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Combined pituitary hormone deficiency (CPHD) is not a rare disorder, with a

frequency of approximately 1 case per 4,000 live births. However, in most

cases, a genetic diagnosis is not available. Furthermore, the diagnosis is

challenging because no clear correlation exists between the pituitary

hormones affected and the gene(s) responsible for the disorder. Next-

generation sequencing (NGS) has recently been widely used to identify novel

genes that cause (or putatively cause) CPHD. This review outlines causative

genes for CPHD that have been newly reported in recent years. Moreover,

novel variants of known CPHD-related genes (POU1F1 and GH1 genes) that

contribute to CPHD through unique mechanisms are also discussed in this

review. From a clinical perspective, variants in some of the recently identified

causative genes result in extra-pituitary phenotypes. Clinical research on the

related symptoms and basic research on pituitary formation may help in

inferring the causative gene(s) of CPHD. Future NGS analysis of a large

number of CPHD cases may reveal new genes related to pituitary

development. Clarifying the causative genes of CPHD may help to

understand the process of pituitary development. We hope that future

innovations will lead to the identification of genes responsible for CPHD and

pituitary development.
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Introduction

Combined pituitary hormone deficiency (CPHD) is defined as a

deficiency of two ormore pituitary hormones. The lack of hormones

can affect the development of many parts of the body. Clinical

presentation is variable, depending on the specific pituitary

hormones that are deficient, although the most common

symptoms include short stature, developmental delay, or

delayed puberty.

CPHD is caused by variants in genes that regulate pituitary

development (1). The incidence of CPHD is estimated at

approximately 1 in 4,000 live births. However, most patients

with CPHD (84%) have not been genetically diagnosed. CPHD

is a multifactorial disorder that is usually associated with

pituitary hypoplasia. Sanger sequencing of single genes

identified in animal models has served as the conventional

method for identifying genes and variants that cause the

disease. Clearly, this method is limited, and it has been

superseded in recent years by next generation sequencing

(NGS) and chromosomal microarray analysis to detect copy-

number variations.

Recent advances in the high-throughput analysis have

exponentially advanced the pace of discovering novel variants

associated with CPHD. Variants in genes previously implicated

in isolated hypogonadotropic hypogonadism (IHH), septo-optic

dysplasia (SOD), and holoprosencephaly (HPE) also cause

CPHD. This illustrates that CPHD is part of a spectrum

disorder, sometimes involving other craniofacial organs, such

as the brain and eyes. Newly identified CPHD-associated genes

provide clues to understanding new features of pituitary

development. In addition, high-throughput analyses offer the

opportunity to identify cases of oligogenic disease, in which

variants in multiple genes collaborate to produce the

clinical features.

We searched for articles related to CPHD that were not

discussed in previously published review articles [such as (1)]

and have summarized the recent discovery of new genes below.

It can be difficult to ascertain the pathogenicity of genetic

variants unless multiple, unrelated families with similar clinical

features and lesions in the same gene are known, and/or

convincing functional studies have been reported. We also

present examples of known or suspected CPHD-associated

genes that are supported by important confirmatory evidence.

This review focuses on recent findings for novel genes that cause

CPHD and on novel variants of known CPHD-related genes that

drive CPHD through unique mechanisms. Most recent progress

has been made by NGS analyses, such as exome, whole genome,

and panel sequencing. Abnormalities in these genes generate

characteristics typical of extra-pituitary phenotypes. From a

clinical viewpoint, studying phenotypes other than pituitary

function for the proper diagnosis and inference of causative

genes seems necessary (Table 1).
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Novel genes and variants identified
by high-throughput analysis

b-1,3-glucuronyltransferase 3 (B3GAT3)

GlcAT-I is one of the glucuronyltransferases that regulates the

biosynthesis of glycosaminoglycan-protein linkers for proteoglycans

(21). Proteoglycans are essential for cell–cell communications.

