.com (B.C.)

2 Department of Mathematics, Imperial College London, London SW7 2AZ, UK
3 School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
* Correspondence: marcello.benedetti@cambridgequantum.com
† These authors contributed equally to this work.

Abstract: Generative modelling is an important unsupervised task in machine learning. In this work,
we study a hybrid quantum-classical approach to this task, based on the use of a quantum circuit born
machine. In particular, we consider training a quantum circuit born machine using f -divergences.
We first discuss the adversarial framework for generative modelling, which enables the estimation
of any f -divergence in the near term. Based on this capability, we introduce two heuristics which
demonstrably improve the training of the born machine. The first is based on f -divergence switching
during training. The second introduces locality to the divergence, a strategy which has proved
important in similar applications in terms of mitigating barren plateaus. Finally, we discuss the
long-term implications of quantum devices for computing f -divergences, including algorithms which
provide quadratic speedups to their estimation. In particular, we generalise existing algorithms for
estimating the Kullback–Leibler divergence and the total variation distance to obtain a fault-tolerant
quantum algorithm for estimating another f -divergence, namely, the Pearson divergence.

Keywords: generative modelling; born machine; f -divergence; local cost function

1. Introduction

One of the most challenging technological questions of our time is whether existing
quantum computers can achieve quantum advantage in tasks of practical interest. Vari-
ational quantum algorithms (VQAs), which are well suited to the constraints imposed
by existing devices, have emerged as the leading strategy for achieving such a quantum
advantage [1–4].

In VQAs, a problem-specific cost function, which typically consists of a functional of
the output of a parameterised quantum circuit, is efficiently evaluated using a quantum
computer. Meanwhile, a classical optimiser is leveraged to train the circuit parameters in
order to minimise the cost function. This hybrid quantum-classical approach is robust to
the limited connectivity and qubit count of existing devices, and, by restricting the circuit
depth, also provides an effective strategy for error mitigation.

Given their flexibility, VQAs have been proposed for a vast array of applications.
Of particular relevance are applications of VQAs to machine learning problems, including
classification [5–10], data compression [11–13], clustering [14], generative modelling [15–32] ,
and inference [33].

In this paper, we focus on a hybrid quantum-classical approach to generative mod-
elling using a born machine [34]. We adopt an adversarial framework to this task, in which
a born machine (the ‘generator’) generates samples from the target distribution, while a
binary classifier (the ‘discriminator’) attempts to distinguish between generated samples
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and true samples. This is sometimes referred to in the literature as a quantum generative
adversarial network.

In a generalisation of existing approaches, we consider training the born machine
with respect to any f -divergence as a cost function. Well-known examples of f -divergences
include the Kullback–Leibler divergence (KL), the Jensen–Shannon divergence (JS), the
squared Hellinger distance (H2), the total variation distance (TV), and the Pearson diver-
gence (χ2). In the adversarial framework, it is straightforward to estimate the f -divergence:
any such divergence is defined in terms of the density ratio of the target distribution and
model distribution, which can be estimated using standard techniques via the output of the
binary classifier [35]. On this basis, we propose a heuristic for training the born machine,
based on the idea of dynamically switching the f -divergence during training in order to
optimise the rate of convergence and utilise favourable qualities of each one. We also
propose a second heuristic, based on introducing locality into the f -divergence, motivated
by the now well-established connection between locality and barren plateaus in VQA
training landscapes [36,37]. For both heuristics, we provide numerical evidence to suggest
that they can lead to (sometimes significant) performance improvements, particularly in
under- and over-parameterised circuits.

We conclude this paper with a discussion of the longer-term implication of quantum
devices for computing the f -divergences between two probability distributions. In particu-
lar, we discuss the existence of quadratic speedups for the estimation of TV and KL shown
by [38–40] and extend these results to an algorithm for estimating χ2, assuming access to a
fault-tolerant quantum computer.

The remainder of this paper is organised as follows. In Section 2, we begin by intro-
ducing generative modelling, Born machines, and f -divergences. In Section 3, we then
introduce the two training heuristics for the born machine. In Section 4, we provide nu-
merical results to demonstrate the performance of the heuristics. In Section 5, we discuss
the long-term implications of quantum devices for computing f -divergences. Finally, in
Section 6, we offer some concluding remarks.

2. Background
2.1. Generative Modelling

Generative modelling is an unsupervised machine learning task in which the goal is
to learn the probability distribution which generates a given data set. More precisely, given
access to i.i.d. samples x1, . . . , xm

i.i.d.∼ p(x) in Rp, the objective of generative modelling
is to learn a model qθ(x), typically parameterised by a d dimensional parameter vector,
θ ∈ Rd, which closely resembles p(x). Generative models find applications in a wide range
of problems, ranging from the typical modalities of machine learning such as text [41],
image [42] and graph [43] analysis, to problems in active learning [44], reinforcement
learning [45], medical imaging [46], physics [47], and speech synthesis [48].

Broadly speaking, one can distinguish between two main categories of generative
model: prescribed models and implicit models [49,50]. Prescribed models provide an
explicit parametric specification of the distribution of the observed random variable x,
directly specifying the density qθ(x). An example of a prescribed model is the ubiquitous
multivariate Gaussian distribution. Implicit models, on the other hand, specify only the
stochastic procedure which generates samples. An example of an implicit model is a
complex computer simulation of some physical phenomenon, for which the likelihood
function cannot be computed. Since, in this case, one no longer models qθ(x) directly,
valid objectives can now only involve quantities (e.g., expectation values) which can be
estimated efficiently using samples.

In the last three decades, a number of generative models, both explicit and implicit,
have been proposed in the machine learning literature. These include autoregressive
models [51,52], normalising flows [53–55], variational autoencoders [56,57], Boltzmann
machines [58–60], generative stochastic networks [61], generative moment matching net-
works [62,63], and generative adversarial networks [64]. These models are classically
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implemented using deep neural network architectures. In recent years, however, hybrid
quantum-classical approaches based on parameterised quantum circuits have also gained
traction [15–32].

2.2. Born Machines as Implicit Generative Models

By directly exploiting born’s probabilistic interpretation of quantum wave func-
tions [65], it is possible to model the probability distribution of classical data using a
pure quantum state. Such models are referred to as born machines [34]. We are particularly
interested in born machines for which the quantum state is obtained via a parameterised
quantum circuit (as opposed to, say, a continuous time Hamiltonian evolution). These are
known as quantum circuit born machines (QCBMs) [15,16].

The use of QCBMs as generative models is in large part motivated by their expres-
siveness. Indeed, it is now well established that born machines have greater expressive
power than classical models, including neural networks [20] and partially matrix product
states [66] (see also [19]). This means, in particular, that QCBMs can efficiently represent
certain distributions which are classically intractable to simulate (e.g., [67–69]). These
include those recently used in a demonstration of quantum supremacy [70].

