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Abstract: Soybean variety is connected to stress resistance ability, as well as nutritional and commercial
value. Near-infrared hyperspectral imaging was applied to classify three varieties of soybeans
(Zhonghuang37, Zhonghuang41, and Zhonghuang55). Pixel-wise spectra were extracted and
preprocessed, and average spectra were also obtained. Convolutional neural networks (CNN) using
the average spectra and pixel-wise spectra of different numbers of soybeans were built. Pixel-wise
CNN models obtained good performance predicting pixel-wise spectra and average spectra. With the
increase of soybean numbers, performances were improved, with the classification accuracy of
each variety over 90%. Traditionally, the number of samples used for modeling is large. It is
time-consuming and requires labor to obtain hyperspectral data from large batches of samples.
To explore the possibility of achieving decent identification results with few samples, a majority vote
was also applied to the pixel-wise CNN models to identify a single soybean variety. Prediction maps
were obtained to present the classification results intuitively. Models using pixel-wise spectra of
60 soybeans showed equivalent performance to those using the average spectra of 810 soybeans,
illustrating the possibility of discriminating soybean varieties using few samples by acquiring
pixel-wise spectra.

Keywords: soybean; hyperspectral imaging technology; convolutional neural network; pixel-wise
spectra; a majority vote

1. Introduction

Soybean (Glycine max (L.) Merrill) is one of the most important agricultural products. It provides
fat and protein for humans and livestock [1,2]. The discrimination of soybean seed attributes such as
genotypes [3] and protein content [4] has become an important research orientation in agronomy in
recent years. Different soybean varieties have different genetic purity, physical purity, germination
ability, and vigor, which are related to the quality attributes, such as nutritional value, stress resistance
ability, final yield, etc. [5–7]. The quality attributes of soybeans are the parameters that producers are
most concerned about, and different soybean varieties have different quality attributes, which also
make soybean variety identification an important issue in the research.

Genetic analysis and chemometrics-based technologies are known as powerful tools for the
identification of accurate seed varieties [8–11]. However, these methods are only suitable for the
laboratory environment, and adequate skills are also required for operational staff. What’s more, these
methods are all destructive with high costs and low efficiency. The aftertreatment of the chemicals
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used in the testing process is also an important issue. Compared with other detection methods, manual
visual identification is the most convenient method. However, it is time-consuming and requires
experts with extensive experience and knowledge, and the accuracy cannot be guaranteed.

Soybean seeds of different varieties show some differences of external characteristics (including
texture features, colors, damage, etc.), chemical composition, and other aspects. With the advantages
of being non-chemical, highly efficient, and easy to operate, computer vision has been proposed as a
rapid and non-destructive discriminant method for seed variety identification based on the differences
of external characteristics [12,13]. Furthermore, it is easy to develop a portable device on the basis of
computer vision and image processing algorithms, which can be arranged for outdoor environment
applications. For different soybean varieties that have quite similar external characteristics, computer
vision may have trouble with achieving satisfactory results. Apart from external attributes, differences
of chemical compositions inside samples are also of significant importance for the identification of
soybean seed varieties. Near-infrared spectroscopy has been widely used to identify seed varieties
regarding the chemical composition differences among samples [14,15].

Hyperspectral imaging, integrating both the computer vision and near-infrared spectroscopy, is
being currently studied with the advantages of the two techniques [16–18]. Hyperspectral imaging
acquires internal and external features simultaneously. Nowadays, studies have used hyperspectral
imaging to identify seed varieties [19,20]. Generally, near-infrared spectroscopy conducts point
measurement, and it is quite difficult to obtain the spectral information of each region within the seed.
Different from near-infrared spectroscopy, hyperspectral imaging can acquire the spectral information
of samples at the pixel-wise level, providing the comprehensive spectral information of the sample.
Pixel-wise spectra also contain the sample information and can be used for analysis. Studies have
utilized both average spectra and pixel-wise spectra to build training models [21–23]. Compared with
average spectra of samples, pixel-wise spectra contain more detailed information, and the number of
pixel-wise spectra is much larger than the number of average spectra of samples. Using pixel-wise
spectra for training not only contains more detailed information, but also increases the training number,
especially when the number of sample is small. However, how to fully explore the spectral features of
average spectra and pixel-wise spectra is challenging.