B3GAT3 gene encodes the GlcAT-I protein. Disruption of the

linkage region due to mutations in B3GAT3 has been reported to

cause severe developmental defects. For example, homozygous

B3GAT3 variants have been associated with Larsen-like syndrome,

which is characterized by short stature, skeletal deformities, and

congenital heart defects (22). Bloor et al. reported a case where a

patient had severe short stature, growth hormone (GH) deficiency,

facial dysmorphisms, and congenital heart defects due to a

heterozygous splice site mutation (c.888+262T>G) in the invariant

“GT” splice donor site of B3GAT3 gene (2).

The detailed mechanisms whereby B3GAT3 variants cause

GH deficiency have not been clarified.
BLM recQ-like helicase (BLM)

BLM encodes a 3′−5′ ATP-dependent RecQ DNA helicase that

plays anessential role inmaintaining the genomic stability ofDNAin

somatic cells. Loss of BLM function causes chromosomal instability

and increased sister-chromatid exchanges (23). BLMvariants cause a

rare autosomal-recessive genetic disorder namedBloom’s syndrome,

which is characterized by short stature, predisposition to the

development of cancer, sun-sensitive skin rash, immune deficiency,

and increased risk for diabetes due to insulin resistance. GH

deficiency was not thought to directly cause the short stature

associated with this syndrome (24).

Verpula and colleagues reported a case of isolated growth

hormone deficiency (IGHD) accompanied by facial photosensitive

telangiectatic lesions, multiple café au lait spots, microcephaly,

micrognathia, bilateral cryptorchidism, and recurrent systemic

infections (3). The magnetic resonance imaging (MRI) findings

showed a hypoplastic anterior pituitary gland and normal posterior

pituitary gland. Genetic testing revealed a BLM variant (c.1489C>T,

p.Gln497Ter). The causes of the hypoplastic anterior pituitary gland

and GHD have not been reported.
Activating mutations in B-Raf
proto-oncogene, serine/threonine
kinase (BRAF)

BRAF regulates the mitogen-activated protein kinase/

extracellular signal-regulated kinase signaling pathway, which

controls cell division, differentiation, and secretion. BRAF
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p.V600E is a well-known activating mutation that causes several

types of tumors such as papillary craniopharyngioma, papillary

thyroid carcinoma, colorectal cancer, melanoma, and non-small-

cell lung cancer (25, 26). In addition, adrenocorticotropic

hormone (ACTH)-producing pituitary adenoma and other

activating variants have been reported.

Gualtieri and colleagues recently reported four activating

mutations (p.Q257R, p.T241P, p.F468S, and p.G469E) in the

BRAF gene in five patients with CPHD or SOD with cardio-

facio-cutaneous syndrome (27). A mouse model of activated

Braf-dependent anterior pituitary gland hypoplasia (Prop1:Cre;

BrafV600E/+) exhibited dwarfism. These mice lacked GH, TSH,

and LH and had increase of pro-opiomelanocortin (POMC) and

prolactin (PRL) expression. Abnormal cell-lineage specification

was associated with increase production of the lineage-specific

transcription factor, T-box transcription factor 19, and

decreased production of the transcription factor, POU class 1

homeobox 1 (POU1F1, also known as PIT-1). A proportion of

SRY-box transcription factor (SOX) 2-positive progenitor/stem

cells co-express POMC and PRL. These findings showed that

BRAF plays a critical developmental role for the pituitary gland.
Fibroblast growth factor
receptor 1 (FGFR1)

FGFR1 is a receptor for fibroblast growth factor (FGF) 8, a

signaling molecule important for pituitary gland formation.

This receptor is mainly expressed in Rathke’s pouch and the

ventral diencephalon during the embryonic period. FGFR1

variants cause isolated hypogonadotropic hypogonadism

(IHH) or Kallmann syndrome (KS) via autosomal-dominant
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inheritance. FGFR1 variants cause seven to 10% of all cases of

IHH or KS (28). Whole-exome sequencing was used to detect

heterozygous nonsense variants in the FGFR1 gene (c.1864

C>T, p.R622X) in a sample from a patient with CPHD,

delayed puberty, and micropenis (29). This variant was also

reported for a familial case of IHH (30), suggesting that IHH

caused by FGFR1 variants represents a milder phenotype

of CPHD.
Forkhead box A2 (FOXA2)

FOXA2 (also known as hepatocyte nuclear factor 3-beta, or

HNF-3B) regulates the formation of ventral midline structures.