Let us consider a binary vector x ∈ {0, 1}n, with n the number of qubits. A QCBM
takes a product state |0〉⊗n as input and evolves it into a normalised output state |Ψ(θ)〉
via a parameterised quantum circuit U(θ). One can generate n-bit strings according to

x ∼ qθ(x) = |〈x|Ψ(θ)〉|2, (1)

where |x〉 are computational basis states; sampling from this distribution then consists of
a simple measurement. Since we only have access to x ∼ qθ(x) and not the probabilities,
qθ(x) themselves, the born machine can be regarded as an implicit generative model.
We consider parameterised quantum circuits U(θ) of the form

U(θ) =
D

∏
i=1

WiUi(θi), (2)

where {Wi}D
i=1 is a set of fixed unitaries, {Ui(θi)}D

i=1 is a set of parameterised unitaries,
and D is the depth of circuit. We also assume that Ui(θi) = e−iθiVi are rotations through
angles θi, generated by Hermitian operators Vi with eigenvalues ±1. In this case, one can
compute partial derivatives of qθ(x) using the parameter-shift rule [71], which reads

∂θi qθ(x) = qθ+i
(x)− qθ−i

(x), (3)

where θi± = θ± π
4 ei, with ei a unit vector in the ith direction. More generally, this formula

allows one to express the first-order partial derivative of an expectation of a function h as

∂θiEx∼qθ(x)[h(x)] = Ex∼q
θ+i

(x)[h(x)]−Ex∼q
θ+i

(x)[h(x)]. (4)

The major challenge in using any implicit generative model is designing a suitable
objective function. As noted before, one cannot compute qθ(x) directly, and thus valid
objectives can only involve statistical quantities (e.g., expectations) which can be efficiently
computed using samples. For generative models based on QCBMs, various objectives
have been proposed, including moment-matching, maximum mean discrepancy, Stein and
Sinkhorn divergences, and adversarial objectives based on the Kullback–Leibler divergence.
In this paper, we propose a more general class of objective functions— f -divergences—for
training QCBMs.

2.3. Adversarial Generative Modelling with f -Divergences

Let f : (0, ∞)→ R be a convex function with f (1) = 0 and strict convexity at 1. Sup-
pose that p(x) = 0 whenever qθ(x) = 0. The f -divergence, or Csiszár divergence [72,73],
between qθ and p is defined as
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D f (p‖qθ) = Ex∼qθ(x)

[
f
(

p(x)
qθ(x)

)]
. (5)

Suppose instead that qθ(x) = 0 whenever p(x) = 0. Then the f -divergence can be written
in terms of f ∗, the convex conjugate of f , as

D f (p‖qθ) = Ex∼p(x)

[
f ∗
(

qθ(x)
p(x)

)]
. (6)

In what follows, we will generally prefer this formulation, as it leads to simpler expressions.
The function f is called the generator of the divergence. For different choices of f , one

obtains well-known divergences such as TV, KL, and χ2. In this paper, we investigate the
effect of this choice on the training of a QCBM. To ensure a fair comparison, we assume that
the generators are standardised and normalised such that f ′(1) = 0 and f ′′(1) = 1 [74].
This ensures that D f (p‖qθ) ≥ 0 with equality if and only if p ≡ qθ, even if p and qθ are
unnormalised. Note that one can normalise and standardise

We minimise the f -divergence using gradient-based methods. We thus require the
derivative of D f with respect to θi. Using the chain and the parameter-shift rules, it is
straightforward to compute

∂θi D f (p‖qθ) = ∑
x

p(x)∂θi f ∗
(

qθ(x)
p(x)

)
(7)

= ∑
x

p(x) f ∗′
(

qθ(x)
p(x)

)
1

p(x)
∂θi qθ(x) (8)

= ∑
x

f ∗′
(

qθ(x)
p(x)

)(
qθ+i

(x)− qθ−i
(x)
)

(9)

= Ex∼q
θ+i

(x)

[
f ∗′
(

qθ(x)
p(x)

)]
−Ex∼q

θ−i
(x)

[
f ∗′
(

qθ(x)
p(x)

)]
. (10)

We summarise some well-known f -divergences, the convex conjugates of their gener-
ators, and their parameter-shift rules, in Tables 1 and 2. We also plot some of the convex
conjugate generators in Figure 1.
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Figure 1. Convex conjugate f ∗ (left panel) and derivative f ∗′ (right panel) of the generator f for
several f -divergences. All generators have been standardised with f ′(1) = 0 and normalised with
f ′′(1) = 1, except for the TV.

Returning to Equation (10), it is clear that the problem of computing the gradient
reduces to that of estimating the probability ratio r(x) = qθ(x)

p(x) . We choose to define r(x) in
this way since it is more natural when one is interested with writing the f -divergence in
terms of f ∗, as we do here. Note that in some literature the ratio is defined in the reverse
manner by switching the probabilities. We can estimate the probability ratio from the
output of a binary classifier [35]. Suppose we assign samples x∼qθ(x) to one class, and
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samples x∼p(x) to another class. Suppose, in addition, that one has access to an exact
binary classifier d∗(x), which outputs the probability that the sample x originated from
qθ(x). Then, assuming uniform prior probabilities for the two classes, it is straightforward
to show via Bayes’ theorem that (see Section 2.2 in [50]).

Table 1. A summary of well-known f -divergences, including the definition, the convex conjugate of the generator f ∗, and
the corresponding parameter-shift rule in terms of the ratio r(x) = qθ(x)

p(x) . The ‖ symbol indicates that the divergence is
asymmetric, while a comma indicates that it is symmetric. Interestingly, one can construct symmetric f -divergences for
every asymmetric one (see Table 2).

f -Divergence Definition f∗ Parameter-Shift

total variation TV(p, qθ) =
1
2 ∑ |p(x)− qθ(x)| 1

2 |r− 1| 1
2Eqθ+

[sgn(r(x)− 1)]− 1
2Eqθ− [sgn(r(x)− 1)]

squared Hellinger H2(p, qθ) = ∑ (
√

p(x)−
√

qθ(x))
2

2(
√

r− 1)2 −2Eqθ+

[
1√
r(x)

]
+ 2Eqθ−

[
1√
r(x)

]
Kullback–Leibler
(type I, forward) KL(p‖qθ) = Ep

[
log p(x)

qθ(x)

]
− log r + r− 1 −Eqθ+

[
1

r(x)

]
+Eqθ−

[
1

r(x)

]
Kullback–Leibler
(type I, reverse) KL(qθ‖p) = Eqθ

[
log qθ(x)

p(x)

]
r log r− r + 1 Eqθ+

[log r(x)]−Eqθ− [log r(x)]

Kullback–Leibler
(type II, forward) KL(p| p+qθ

2 ) = Ep

[
log 2p(x)

p(x)+qθ(x)

]
4 log 2

r+1 + 2(r− 1) −4Eqθ+

[
1

r(x)+1

]
+ 4Eqθ−

[
1

r(x)+1

]
Kullback–Leibler
(type II, reverse) KL(qθ‖ p+qθ

2 ) = Eqθ

[
log 2qθ(x)

p(x)+qθ(x)

]
4r log 2r

r+1 + 2(1− r)
4Eqθ+

[
log r(x)

r(x)+1 + 1
r(x)+1

]
−4Eqθ−

[
log r(x)

r(x)+1 + 1
r(x)+1

]
Pearson

(forward) χ2(p‖qθ) = ∑ (p(x)−qθ(x))2

p(x)
(r−1)2

2 Eqθ+
[r(x)]−Eqθ− [r(x)]

Pearson
(reverse) χ2(qθ‖p) = ∑ (p(x)−qθ(x))2

qθ(x)
(r−1)2

2r − 1
2Eqθ+

[
1

r(x)2

]
+ 1

2Eqθ−

[
1

r(x)2

]

Table 2. A summary of the symmetric f -divergences corresponding to some well-known asymmetric f -divergences,
including the definition, and the parameter-shift rule.