Deep learning has been proven as a strong method for feature learning. Features can be learned
automatically and deeply by different deep learning architectures, and can be extracted as inputs of
classification and regression models. Moreover, deep learning is quite efficient for big data analysis.
Recent studies have proved the effectiveness of deep learning in spectral data analysis [19,24–30].
There are some researches that have applied deep learning methods in analyses of hyperspectral
images in the agriculture field. Qiu et al. used convolutional neural network (CNN) to identify rice
seed varieties based on hyperspectral images [19]. K-nearest neighbors (KNN) and support vector
machine (SVM) models were also built for comparison. The results of the CNN model obtained
better performances than the KNN and SVM models in most cases, which revealed the effectiveness
of analyzing spectral data based on CNN. Yu et al. discriminated the freshness of shrimp during
cold storage using visible and near-infrared hyperspectral imaging techniques combined with a
deep learning algorithm [27]. A stacked auto-encoders (SAEs)-based deep learning algorithm was
used to extract the features of two freshness grades (fresh and stale) of shrimps. Satisfactory results
were achieved with classification accuracy reaching 96.55% and 93.97% for training and prediction
sets, respectively. Yu et al. detected nitrogen (N) concentration in oilseed rape leaf using SAE
and a fully-connected neural network (FNN) [30]. The SAE–FNN model obtained decent results
with R2

P = 0.903, RMSEP (Root-Mean-Square Error of Prediction Set) = 0.307% and RPDP (Residual
Predictive Deviation of Prediction Set) = 3.238 for N concentration, indicating the possibility of N
concentration detection in oilseed rape leaf by the combination of a hyperspectral imaging technique
and deep learning method.

Most of the researchers would obtain large scales of data of samples to build classification models
that could acquire decent results. However, it is time-consuming and laborious. Pixel-wise spectra
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could provide much larger data volumes than an average spectra of samples, and deep learning has
great potential for pixel-wise spectral analysis. Thus, we explore the possibility of achieving decent
discriminant results of soybean variety identification with few samples based on hyperspectral imaging
combined with CNN in this study. Different numbers of soybeans were used to build models based on
both average spectra and pixel-wise spectra. To further improve the performance of pixel-wise CNN
models, a majority vote was also applied to identify a single soybean variety.

2. Materials and Methods

2.1. Sample Preparation

Three varieties of soybeans, including Zhonghuang37 (ZH37), Zhonghuang41 (ZH41), and
Zhonghuang55 (ZH55), were purchased from a local seed company in Changzhou, Hebei province,
China. For each variety, 1890 intact and healthy soybeans were prepared. Single soybean kernels were
placed separately in a black sampling plate for hyperspectral image acquisition (shown in Figure 1).
Soybeans of these three varieties showed no significant visual differences.
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Figure 1. RGB (Red Green Blue) images of three varieties of soybeans.

2.2. Hyperspectral Image Acquisition and Correction

In this study, a near-infrared hyperspectral imaging system covering the spectral range of
874–1734 nm was used to acquire hyperspectral images of soybeans. Table 1 presents the main
components of the near-infrared hyperspectral imaging system.
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Table 1. Main components of the near-infrared hyperspectral imaging system.