Heterozygous deletions in the FOXA2 gene have been reported

for patients with hypopituitarism and biliary abnormalities

(4, 31). Recently, several FOXA2 gene variants have been

reported (c.505T>C [p.S169P] and c.770G>T [p.R257L],

c.616C>T [p.Q206X]) for patients with hypopituitarism, thin

pituitary stalks, and hypoplastic anterior pituitary glands (4–6).

These symptoms were accompanied by hyperinsulinemia, which

is caused by dysregulated insulin secretion due to reduced

expression of ATP binding cassette subfamily C member 8

(ABCC8) and potassium inwardly rectifying channel subfamily

J member 11 (KCNJ11). Variants in FOXA2 might serve as

diagnostic markers for patients with hyperinsulinemia with

hypopituitarism. A mouse study revealed that Foxa2 was

expressed in the ventral hypothalamus and anterior pituitary

gland (5). FOXA2 expression was accompanied by NK2

homeobox 2 (NKX2.2) expression, which shows interactions

between the Shh/Gli signaling pathway; therefore, FOXA2

variants may cause pituitary hypoplasia.
TABLE 1 Characteristics of extra-pituitary abnormalities.

Gene Associated symptoms Reference(s) of the
reported case

B3GAT3 Larsen-like syndrome (short stature, skeletal deformities, and congenital heart defects) (2)

BLM Bloom’s syndrome (predisposition to cancer, sun-sensitive skin rash, immune deficiency, and increased insulin
resistance)

(3)

FOXA2 Hyperinsulinemia and biliary abnormalities (4–6)

L1CAM CRASH syndrome (corpus callosum hypoplasia, retardation, adducted thumbs, spasticity, and hydrocephalus) (7)

LAMB2 Albuminuria due to congenital nephrosis and optical abnormalities (8)

MAGEL2 Schaaf–Yang syndrome (hypotonia, feeding difficulties during infancy, global developmental delay, and sleep
apnea)

(7)

MIR17HG Feingold syndrome type 2 (microcephaly, learning disabilities, and digital anomalies) (9)

NKX2.1 Brain–lung–thyroid syndrome (primary hypothyroidism, respiratory distress, and neurological disturbances) (10, 11)

RNPC3 Delayed puberty, congenital cataracts, and developmental delay/intellectual deficiency (12–14)

ROBO1 Ocular abnormalities, broad forehead, micrognathia, a broad philtrum, and arched eyebrows (15–17)

SEMA3A Heart, pelvic genitourinary dysplasia, and skeletal abnormalities (18, 19)

SMCHD1 Bosma arhinia microphthalmia syndrome (microphthalmia and absence of a nose) (20)
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Immunoglobulin superfamily
member (IGSF) 10

IGSF10 regulates the early migration of neurons expressing

gonadotropin hormone-releasing hormone (GnRH) during

embryogenesis (32). Variants of this gene cause self-limited

delayed puberty or IHH because of dysregulated GnRH-

induced neuronal migration. Budny and colleagues found a

likely pathogenic variant (according to criteria from the

American College of Medical Genetics and Genomics) of

IGSF10 (c.5014G>A, p.A1672T) in patients with CPHD who

lacked mutations in PROP paired-like homeobox 1 (PROP1) by

performing whole-exome sequencing (18). Pituitary MRI

showed the presence of a hypoplastic pituitary gland. The

authors also reported two variants of IGSF10, although these

variants were considered a variant of uncertain significance or a

benign variant. Therefore, whether IGSF10 is actually involved

in CPHD development requires further investigation.
L1 cell-adhesion molecule (L1CAM)