f -Divergence Definition Parameter-Shift

symmetric Kullback–Leibler
(type I, Jeffrey) J(p, qθ) = KL(p‖qθ) + KL(qθ‖p) 1

2Eqθ+

[
log r(x)− 1

r(x)

]
− 1

2Eqθ−

[
log r(x)− 1

r(x)

]
symmetric Kullback–Leibler

(type II, Jensen–Shannon) JS(p, qθ) = KL(p‖ p+qθ

2 ) + KL(qθ‖ p+qθ

2 ) 2Eqθ+

[
log r(x)

1+r(x)

]
− 2Eqθ−

[
log r(x)

1+r(x)

]
symmetric Pearson χ̄2(p, qθ) = χ2(p‖qθ) + χ2(qθ‖p) 1

4Eqθ+

[
2r(x)− 1

r(x)2

]
− 1

4Eqθ−

[
2r(x)− 1

r(x)2

]

r(x) =
d∗(x)

1− d∗(x)
. (11)

In practice, we do not have access to the exact classifier d∗(x). However, under the
assumption that we can efficiently sample from both distributions, we can train a classifier
dφ(x), parameterised by φ, to distinguish between the two distributions. One can use any
proper scoring rule to train the classifier [50]. A typical choice is the negative cross entropy,
given by

L(φ; θ) = −Ex∼qθ(x)
[
log dφ(x)

]
−Ex∼p(x)

[
log
(
1− dφ(x)

)]
. (12)
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The classifier seeks to minimise this objective, which corresponds to low classification
errors. We emphasise that, in this objective, θ is fixed at the current QCBM parameters.
The resulting classifier approximates the probability ratio for the current QCBM as

r(x) ≈ dφ(x)
1− dφ(x)

. (13)

This can be plugged into Equation (10) to approximate the gradient. With this in mind, we
define the cost function for the QCBM as

J (θ; φ) = Ex∼qθ(x)

[
f ∗′
(

dφ(x)
1− dφ(x)

)]
, (14)

where now the parameters of the classifier φ are fixed and the argument of the expectation
value is independent of θ. The adversarial generative modelling can be regarded as the
following optimisation problem

θ∗ = arg min
θ

J (θ; φ), (15)

φ∗ = arg min
φ

L(φ; θ), (16)

where the required expectation values are estimated from samples. In principle, the
classifier can be trained to optimality in order to provide the best possible ratio for the
generative model. Alternatively, the two objective functions can be optimised in tandem,
using alternating gradient descent steps or a two-timescale gradient descent scheme [75].

3. Training Heuristics
3.1. Switching f -Divergences

In this Section, we describe a heuristic for dynamically switching between f -divergences
throughout the training process of our generative model (specifically the QCBM).

To motivate this heuristic, we examine how D f (p‖qθ) varies with respect to values of
r(x) = qθ(x)

p(x) . We begin by noting that all f -divergences which can be standardised agree on
the divergence between nearby distributions [76], but can otherwise exhibit very different
behaviours. In particular, we focus on their initial rates of convergence.

One may rationalise the different rates of convergence for each divergence at the
beginning of training by considering the following argument [50,64,77]. Consider n qubits,
such that there are 2n different values of r(x). For a successful training, all these values
need to converge towards 1 (which implies our goal that qθ ≡ p). Now suppose we were to
estimate the divergence in Equation (6) using a set of samples from the target distribution
x1, . . . , xm

i.i.d.∼ p(x). At the beginning of training, qθ is initialised at random and is therefore
expected to be far from the target. This means that qθ(xi)� p(xi) for most of the samples.
In other words, at the beginning of training most of the samples yield probability ratios
r(xi)� 1.

It is evident from the left panel of Figure 1 that some divergences, including TV, vary
slowly in the region where r � 1, and are therefore more liable to saturation in the initial
stages of training. Other divergences, such as forward KL and reverse χ2, generate strong
gradients in this region. In the limiting case where p and qθ have disjoint supports, TV
and JS saturate, whereas forward KL diverges [78]. This problem is well known within
the context of training generative adversarial networks; since an idealised formulation
optimises JS, several alternative cost functions have been proposed to mitigate its slow
initial convergence [64,77–79].

Though we can only apply this logic to the particular regime where p and qθ are far
apart, it is also evident from Figure 1 that the f -divergences exhibit a wide diversity of
behaviours throughout most of training. We propose to exploit this with the following
heuristic. At every optimisation step, we choose an f -divergence for each direction in
parameter space that generates the highest gradient in said direction. This requires no
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additional quantum circuit evaluations since we only need to evaluate Equation (10) for
the different generators. Concretely, the heuristic can be written as follows. For each step,
to update parameter θi, we choose the f -divergence labelled j, D f j

, which obeys:

|∂θi D f j
| > |∂θi D fk

| ∀k ∈ F . (17)

For simplicity, in this paper, we restrict the set F to only contain those f -divergences
illustrated in Figure 1. We call this heuristic f -switch.

3.2. Local Cost Functions

In this Section, we outline an alternative heuristic for training the QCBM, based on
introducing locality into the cost function. Let us briefly provide some motivation for
this approach. One of the most fundamental challenges associated with hybrid quantum-
classical algorithms is the barren plateau phenomenon, whereby the gradient of the cost
function vanishes exponentially in the number of qubits [36,37,80–88]. This phenomenon
can arise due to deep unstructured ansätze [80], large entanglement [83,84], high levels of
noise [88], and global cost functions [36,37]. As such, it is a rather general phenomenon
in many quantum machine learning applications, including generative models. In the
presence of barren plateaus, exponential precision (i.e., an exponential number of samples)
is required in order to resolve against finite sampling noise and determine a minimising
direction in the cost function landscape. Since the standard objective of quantum algorithms
is to achieve a polynomial scaling in the system size (as opposed to the exponential scaling
of classical algorithms), barren plateaus can destroy any hope of a variational quantum
algorithm achieving quantum advantage.

Although, in this paper, we do not directly analyse the emergence of barren plateaus
in the QCBM, we are nonetheless motivated by existing results on barren plateaus. We
focus, in particular, on the connection between barren plateaus and global cost functions
(i.e., cost functions defined in terms of global observables), given that such cost functions
naturally arise in hybrid quantum-classical generative models. The connection between
trainability and locality was first established by Cerezo et al. [36], who proved that cost
functions defined in terms of global observables exhibit barren plateaus for all circuit
depths in circuits composed of random two-qubit gates which act on alternating pairs of
qubits (i.e., blocks forming local 2-designs). Meanwhile, local cost functions do not exhibit
barren plateaus for shallow circuits; in this case, cost function gradients vanish at worst
polynomially in the number of qubits.

On the basis of this result, there is clear motivation to seek a local cost function (i.e.,
a cost function defined in terms of local observables) for the hybrid quantum-classical
generative model introduced in Section 2.3. We now attempt to make some progress
towards this goal.

We write qi
θ(xi) to denote the marginal distribution of the ith element of the bit-string

x = (x1, . . . , xn). Using Jensen’s inequality on Equation (6), it can be shown that the f -
divergence between joint distributions is larger than the f -divergence between marginal
distributions. Thus, we have

D f (p(x)‖qθ(x)) ≥ 1
n

n

∑
i=1

D f (pi(xi)‖qi
θ(xi)). (18)

Our heuristic consists of minimising the right-hand side of this inequality. Even
though this is a lower-bound to the original cost, it is a fully local cost function. Later, we
show how to generalise this approach allowing for a trade off between trainability and
accuracy. We call this heuristic f-local.