Component Near-Infrared Hyperspectral Imaging System

Imaging spectrograph ImSpector N17E (Spectral Imaging Ltd., Oulu, Finland)
Camera InGaAs camera (Xeva 992; Xenics Infrared Solutions, Leuven, Belgium)

Lens OLES22 (Spectral Imaging Ltd., Oulu, Finland)
Image size (Image width × image

length ×wavebands) 326 × λ × 256

Acquisition mode Line-scan
Light sources 3900 Lightsource (Illumination Technologies Inc., Syracuse, New York, USA)

Mobile platform IRCP0076 electric displacement table (Isuzu Optics Corp., Taiwan)

Seeds were placed in the sampling plate separately (Figure 1). To acquire non-deformable and
clear hyperspectral images, three deciding factors of image quality were adjusted for the system.
The distance between the sampling plate and the camera lens, the speed of mobile platform, and the
exposure time were set as 12.6 cm, 11 mm/s, and 3000 µs, respectively. The acquired hyperspectral
images were raw images with light intensity, and needed to be corrected as the reflectance hyperspectral
images. The image correction follows the equation:

Ic =
Ir − Id
Iw − Id

(1)

where Ic is the corrected image, Ir is the raw image, Iw is the white reference image that is obtained
by using a white Teflon board with a high reflectivity (nearly 100%), Id is the dark reference image
for dark current removal by using a black plate with nearly 0% reflectivity along with turning off the
light sources.

2.3. Spectral Data Extraction and Preprocessing

In this study, sample average spectra and pixel-wise spectra were both used. In this study, 200
wavebands ranging from 975 to 1646 nm of hyperspectral images were studied. Figure 2 shows the
procedures of spectral data extraction and preprocessing. Firstly, single soybeans were segmented
from the background. Gray-scale images at 1200 nm were used to form binary images (soybean regions
as ‘1’ and background regions as ‘0’) to isolate the soybeans from the background of near-infrared
hyperspectral images. Then, the binary images were multiplied with the gray-scale images at each
wavelength to remove the background. Pixel-wise spectra within each soybean were preprocessed by
wavelet transform [31] (wavelet function Daubechies 6 with decomposition level 3 for both spectral
ranges) followed with an area normalization and a moving average smoothing (7 points). The equations
of area normalization (2) and a moving average smoothing (3) are as follows:

Xi =
Ai∑N

j=1 A j
(2)

Mi =

∑i+3
k=i−3 Xk

7
(3)

where Ai and Xi are respectively the spectral values before and after normalization at the ith wavelength;
N is the number of spectral wavelengths; and Mi is the spectral value after moving average smoothing
with 7 points.

Pixel-wise spectra of each soybean were exacted and preprocessed, and the preprocessed spectra
were then averaged to represent the soybean. Both pixel-wise spectra and the average spectrum of
each soybean were studied. To specify the difference between pixel-wise spectra and average spectra,
models using pixel-wise spectra were defined as pixel-wise models, and models using average spectra
were defined as object-wise models.
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2.4. Discrimination Models

2.4.1. Deep Learning Methods

Deep convolutional neural network (DCNN) has become an emerging method for hyperspectra
data analysis due to its strong ability for abstract feature learning [25]. In this research, a small-scale
CNN architecture based on the model presented in literature [19] was designed, modified, and
evaluated. In order to make full use of the advantages of big data provided by hyperspectral imaging
technology, a new decision-making strategy was proposed. In addition, the strategy that separates
different variety of seeds using the average spectra of each seed sample was used for comparison [19,32].

In this study, both pixel-wise spectra and average spectra were studied for soybean varieties
identification. Figure 3 shows the CNN architecture and two different kinds of decision-making
strategies. The CNN architecture is shown in the box with a background color of light blue in Figure 3.
It consisted of two one-dimension convolution layers, each of which is followed by a Rectified Linear
Units (ReLU) activation, a MaxPooling layer, and a batch-normalization process, forming a fully
connected network constructed by three dense layers and a SoftMax layer. The function of the three
parts could be summarized as follows:

(1) Convolution layer: Used for feature learning. The kernels in convolution layers are filters with the
shape of 3*1. The weights of the kernels can be automatically fitted by training. The convolution
layers can recognize the patterns in spectral curves such as peaks, slopes, minimums, etc., which
is similar to corners and edges in images.