L1CAM is a cell-adhesion molecule of the immunoglobulin

superfamily that regulates neuronal cell adhesion, migration,

myelination, and neuronal differentiation (33). Variants of the

L1CAM gene cause L1 syndrome (also known as a CRASH

syndrome), which is characterized by corpus callosum

hypoplasia, retardation (intellectual disability), adducted

thumbs, spasticity, and hydrocephalus (34). An L1CAM

variant (c.1354G.A, p.G452R) was detected in a patient with

GHD and systemic abnormalities, such as clubbed hands,

plagiocephaly, global developmental delay, hypotonia,

arthrogryposis, divergent squint, and hydrocephalus (7). The

patient’s brain was underdeveloped with a very thin corpus

callosum. The pathogenesis of the pituitary abnormality has not

been clarified, but L1CAM expression was detected in the

hypothalamus, not in Rathke’s pouch (7). Decreased signaling

related to pituitary gland formation by the hypoplastic

hypothalamus may have caused the hypopituitarism.
Laminin subunit beta 2 (LAMB2)

Laminin b2 is abundantly expressed in the glomerular

basement membrane. LAMB2 variants cause congenital

nephrosis with mesangial sclerosis and optical abnormalities

(35). In 2020, compound heterozygous missense mutations

identified in LAMB2 (c.737G>A [p.Arg246Gln] and

c.3982G>C [p.Gly1328Arg]) were detected in a patient with

isolated GH deficiency and global developmental delay,

hypoplastic anterior pituitary, optic nerve hypoplasia, and

corpus callosum dysgenesis (8). The details have not been
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investigated, but the pituitary glands of Lamb2–/– mice were

found to have abnormal cellular clusters. LAMB2 is expressed in

the epithelium of Rathke’s pouch, suggesting that LAMB2 has an

essential role in forming Rathke’s pouch (36). From a clinical

perspective, the observation of albuminuria may help identify

LAMB2 variants in patients with SOD.
MAGE family member L2 (MAGEL2)

MAGEL2, a maternally imprinted gene, is one gene

contained within the Prader–Willi locus. MAGEL2 variants

cause Schaaf–Yang syndrome, which is characterized by

symptoms that resemble Prader–Willi syndrome, such as

hypotonia, feeding difficulties during infancy, global

developmental delay, and sleep apnea (but lack certain

stereotypical Prader–Willi syndrome features, such as

hyperphagia and subsequent obesity). Magel2-null mice

showed a phenotype including neonatal growth retardation,

excessive weight gain, impaired hypothalamic regulation, and

infertility (37–39). A heterozygotes mutation in the MAGEL2

gene (c.1996dupC, p.Q666Pfs*47) was reported for patients with

Schaaf–Yang syndrome accompanied by CPHD (some cases

showed complications with central diabetes insipidus) (7). The

MRI findings of the anterior and posterior pituitary glands

were variable.
Microdeletions of chromosome 13q31.3,
including the miR-17-92a-1 cluster host
gene (MIR17HG)

Feingold syndrome type 2 (FS2) is a rare genetic congenital-

malformation syndrome that is characterized by microcephaly,

learning disabilities, short stature, and digital anomalies

(brachymesophalangy, fifth finger clinodactyly, syndactyly of

toes, and hypoplastic thumbs) (40). Deletions of chromosome

13q31.3, including the MIR17HG gene, have been implicated as

the cause of FS2.

A patient with a cardiac anomaly, gastroesophageal reflux

disease, global developmental delay, hypotonia, and

developmental dysplasia showed growth deficiency with an

empty sella and a normal neurohypophysis (9). A single-

nucleotide polymorphism-based microarray revealed an ~8

Mb deletion at 13q31.3q32.3, including the MIR17HG gene

that causes FS2.

The causes of GH deficiency have not been determined.

Recent findings revealed that several microRNAs regulate

pituitary gland development (41). MIR17HG might regulate

pituitary development or hormone secretion. However, the

deletions in chromosome 13q31.3 also contain SOX21. Sox21

deletion caused a postnatal growth deficiency due to increased

energy expenditure without obvious pituitary abnormalities
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(42). Therefore, we have to be aware of the association of the

SOX21 deletion in patients with FS2 and a short stature.
NK2 homeobox 1 (NKX2.1)