Let us show the difference between the global cost function (left-hand side of the
inequality) and the local cost function (right-hand side) by means of an example. For ease
of exposition, we assume in this discussion that the f -divergence of interest is the reverse
KL with generator f ∗(r) = r log r− r + 1. We emphasise, however, that the methodology
is generic to any f -divergence. We begin by rewriting the expression in Equation (1) as
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qθ(x) = 〈0|U†(θ)HxU(θ)|0〉, (19)

where we have defined Hx := |x〉〈x|. We can thus write the reverse KL in the form of a
generic cost function (see, e.g., [3]) as

KL(qθ‖p) = ∑
x

qθ(x) log
qθ(x)
p(x)

= ∑
x

gx

(
〈0|U†(θ)HxU(θ)|0〉

)
, (20)

where we define gx(qθ) := qθ log qθ

p(x) . This cost function is clearly global, since the observ-
ables, Hx, act on all qubits.

Now, rewriting Equation (20) in terms of the adversarial approximation in Equation (14),
we have

J (θ; φ) = ∑
x

qθ(x) logit
(
dφ(x)

)
= ∑

x
hx

(
〈0|U†(θ)HxU(θ)|0〉

)
, (21)

where hx(qθ) := qθ logit(dφ(x)), and logit(y) := log y
1−y . It is interesting to note that the

global observable Hx only enters into hx(qθ) via the first term, namely qθ(x). It is arguable,
however, that the second term in hx(qθ), namely logit(dφ(x)) should also be regarded as a
global quantity.

We now consider the fully local cost function in the right-hand side of Equation (18).
Applying the adversarial approximation to each of the n probability ratios, the QCBM
objective is

J L(θ; φ) =
1
n

n

∑
i=1

∑
xi∈{0,1}

qi
θ(xi) logit

(
di

φ(xi)
)
=

1
n

n

∑
i=1

∑
xi∈{0,1}

hL
xi

(
〈0|U†(θ)HL

xi
U(θ)|0〉

)
, (22)

where we have replaced the global observable Hx in Equation (21) by the set of local
observables

HL
xi
= |x〉〈x|i ⊗ 1ĩ. (23)

Here, |x〉〈x|i is a projector on the computational basis for qubit i, and 1ĩ denotes the
identity on all qubits except qubit i. We have also replaced the ‘global’ function hx(qθ) in
Equation (21) by the set of local functions

hL
xi
(pi

θ) = qi
θ logit

(
di

φ(xi)
)

. (24)

Here, {di
φ(xi)}n

i=1 is a set of n ‘local’ classifiers, which act only on the marginal distribution
corresponding to the ith qubit. That is to say, di

φ are trained to distinguish between samples
xi ∼ qi

θ(xi) and samples xi ∼ pi(xi). One may ask why it is not sufficient to simply make
only the observable, Hx, local as is done in other literature addressing the barren plateau
problem [36]. In our case, it turns out that if one does not also make the functions hx local,
in other words by keeping the classifier ‘global’, the cost function becomes intractable to
compute due to a need to explicitly compute joint probabilities from the circuit, qθ. This
hints at the subtlety that appears when attempting to address barren plateaus in generative
modelling, that does not necessarily exist in other variational algorithms.

We are, of course, interested in whether the local cost function is faithful to the original
cost function. Recall that we are minimising the lower bound in Equation (18). It is clear
that, if the local cost function is minimised, so that D f (qi

θ‖pi) = 0 for all i ∈ {1, . . . , n}, and
all of the marginals coincide, there is still no guarantee that the joint distributions will be
identical. This observation suggests that, while this cost function may be more trainable
than the original cost function on account of its locality, it may also be significantly less
accurate. In an attempt to remedy this, we can instead consider a more general k-local cost
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function which acts on subsets of k qubits. In particular, by defining xi:j := (xi, . . . , xj), we
can introduce

J L(k)(θ; φ) =
1

n− k + 1

n−k+1

∑
i=1

∑
xi:i+k−1∈{0,1}k

qi:i+k−1
θ (xi:i+k−1) logit

(
di:i+k−1

φ (xi:i+k−1)
)

(25)

=
1

n− k + 1

n−k+1

∑
i=1

∑
xi:i+k−1∈{0,1}k

hL(k)
xi:i+k−1

(
〈0|U†(θ)HL(k)

xi:i+k−1 U(θ)|0〉
)

, (26)

where

HL(k)
xi:i+k−1 = |x〉〈x|i:i+k−1 ⊗ 1 ˜i:i+k−1

, (27)

hL(k)
xi:i+k−1(q

i:i+k−1
θ ) = qi:i+k−1

θ logit
(

di:i+k−1
φ (xi:i+k−1)

)
, (28)

and where {di:i+k−1
φ (xi:i+k−1)}n−k+1

i=1 is a set of n− k + 1 ‘k-local’ classifiers, defined in an
obvious fashion. This k-local cost function now approximates the sum of the reverse KL
between the k-marginals (of neighbouring qubits) of the target distribution p(x), and the
variational distribution qθ(x).

Arguing as before, it is clear that the k-local cost function will admit additional global
minima in comparison to the global cost function for any 1 ≤ k < n. In particular, when
the k-local cost function is minimised, the k-nearest neighbour marginals of p(x) and qθ(x)
coincide. One can expect, however, that as the value of k is increased, not only will the
number of additional minima decrease, but the disparity between the joint distributions of
the target and the model at these global minima will decrease. This suggests that in order to
achieve a ‘sweet spot’ between trainability and accuracy, a reasonably approach is to start by
optimising the k-local cost function with a small value of k (promoting trainability), before
iteratively increasing the value of k (promoting accuracy) until k = n, thus recovering the
global cost function.

We should remark that, while for ease of notation we have defined the k-local cost
function in terms of marginals with respect to neighbouring qubits (xi, . . . , xi+k−1), one
can in theory choose any sets of qubits of size at most k (e.g., nearest neighbours, all
possible combinations, and randomly sampled). In general, for a fixed value of k, this
choice will influence the accuracy of the objective function, as well as its computational cost,
and should be made on a case-by-case basis on the basis of the available computational
resources.

4. Numerical Results

In this Section, we present numerical results to illustrate the performance of the
training heuristics proposed in Section 3.

Preliminaries
Throughout this Section, we utilise a QCBM composed of alternating layers of single

qubit gates and entangling gates (see Figure 2). We implement the quantum circuit using
pytket [89] and execute the simulations with Qiskit [90]. The parameters of the QCBM are
updated using stochastic gradient descent with a constant learning rate, which is tuned to
each of the simulations.
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Figure 2. The ansatz employed in numerical simulations (shown for three qubits). The ansatz consists
of D alternating layers of single qubit gates and entangling gates. The single qubit layers consists of
two single qubit rotations, one around the z axis and one around the x axis. The entangling layer
is composed of a ladder of CZ gates. There is an additional layer of Hadamard gates prior to the
first layer, and an additional layer of single qubit rotations after the final layer. The total number of
parameters in a circuit of depth D is given by np = n(2D + 2), where n is the number of qubits.