NKX2-1 (also known as TTF-1) is a transcription factor that

regulatesorganogenesis anddifferentiationof the thyroidgland, lungs,

and ventral forebrain, including the hypothalamus. NKX2.1 variants

cause primary hypothyroidism, respiratory distress, and neurological

disturbances (brain–lung–thyroid syndrome). Several patients with

NKX2.1 variants have been found to develop hypothalamic disorders

such as temperature dysregulation and dysrhythmic sleep; however,

CPHD has not been associated withNKX2.1 variants. A familial case

with motor-development delay, mixed-movement disorder, and

endocrinological abnormalities (father: hypogonadotropic

hypogonadism, daughter: GH deficiency) had a pathogenic stop

variation in NKX2.1 (c.338G>A, p.Trp113∗) (10). In addition, a

patient with deletion containing the NKX2.1 gene had CPHD (GH,

ACTH,TSH, andgonadotropin)with a small anteriorpituitary gland,

but without optic nerve hypoplasia (11). Nkx2-1 is expressed in the

developing ventral diencephalon, and amousemodel showed that the

absenceof this gene causeddefects inbothRathke’s pouchandventral

diencephalon development (43). The expression of Fgf8, a potent

inducer of Rathke’s pouch growth, was not detectable in the ventral

diencephalon of Nkx2.1 null embryos.
RNA-binding region (RNP1, RRM)-
containing 3 (RNPC3)

The RNPC3 gene encodes the U11/U12-65K protein, a

component of the minor spliceosome. The minor spliceosome

catalyzes the removal of U12-type spliceosomal introns from

eukaryotic messenger RNAs (44, 45). This minor spliceosome

regulates 0.35% of all human introns (46).

Recently, several groups reported variants of the RNPC3 gene

in patients with CPHD (GH [inevitable], PRL [undetectable-

normal], and TSH [occasional] deficiencies), as determined by

NGS (12–14). These variants showed various phenotypes, such as

delayed puberty, congenital cataracts, and developmental delay/

intellectual deficiency. The MRI findings of the anterior pituitary

gland were hypoplastic to normal.

Several pituitary hormone-related genes whose introns are

regulated by RNPC3 have been implicated, but the associated

regulatory mechanisms are unclear (13).
Roundabout guidance
receptor 1 (ROBO1)

vROBO1 is a member of the immunoglobulin gene superfamily

and encodes an integralmembraneprotein. This protein is a receptor
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for Slit homolog (Slit) proteins and serves an essential role in

axon guidance and neuronal precursor cell migration in the

forebrain (47). Robo1-knockout mice have an embryonic-lethal

phenotype. These embryos showed dysgenesis of the corpus

callosum, hippocampal commissure, and corticothalamic and

thalamocortical targeting abnormalities.

Recently, Bashamboo et al. reported the first case of CPHD

accompanied by pituitary stalk interruption syndrome (PSIS) (15).

Subsequently, several groups reported variants of theROBO1 gene in

patientswithsimilarpituitaryandpituitary stalkphenotypes (15–17).

All patients showed pituitary hypoplasia both in the posterior

pituitary (PSIS or invisible stalk) and the anterior pituitary (small

or absent). Most patients with ROBO1 variants also showed

craniofacial phenotypes, including ocular abnormalities (i.e.,

hypermetropia with strabismus and ptosis), a broad forehead,

micrognathia, a broad philtrum, and arched eyebrows.

The mechanisms of Slit/ROBO1 in the development of the

pituitary stalk and anterior pituitary have not been clarified.

However, regulation of neurogenic locus notch homolog protein

(Notch)/hairy and enhancer of split-1 (Hes1) signaling by ROBO1

was suspected because Hes1 plays a specific role in guiding

hypothalamic axons to the pituitary gland (48).
Semaphorin 3A (SEMA3A)

Neurons and surrounding tissue secrete SEMA3A to guide

migrating cells and axons in the developing nervous system,

including the hypothalamus. Heterozygous variants of this gene

cause IHH and KS (49, 50). A patient with short stature and

multiple anomalies (such as macrocephaly, thoracic bone skeleton,

heart defect, and camptodactyly) due to a heterozygous 150 kb

deletion, including part of the SEMA3A gene, was reported (51).