Regarding the classical component of the adversarial generative model (i.e., the binary
classifier), we use either a fully connected feed-forward neural network with ReLU neurons
(NN), or a support vector machine with RBF kernel (SVM). Indeed, one rather surprising
byproduct of our numerical investigation is that the training performance of the adversarial
generative model could be improved, at times significantly, by using a SVM in place of
a NN for this component (see Figure 3). This, in itself, should be of some interest to
practitioners. Not only can SVMs be faster to train, but they depend on significantly
fewer hyper-parameters than NNs, whose performance is often highly dependent on
careful tuning of the number of hidden layers, the number of neurons in each hidden
layer, the learning rate, the batch size, etc. While we do not suggest that SVMs will
always outperform NNs in this setting, this does indicate that SVMs may represent a viable
alternative. We implement the NNs using PyTorch [91], while the SVMs are implemented
with scikit-learn [92]. The particular hyper-parameters used in each simulation are
specified below.
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(a) 3 qubits
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(b) 4 qubits
Figure 3. Training performance of the QCBM in illustrative 3 qubit and 4 qubit experiments using
4 different classifiers. The classifiers are trained using 500 samples. We plot the bootstrapped median
(solid line), as well as 90% confidence intervals (shaded).

In the majority of our numerical simulations, we consider a QCBM with 3 qubits. This
corresponds to a discrete target distribution p which takes 23 values. We generally also
assume that the target distribution corresponds to a particular instantiation of the QCBM,
for a fixed number of layers, Dp. By varying the number of layers, Dqθ

used to train the
generative model, we can then investigate different parameterisation regimes of interest.
In the case that the number of layers used to generate the target is greater than the number
of layers used in the model (Dp > Dqθ

), the model is under-parameterised (or severely
under-parameterised). Meanwhile, when the number of layers used to generate the target
and the number of layers used in the model are equal (Dp = Dqθ

), the model is said to be
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exactly parameterised. In these cases, a solution to the learning problem is guaranteed to
exist: there exists θ = θ0 such that p ≡ qθ0 . Finally, when the number of layers used to
generate the target is less than the number used in the model (Dp < Dqθ

), the model is
over-parameterised (or severely over-parameterised). We provide a more precise definition
of these different cases, as applied to our numerics, in Table 3.

Table 3. The different parameterisation regimes used in the 3 qubit numerical simulations.

Severely over
Parameterised
(OO)

over
Parameterised
(O)

Exactly
Parameterised
(E)

under
Parameterised
(U)

Severely under
Parameterised
(UU)

Number of parameters (layers)
used to generate the target p

12 parameters
(1 layer)

12 parameters
(1 layer)

12 parameters
(1 layer)

30 parameters
(4 layers)

30 parameters
(4 layers)

Number of parameters (layers)
used for the model qθ

30 parameters
(4 layers)

24 parameters
(3 layers)

12 parameters
(1 layer)

18 parameters
(2 layers)

12 parameters
(1 layer)

For each of the settings (i.e., choice of circuit depth for the target and model, choice of
heuristic, number of qubits) explored, we train the generative model using nine indepen-
dent parameter initialisations. We then use a bootstrapping procedure to provide a more
robust estimate of the median cost at each training epoch. We first take samples of size nine
from the outcome of the nine independent experiments, 10,000 times with replacement.
We then compute the median cost across each set of samples to obtain a distribution of
10,000 medians. Using this distribution, we compute the median and obtain error bars
from the 5th and 95th percentiles, corresponding to a 90% confidence interval.

4.1. Switching f -Divergences

We begin by considering the performance of the heuristic introduced in Section 3.1.
The f -divergences that can be standardised locally behave as KL to second order [76].
Notably, TV cannot be standardised; indeed, it is straightforward to show that TV provides
an upper bound for all other f -divergences with f ′′(1) = 1 in this regime. For this reason,
we evaluate both the exact TV and the exact KL to measure performance.

We begin by reporting the results obtained using an exact classifier, for each of the
parameterisation regimes given in Table 3. The generator is trained using 1000 samples per
iteration. The results are given in Table 4.

Table 4. Performance of the QCBM trained using the TV and the f -divergence heuristic for 3 qubits in over-, under-, and
exactly parameterised regimes. We show the bootstrapped median of the TV (top two rows) and the KL (bottom two rows)
after 500 epochs. The asterisk (*) on some of the experiments indicates that the cost is still converging. The bold indicates
the regimes where f -switch significantly outperforms the other methods.

D f
Evaluated

D f
Used in Training

OO
(12, 30)

O
(12, 24)

E
(12, 12)

U
(30, 18)

UU
(30, 12)

TV TV
(
1.12+0.45

−0.28
)
× 10−2 (

8.4+1.2
−1.0

)
× 10−3 (

1.00+1.51
−0.12

)
× 10−2 (

1.06+0.26
−0.23

)
× 10−2 (

1.4+2.4
−0.7

)
× 10−2

TV f -switch
(

0.6+3.8
−0.5

)
× 10−5 *

(
2.5+2.5

−2.1

)
× 10−3 *

(
3.1+1.8
−1.9

)
× 10−2 (

0.65+0.27
−0.51

)
× 10−2 (

1.8+2.9
−0.9

)
× 10−2

KL TV
(
3.5+2.1
−1.3

)
× 10−4 (

2.0+0.6
−0.4

)
× 10−4 (

2.6+14.8
−2.3

)
× 10−3 (

3.7 +1.7
−92.6

)
× 10−4 (

0.6+24.3
−0.4

)
× 10−3

KL f -switch
(

0.0182+1.383
−0.012

)
× 10−8 (

1.8+20.9
−1.7

)
× 10−5 *

(
3.5+9.1
−2.0

)
× 10−3 (

2.4+1.6
−2.4

)
× 10−4 (

1.8+4.3
−1.5

)
× 10−3

Our results indicate that the heuristic is able to outperform TV when the QCBM
is (severely) over-parameterised. This may be due to the extra degrees of freedom in
the model. These allow for more discrepancies between the loss landscapes of the f -
divergences, which the heuristic is able to exploit. In Figures 4 and 5, we provide a more
detailed illustration of the training performance of the f -switch heuristic in this regime.
Figure 4 corresponds to an exact classifier: in this case, use of the heuristic significantly
improves the convergence of the QCBM. Figure 5 corresponds to a trained classifier, trained
on 1000 samples per iteration: in this case, use of the heuristic can lead to marginal
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performance improvements with respect to TV (left-hand figure). The remaining results in
this Section are all reported for an exact classifier.
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,q
θ
)

0 200 400
Epoch

10−9

10−7

10−5

10−3

10−1

K
L

( p
‖q
θ
)

TV (p, qθ)

f -switch

Figure 4. Performance of the QCBM trained using the TV (green) and the f -divergence heuristic (red)
for 3 qubits in the severely over-parameterised case OO(12,30), using an exact classifier. We show the
bootstrapped median (solid line) and 90% confidence intervals (shaded) of the TV (left) and the KL
(right).

0 500 1000
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10−1
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Epoch

10−3
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100
K

L
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Figure 5. Performance of the QCBM training using the TV (green) and the f -divergence heuristic
(red) for 3 qubits in the severely over-parameterised case OO(12,30), using a trained SVM classifier.
We show the bootstrapped median (solid line) and 90% confidence intervals (shaded) of both the TV
(left) and the KL (right).