However, thatcasereportdidnotdiscussofGHorpituitaryhormones.

Recently, whole-exome sequencing detected a likely

pathogenic variant of SEMA3A (c.1302_1303delinsCA,

p.V435delinsI) in a patient with CPHD accompanied by PSIS

(18). Another variant (c.950A>G) of this gene was found in a

patient with CPHD accompanied by multiple abnormalities

(heart, pelvic genitourinary dysplasia, and skeletal) (19). The

pituitary MRI showed a hypoplastic pituitary gland.

An association of SEMA3A with pituitary development has not

been reported, but Sema3awas detected in the ventral diencephalon

and oral ectoderm of E10.5mouse embryos (Genepaint, https://gp3.

mpg.de/results/(semaphorin)%203A (52); therefore, this gene

might be involved in pituitary development.
Structural maintenance of
chromosomes flexible hinge
domain-containing 1 (SMCHD1)

SMCHD1 regulates DNA methylation of multiple genomic

loci and can result in X-chromosome inactivation (53).
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Recentfindings revealed that SMCHD1 is maternally imprinted

(54). SMCHD1 variants are causative for Bosma arhinia

microphthalmia syndrome, which is characterized by the

absence of a nose, microphthalmia, and IHH. Kinjo and

colleagues screened for SMCHD1 gene variants in 43 patients

with CPHD with normal noses and no pathogenic variants in

any known causative genes. The authors identified an SMCHD1

variant (c.G1192A [p.Asp398Asn]) in a patient with CPHD

(GH, ACTH, TSH, and gonadotropin deficiency) accompanied

by mild intellectual disability (20). The anterior pituitary lobe

was missing and the patient had ectopic posterior pituitary. The

structures of the eyes and nose were normal, but the optic nerve

was hypoplastic.
Recent insights into synonymous
variants and abnormal RNA
processing in CPHD

Synonymous variants (also called ‘silent’ mutations) are now

widely known to cause changes in protein expression levels,

conformations, and functions (55). Several diseases in most organ

systems have been associated with synonymous mutations. Recent

data revealed several molecular mechanisms underlying the changes

in protein levels or confirmations due to synonymous mutations; 1)

truncated mRNAs due to exon skipping that leads to alternative

splicing, 2)mRNA-stability changes resulting in lowprotein levels, 3)

decreased rates of protein synthesis leading to protein misfolding,

and 4) “pause sites” that can result in alternative conformers during

co-translational folding.

Alternative splicingmay lead to a loss or alteration of a protein’s

normal function, and alternative-splicing defects cause human

diseases. For example, mutations in the intronic sequences of the

ATPase copper transporting alpha (ATP7A) gene cause Menkes

disease and occipital horn syndrome (56). A patient with Peutz–

Jeghers syndrome was also reported to harbor a mutation in the

intronic sequence of the liver kinase B1 (LKB1) gene (57). These

mutations causes alternative-splicing defects and led to the

translation of proteins with abnormal functions. In addition, recent

data revealed that abnormal RNA processing by synonymous

variants in pituitary-related genes caused CPHD.

POU1F1 (also known as PIT-1) plays essential roles in

differentiating somatotrophs, lactotrophs, and thyrotrophs in the

anterior pituitary gland. It also regulates the expression of GH, PRL,

andTSH.Thus,POU1F1genevariants cancauseCPHDthroughGH,

PRL, and TSH deficiencies. POU1F1 is expressed as two splice

isoforms (the a- and b-isoforms). The difference between both

isoforms is a 26-amino acid (78-base pair) in-frame insertion in the

second exon, caused by alternative splice-acceptor utilization. The

expression level of b-isoform is very low in human pituitaries (~1%),

and this isoform suppresses GH, PRL, TSHb, and POU1F1 promoter

activity. Recently, two groups independently reported interesting
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POU1F1 variants, namely c.148T>G (p.Ser50Ala), c.150T>G

(p.Ser50=), c.153T>A (p.Ile51=), c.152T>G (p.Ile51Ser), c.155T>G

(p.Leu52Trp), andc.157T>G(p.Ser53Ala) at about the same time (58,

59). Their results suggested that b-domain variants in POU1F1 cause

pituitary deficiency due to dominant b-isoform expression. A high-

throughput splicing-reporter assay revealed that 96 splice-disruptive

variants (including 14 synonymous variants) out of 1,070 single-

nucleotide variants in POU1F1 affected alternative splicing.

Type-II IGHD is another example of CPHD that arises from

alternative splicing (60). The pathogenesis of this disease involves

single-base mutations within the first six nucleotides of intron 3,

which affect abnormal growth hormone 1 (GH1) splicing (61). This

abnormal exon skipping leads to the production of a 17.5 kDa

isoform, which exerts a dominant-negative effect on the secretion of

the bioactive 22 kDa isoform (62, 63). Accumulation of the 17.5 kDa

isoform promotes endoplasmic reticulum stress in pituitary

hormone-producing cells and causes decreased secretion of GH

and multiple pituitary hormones (62).

Currently, CPHD has been reported to be caused by

abnormal exon skipping in 2 genes, namely POU1F1 and GH1.

In the future, additional genes that cause CPHD by similar

mechanisms may be identified.
Conclusion

IHH, SOD, IPHD, andCPHDare on the samedisease spectrum.

In the future, we expect that additional genes will be identified that

contribute to the development of these diseases. High-throughput

analysis may help identify the causative gene(s). Previously, 30 genes

associated with CPHS and 37 candidate genes were sequenced, but

thismethodonly identified thecausativegene forCPHDinoneoutof

51 cases (64). Many more unknown causative genes likely exist.

However, it is challenging to predict the phenotype from a genotype

as environmental factors and oligogenic disease are likely

contributors. If NGS were performed on a larger number of CPHD

cases, it could lead to the identification of causative genes. The

possibility cannot be ruled out that monogenetic diseases and

oligogenic abnormalities may be associated with the disease (65).

Moreover, the results of a recent study revealed copy-number

variants in several genes that might contribute to the formation of

CPHD (66).

Clarifying the causative genes of CPHD might rewrite our

understanding of the process of pituitary development. In

addition, basic research on pituitary formation may aid in

inferring causative genes for CPHD.
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Glossary

ABCC8 ATP binding cassette subfamily C member 8

ACTH Adrenocorticotropic hormone

ATP7A ATPase copper transporting alpha

B3GAT3 b-1, 3-glucuronyltransferase 3

BLM BLM RecQ-like helicase

BRAF B-Raf proto-oncogene, serine/threonine kinase

CPHD combined pituitary hormone deficiency

FGF fibroblast growth factor

FGFR1 fibroblast growth factor receptor 1

FOXA2 forkhead box A2

FS2 Feingold syndrome type 2

GH growth hormone

GH1 growth hormone 1

GnRH gonadotropin hormone-releasing hormone

Hes1 hairy and enhancer of split-1

HPE holoprosencephaly

IGHD isolated growth hormone deficiency

IHH isolated hypogonadotropic hypogonadism

ISGF immunoglobulin superfamily member

KCNJ11 potassium inwardly rectifying channel subfamily J member 11

KS Kallmann syndrome

L1CAM L1 cell-adhesion molecule

LAMB2 laminin subunit beta 2

LH luteinizing hormone

LKB1 liver kinase B1

MAGEL2 MAGE family member L2

MIR17HG miR-17-92a-1 cluster host gene

NGS next-generation sequencing

NKX2.1 NK2 homeobox 1

NKX2.2 NK2 homeobox 2

Notch neurogenic locus notch homolog protein

POMC pro-opiomelanocortin

POU1F1 POU class 1 homeobox 1

PRL prolactin

PROP1 PROP paired-like homeobox 1

PSIS pituitary stalk interruption syndrome

RNPC3 RNA-binding region (RNP1, RRM)-containing 3

ROBO1 roundabout guidance receptor 1

SEMA3A semaphorin 3A

Slit Slit homolog

SMCHD1 structural maintenance of chromosomes flexible hinge domain-
containing 1

SOD septo-optic dysplasia

SOX SRY-box transcription factor

TSH thyroid-stimulating hormone
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