The average performance of the heuristic is similar to TV in the exactly and under-
parametrised regimes. There are, however, initial parameter configurations within these
regimes for which the heuristic significantly outperforms TV. In Figure 6, we plot the
median losses obtained throughout the training of the QCBM in the under-parametrised
U(30, 18) regime. The best-performing experiment in this regime is also presented in
Figure 7, alongside all the other f -divergences considered in Figure 1. After 200 epochs,
the training method that solely uses TV has converged, but all the other divergences,
including the heuristic, continue to converge exponentially quickly to smaller losses. In
the under-parameterised regime, the ansatz is not guaranteed to contain the true solution.
However, after reaching a KL of ∼10−3, these f -divergences traverse similar landscapes.
Since the f -switch heuristic is shown to reach a KL of ∼10−5, we can assume that all of
these f -divergences will converge to the global minimum, with the heuristic arriving first.
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Figure 6. Performance of the QCBM training using the TV (green) and the f -divergence heuristic
(red) for 3 qubits in the under-parameterised case U(30,18). We show the bootstrapped median (solid
line) and 90% confidence intervals (shaded) of both the TV (left) and the KL (right).
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Figure 7. Performance of the QCBM trained using several f -divergences for 3 qubits in the under-
parameterised case U(30, 18). The parameters are initialised using the parameters which gave the
lowest cost during training in Figure 6. We show the exact TV (left) and the exact KL (right).

Finally, in Figure 8, we illustrate the mechanics of the f -switch heuristic. In particular,
we plot which f -divergence is ‘activated’ for each direction in the parameter space, at each
epoch of the training in Figure 7.
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Figure 8. f -divergences chosen throughout the training of the heuristic in Figure 7 in each of the
18 directions in parameter space.

We remark that as the number of qubits is increased, the randomly initialised model
and the target distributions are expected to be increasingly further apart. The heuristic can
pick the divergence that provides the highest initial learning signal. For this reason, we
expect the heuristic to become particularly useful as the number of qubits is increased.
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4.2. Local Cost Functions

We now turn our attention to the heuristic introduced in Section 3.2, incorporating
locality in the cost function, dubbed f -local. In this Section, the target distribution is a
discretised Gaussian. All classifiers are neural networks with 1 hidden layer made of 10 k
ReLU neurons, where k is the locality parameter. The number of layers in the QCBM equals
the number of qubits, D = n. All expectation values are estimated using 500 samples. In
Figure 9, we plot the training performance of the QCBM using the global cost function and
several k-local cost functions, for n = 4, 5, and 6 qubit experiments. For 4 and 5 qubits, we
show the bootstrapped median for the first 500 training epochs, as well as 90% confidence
intervals. For 6 qubits, we plot an illustrative training example for the first 1000 training
epochs.
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(b) 5 qubits
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Figure 9. Training performance of the QCBM using the global and local reverse KL for 4 qubits,
5 qubits, and 6 qubits, for a discretised Gaussian target distribution. For 4 qubits and 5 qubits, we
show the bootstrapped median (solid line), as well as 90% confidence intervals (shaded). For 6 qubits,
we plot an illustrative training example.

Let us make several remarks. Firstly, it would appear that the use of a k-local cost
function can indeed improve the convergence (rate) of the training procedure, particularly
during the initial stages. This improvement is increasingly evident as the number of qubits
is increased. As such, this approach could be regarded as a potential strategy for tackling
barren plateaus in higher-dimensional problems. However, we leave a thorough study of
this phenomenon to future work.

Secondly, it is clear that the use of any k-local cost function will eventually prohibit
convergence to the true target distribution. As discussed in Section 3.2, the k-local cost
function is minimised whenever the k-marginal distributions of the target and the model
coincide, which does not necessarily imply that their joint distributions are equal. The
smaller the value of k, the greater the possible disparity between two distributions whose
k-marginals coincide. This is clearly visualised in Figure 9: as the value of k decreases, the
asymptotic reverse KL achieved during training with the k-local cost function plateaus at
increasingly larger values.

As remarked previously, this suggests that an optimal training strategy may be to
start the training procedure with a small value of k, before iteratively increasing the value
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of k as training proceeds. For example, let us consider the 5 qubit experiment in Figure 9b.
Initially, the 3-local cost function (red) appears to yields the greatest convergence rate. After
approximately 150 epochs, the 4-local cost function (purple) now seems to be favourable.
Asymptotically, one can imagine that the global cost function (blue) will be preferable. One
observes similar behaviour in the 6 qubit experiment in Figure 9c.

In practice, of course, it is not possible to compute the reverse KL directly, and thus
another tractable metric is required in order to determine the optimal moment for switching
between the k-local cost functions. Alternatively, one can simply increase the locality of the
cost function after a set number of epochs.

5. Estimation of f -Divergences on Fault-Tolerant Quantum Computers

The above discussion is purely heuristic in nature and suitable for near-term quantum
computers, but we can also address f -divergences from the other end of the spectrum;
using fault-tolerant devices. In particular, we can leverage a recent line of study into
quantum property testing of distributions. The key question here is whether or not a
particular probability distribution has a certain property.

The work of [38] was one of the first to provide such an answer, demonstrating a
quadratic speedup for determining whether two distributions over [n] were close or ε-far in
TV. These quantum algorithms typically work in the oracle model, and we measure run time
relative to the number of queries to such an oracle (query complexity). In the classical case,
we define oracle access to a distribution over [n], p = {pi}n

i=1 as Op : [S]→ [n], S ∈ N. The
oracle is a mechanism to translate a uniform distribution over [S] to the true distribution
over [n]. In the quantum case, such an oracle is replaced by a unitary operator, Ôp acting
on a state encoding s ∈ [S], along with an ancillary register to ensure reversibility and
defined as: Ôp|s〉|0〉 = |s〉

∣∣Op(s)
〉
∀s ∈ [S].

We begin our discussion with the TV. The authors of [38] produced a quantum property
testing algorithm for the TV via an algorithm which actually estimates the TV quadratically
faster. The analysis in [38] resulted in an algorithm to estimate the TV up to additive error
ε, with probability of success of 1− δ, using O(

√
n/ε8δ5) samples. This was later improved

by [39] to the following

Theorem 1 (Section 4, Montanaro [39]). Assume p, q are two distributions on [n]. Then there is
a quantum algorithm that approximates TV(p, q) up to an additive error ε > 0, with probability of
success 1− δ, using O(

√
nε−3/2/ log(1/δ)) quantum queries.

These ideas were extended in [40] to also give an algorithm for computing the (for-
ward) KL quadratically faster than possibly classically (and also computing certain en-
tropies of distributions). Due to the existence of the ratio pi/qi in the expression for the
KL, we must make a further assumption, which was not necessary in the case of the TV
distance in Theorem 1. This assumption will also be necessary when considering many of
the other divergences in Table 1. In particular, we must assume the two distributions are
such that: pi/qi ≤ g(n), ∀i ∈ [n], for some g : N→ R+. (This assumption is appropriate
when one defines the KL in terms of the generator f and the ratio r = p/q. Conversely,
when one defines the KL in terms of the convex conjugate f ∗ and the ratio r = q/p, then
the appropriate assumption would instead be that qi/pi ≤ g(n), ∀i ∈ [n].) This assumption
is also necessary in the classical case. With this, we then have

Theorem 2 (Theorem 4.1, Li and Wu [40]). Assume p, q are two distributions on [n] satisfying
pi/qi ≤ g(n), ∀i ∈ [n] for some a : N → R+. Then there is a quantum algorithm that
approximates KL(p‖q) within an additive error ε > 0 with probability of success at least 2/3 using
Õ(
√

n/ε2) quantum queries to p and Õ(
√

n g(n)/ε2) quantum queries to q. (The notation Õ(·)
ignores factors that are polynomial in log n and log 1/ε.)

These results cover two of the f -divergences we use above (see Table 1). In particular,
the latter algorithm provide a quantum speedup since it is known that one requires
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Ω(n/ log(n)), Ω(ng(n)/ log(n)) classical queries to p and q respectively to estimate the
KL [93]. On the other hand, we get a speedup for the former algorithm since it is known
one requires Θ(n2/3ε−4/3) [94] queries to test if two distributions are near or far in TV
classically, which is an easier problem than estimating the metric directly.

The key idea behind both of these algorithms is to use a subroutine known as quantum
probability estimation or quantum counting, which is adapted from quantum amplitude estima-
tion. This provides a quadratic speedup in producing estimates p̃i, q̃i, of probabilities pi, qi
from the distributions p, q, which are specified via a quantum oracle. Once the estimates
of p̃i, q̃i have been produced via the quantum subroutine, both of the above algorithms
reduce to simple classical post-processing. This post processing involves constructing a
random variable, y, whose expectation value gives exactly the divergence we require. For
TV and KL estimation, this random variable is given by

yTV
i :=

|pi − qi|
pi + qi

, (29)

yKL
i := log

pi
qi

= log pi − log qi. (30)

By sampling this random variable according to another distribution r := (ri)
n
i=1 (to be

defined below), the quantity of interest is exactly given as an expectation value, namely

∑
i

rTV
i yTV

i = E[yTV] = TV(p, q), (31)

∑
i

rKL
i yKL

i = E[yKL] = KL(p‖q). (32)

One can check [38,40] that the suitable random variables are given by

rTV
i =

1
2
(pi + qi), (33)

rKL
i = qi. (34)

Due to the probabilistic nature of quantum mechanics, one cannot obtain the exact values
of the probabilities required to compute these expectation values. We must settle instead
for approximations of p, q, namely p̃, q̃. These estimates are achieved using the quantum
approximate counting lemma, which is an application of quantum amplitude estimation [95].
The work in [40] considered two versions of this algorithm, called EstAmp and EstAmp’. The
only difference between these two algorithms is the behavior when one of the probabilities,
qi, is sufficiently close to zero. This is problematic in the case of the KL estimation (and
indeed entropy estimation) in [40] since the relevant quantities diverge as qi → 0. The
same is true in our case, as q−1

i appears in many f -divergences.

Theorem 3 (Theorem 13, Brassard et al. [95] and Theorem 2.3, Li and Wu [40]). For any
k, M ∈ N, there is a quantum algorithm (named EstAmp) with M queries to a boolean function,
χ : [S]→ {0, 1} that outputs ã = sin2( lπ

M ) for some l ∈ {0, . . . , M− 1} such that

Pr
[

ã = sin2
(

lπ
M

)]
=

sin2(M∆π)

M2 sin2(∆π)
≤ 1

(2M∆)2 , (35)

where ∆ = |ω − l/M|. This promises |ã− a| ≤ 2πk
√

a(1−a)
M + k2 π2

M2 with probability at least
8/π2 for k = 1 and with probability greater than 1− 1

2(k=1) for k ≥ 2. If a = 0 then ã = 0.

The modified algorithm (EstAmp’) outputs sin2( π
2M ) when EstAmp outputs 0, and

outputs the same as EstAmp otherwise. Now that we have a mechanism for estimating
the probabilities, we need a final ingredient, which is the generic speedup of Monte Carlo
methods from [39]
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Theorem 4 (Theorem 5, Montanaro [39]). Let A be a quantum algorithm with output X such
that Var[X] ≤ σ2. Then for ε where 0 < ε < 4σ, by using O((σ/ε) log3/2(σ/ε) log log(σ/ε))
executions of A and A−1, Algorithm 3 in [39] outputs an estimate Ẽ[X] of E[X] such that

Pr
[
|Ẽ[X]−E[X]| ≥ ε

]
≤ 1/5. (36)

Using these results, we now extend Theorems 1 and 2 to cover another f -divergence
in Table 1: the forward Pearson divergence, χ2(p‖q). The convex conjugate of the generator
for this divergence is given by f ∗(r) = 1

2 (r− 1)2 or, equivalently, f ∗(r) = 1
2 (r

2 − 1). The
equivalence of these two generators is straightforward to demonstrate. In particular, we
have

Ep

[(
qi
pi
− 1
)2
]
= ∑

i
pi

(
qi
pi

)2
− 2 ∑

i
pi

qi
pi

+ ∑
i

pi = ∑
x

pi

(
qi
pi

)2
− 1 = Ep

[(
qi
pi

)2
− 1

]
. (37)

In fact, in what follows, we make use of the following representation:

χ2(p‖q) :=
1
2 ∑

i
pi

[(
qi
pi

)2
− 1

]
= ∑

i
qi

(
qi
pi
− 1
)

:= ∑
i

rFP
i yFP

i , (38)

where we have identified rFP
i = qi and yFP

i = 1
2 (

qi
pi
− 1). Using this representation, we

develop the following Algorithm 1 for estimating the forward Pearson divergence.

Algorithm 1: Estimate the forward Pearson divergence of p = (pi)
n
i=1 and

(qi)
n
i=1 on [n].

Set: l = Ω
(
(σ/ε) log3/2(σ/ε) log log(σ/ε)

)
, σ := g(n)2

[
1 +

exp
(
− ε2

2n

)
g(n)2

]
.

Set: The following subroutine to be the algorithm A:
begin

Sample an index, i ∈ [n], according to p. Use the procedure EstAmp’ with
2dlog2(

√
ng(n)/ε)e and 2dlog2(

√
ng(n)2/ε)e queries to q and p, respectively. Obtain

estimates of p̃i, q̃i. Output ỹFP
i = 1

2

(
q̃i
p̃i
− 1
)

.

end
Use A for l times in Theorem 4 to output an estimate, χ̃2(p‖q) for χ2(p‖q).

The query complexity of this Algorithm is contained in the following theorem. We
defer the proof of this result, which is largely a technical extension of the proof(s) in [40], to
Appendix A.

Theorem 5. Assume p, q are two distributions on [n] satisfying qi/pi ≤ g(n), ∀i ∈ [n] for some
a : N→ R+. Then there is a quantum algorithm that approximates X 2(p‖q) within an additive
error ε > 0 with probability of success at least 2/3 using Õ(

√
ng(n)/ε2) quantum queries to q

and Õ(
√

ng(n)2/ε2) quantum queries to p.

6. Discussion

Each f -divergence, with its unique operational meaning, finds application in informa-
tion theory, statistics, and machine learning. In this paper, we showed that a generative
model called quantum circuit born machine can be trained by efficiently minimising any f -
divergence. The key observation is that a probabilistic classifier can be trained adversarially
to provide an approximation to such divergences.

Building on this, we developed heuristics aimed at improving convergence of the
generative training. The first heuristic, f-switch, lets each parameter minimise a different
f -divergence. Numerical results with an ideal exact classifier show that this heuristic can
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converge faster and to better minima than when using a single f -divergence. However, in
a more realistic setting where the classifier is trained adversarially, f -switch yields results
similar to those obtained by minimising a single f -divergence.

The second training heuristic, f-local, consists of using a single f -divergence approx-
imated by local cost functions. Numerical results show that, as the number of qubits
increases, this strategy yield improved convergence of the generative training than when
using a global cost function. To the best of our knowledge this is the first proposal of cost
functions for generative modelling that can interpolate between trainability and accuracy.
Extensive numerical simulations will be needed to confirm whether f -local can alleviate
the barren plateau problem in generative modelling.

Interestingly, our local cost functions approximate the f -divergence using an ensemble
of local binary classifiers. If the target probability distribution is known to have a particular
conditional independence structure (e.g., it is defined by a Bayesian network or a Hidden
Markov model), this information could be used to inform the choice of local classifiers.

One interesting research direction is to adapt the above heuristics to work with other
families of distance measures. Of particular interest, integral probability metrics (IPMs)
include the maximum mean discrepancy, the Dudley metric and the Wasserstein distance.
While f -divergences are defined in terms of probability ratios, IPMs are defined in terms of
probability differences. However, it is know that under suitable constraints margin-based
classifiers yield estimators for IPMs [96]. This suggests that an extension of our heuristics
to IPMs could be possible.

In this work, we also discussed the possibility of estimating certain f -divergences on
a fault-tolerant quantum computer, therefore avoiding the use of classifiers. Previously
published work has proven quadratic quantum speedups for the estimation of total vari-
ation [38,39] and forward Kullback–Leibler (KL) of type I [40]. Using these algorithms a
quadratic speedups is achievable for the reverse KL of type I, and thus for the symmetric
KL of type I (also known as Jeffrey divergence). It is plausible that with some refinements
these algorithms can provide quadratic speedups for the KL of type II as well.

We contributed to this topic with an algorithm for estimating Pearson χ2 divergences
and by providing its query complexity. Interestingly, high-order Pearson divergences (also
known as Vajda divergences) can be used to approximate any other f -divergence via Taylor
expansion [97]. Generalising our quantum algorithm to Vajda divergences would therefore
provide a way to estimate all other f -divergences on a fault-tolerant quantum computer.
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implemented the f -local heuristic. B.C. and L.S. devised and analysed the fault-tolerant algorithm.
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Appendix A. Proof of Theorem 5

In this Appendix, we provide a proof of Theorem 5. For completeness, we first repeat
the theorem here.

Theorem 5. Assume p, q are two distributions on [n] satisfying qi/pi ≤ g(n), ∀i ∈ [n] for some
a : N→ R+. Then there is a quantum algorithm that approximates X 2(p‖q) within an additive
error ε > 0 with probability of success at least 2/3 using Õ(√ng(n)/ε2) quantum queries to q
and Õ(√ng(n)2/ε2) quantum queries to p.
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Proof. We prove this theorem in two parts, following closely the approach in [40]. We
are first required to show that the expectation of the output of the sub-routine A, namely
Ẽ = ∑i∈[n] qi(q̃i/ p̃i − 1) is sufficiently close to E = ∑i∈[n] qi(qi/pi − 1). We begin by
observing the following inequality. Let x, y > 0. In addition, suppose there exists 0 < K <
∞ such that y ≤ K. Then

|y− x| ≤ K
∣∣∣∣y− x

y

∣∣∣∣ = K
∣∣∣∣y/x− 1

y/x

∣∣∣∣ ≤ K
∣∣∣log

( y
x

)∣∣∣ = K|log(y)− log(x)|. (A1)

where we have used the elementary inequality: (z− 1)/z ≤ log(z). We then have, using
the linearity of expectation,

|E− Ẽ| ≤ 1
2 ∑

i∈[n]
qiE
[∣∣∣∣( qi

pi

)
−
(

q̃i
p̃i

)∣∣∣∣] (A2)

≤ 1
2

g(n) ∑
i∈[n]

qiE
[∣∣∣∣log

(
qi
pi

)
− log

(
q̃i
p̃i

)∣∣∣∣]. (A3)

The remainder of the proof follows [40], with the roles of p and q now reversed,
and with an additional factor of g(n). In particular, using elementary properties of the
logarithm, we have

|E− Ẽ| ≤ 1
2

g(n) ∑
i∈[n]

qiE[|log qi − log q̃i|] +
1
2

g(n) ∑
i∈[n]

qiE[|log pi − log p̃i|] (A4)

≤ 1
2

g(n) ∑
i∈[n]

qiE[|log qi − log q̃i|] +
1
2

g(n)2 ∑
i∈[n]

piE[|log pi − log p̃i|], (A5)

where in the second line we have used the assumption that qi/pi ≤ g(n) for all i ∈ [n].
By (IV.5) and (IV.6) in ([40], Section IV), 2dlog2(

√
ng(n)/ε)e queries to q and 2dlog2(

√
ng(n)2/ε)e

queries to p yield

∑
i∈[n]

qiE[|log qi − log q̃i|] = O
(

ε

g(n)

)
, (A6)

∑
i∈[n]

piE[|log pi − log p̃i|] = O
(

ε

g(n)2

)
. (A7)

Substituting these bounds into Equation (A5), and re-scaling Algorithm 1 by a large
enough constant, we obtain |E− Ẽ| ≤ ε

2 . We are now required to bound the variance of
this random variable. The variance is at most

1
4 ∑

i∈[n]
qi

(
q̃i
p̃i
− 1
)2

=
1
4 ∑

i∈[n]:q̃i≤ p̃i

qi

(
q̃i
p̃i
− 1
)2

+
1
4 ∑

i∈[n]:q̃i> p̃i

qi

(
q̃i
p̃i
− 1
)2

. (A8)

We first turn our attention to the first term. Recall that EstAmp’ outputs q̃i such that
q̃i ≥ sin2(π/2dlog2(

√
ng(n)/ε)e+1) ≥ ε2/(4ng(n)2) for any i. It follows that q̃i/ p̃i ≥ q̃i ≥

ε2/(4ng(n)2), and thus exp(−2q̃i/ p̃i) ≤ exp
(
−ε2/(2ng(n)2)

)
. We thus have, using also

the fact that (x− 1)2 < exp(−2x) for x > −1, that

1
4 ∑

i:q̃i< p̃i

qi

(
q̃i
p̃i
− 1
)2
≤ 1

4 ∑
i:q̃i< p̃i

qi exp
(
−2

q̃i
p̃i

)
(A9)

≤ 1
4 ∑

i:q̃i< p̃i

qi exp
(
− ε2

2ng(n)2

)
≤ exp

(
− ε2

2ng(n)2

)
. (A10)

Meanwhile, for the second term, using the fact that (q̃i/ p̃i − 1)2 ≤ [q̃i/ p̃i]
2 since, in

this summation, q̃i/ p̃i ≥ 1 ≥ 1/2, we obtain
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1
4 ∑

i:q̃i≥ p̃i

qi

(
q̃i
p̃i
− 1
)2
≤ 1

4 ∑
i:q̃i≥ p̃i

qi

[
q̃i
p̃i

]2
≤ 1

4 ∑
i:q̃i≥ p̃i

qig(n)2 ≤ g(n)2. (A11)

Substituting Equations (A10) and (A11) into Equation (A8), we see that the variance
of the random variable is at most

g(n)2 + exp
(
− ε2

2ng(n)2

)
= O

g(n)2

1 +
exp

(
− ε2

2ng(n)2

)
g(n)2

. (A12)

It follows from Corollary 2 in [40] that we can approximate Ẽ up to an additive
error of ε/2 with probability of success of at least 2/3 using Õ(1/ε) · 2dlog2(

√
ng(n)/ε)e =

Õ(
√

ng(n)/ε2) queries to q and Õ(1/ε) · 2dlog2(
√

ng(n)2/ε)e = Õ(
√

ng(n)2/ε2) queries to p.
Together with our earlier demonstration that |E− Ẽ| ≤ ε/2, this completes the proof.
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