(2) Max pooling layer: The main features are screened out and the dimension of the feature map and
calculation amount are also reduced. Thus, this layer is used to prevent over-fitting and improve
the generalization ability of the model.

(3) Dense layers connected with SoftMax layer: A classifier trained to establish the relationship
between the extracted feature map and the corresponding classification results.
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The numbers of kernels in the convolution layers were 64 and 128 respectively, with a kernel size
of 3, stride of 1, and padding of 0. The MaxPooling layers were set with a pool size of 2 and a stride of
2. The numbers of the neurons in the dense layers were defined as 512, 128, and 3, in that order. All the
dense layers are activated by the ReLU function.

The training task was performed by minimizing the SoftMax Cross Entropy Loss using the
stochastic gradient descent (SGD) algorithm. The learning rate was optimized and set as 0.005.
The batch size was set as 1024 for pixel-level input and 200 for mean spectra input. The train epoch
was defined as 300.

In the proposed decision-making strategy, each pixel in the spectral image of an individual
soybean seed sample was fed into the CNN model and processed to output the classification result
(Decision-1). After traversing each pixel in the spectral image, a map of the prediction results of each
pixel could be obtained. A majority vote was employed to make the final decision for classification
(Decision-2). In other words, the largest number of categories determines the final classification
decision of a complete spectral image of a soybean seed sample. The data transmission flow for the
strategy based on majority vote is marked using green dotted lines with an arrow, and that for the
conventional strategy based on mean spectra is marked by a purple solid line with an arrow in Figure 3.

2.4.2. Principal Component Analysis

In order to explore the qualitative differences among three varieties of soybeans, principal
component analysis (PCA) was applied to near-infrared spectra. As a multivariate statistical method,
PCA is widely used for feature extraction and data dimension reduction by analyzing the correlation
among variables. PCA transforms the raw data into linearly independent variables, which are called
the principal components (PCs). The first few PCs contain most of the information of hyperspectral
images, and could reveal some differences among the different varieties of samples. Therefore, the first
three PCs obtained from the average spectra of the soybeans in the training set were applied to form
the PCA scores scatter plots in this study [33].
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3. Results and Discussion

3.1. Spectral Profiles

The near-infrared hyperspectral imaging system with the range of 874–1734 nm was used to obtain
the reflectance spectra of three varieties of soybeans. Because of the noises existed at the beginning
and end of the spectral range, the spectral range of 975-1646 nm was used for further data analysis.
To reveal the differences among three varieties of soybeans, the average spectra with standard deviation
(SD) of a training set of three varieties of soybeans were presented in Figure 4. The variation trend of
the three spectral curves were similar. The peaks and valleys of the spectral curves were same, with
peaks at 1109 and 1284 nm, and valleys at 1204 and 1456 nm. There were some differences in the
spectra range of 975–1120 nm, while overlaps existed in the rest of the spectra.
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3.2. PCA Scores Scatter Plot Analysis

PCA scores scatter plot analysis was applied in the spectra of three varieties of soybeans (Figure 5).
For each soybean variety, the average spectra of 810 samples in the training set were used for PCA
analysis. The first three PCs explained 98.892% of the samples’ variance (93.045% for PC1, 4.624% for
PC2, and 1.223% for PC3). Thus, the first three PCs of soybeans were used to form the PCA scores
scatter plot. From Figure 5, each variety was clustered together according their own attributes. The
overlaps of three varieties of soybeans existed in all three images within Figure 5, while the scores
scatter plot of PC2 versus PC3 showed the least overlap. Although some differences were revealed
by the PCA scores scatter plot, further data processing still needed to enlarge the differences of three
varieties of soybeans.
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3.3. Classification Models on Average Spectra and Pixel-Wise Wavelengths

After spectral extraction and preprocessing, soybeans were divided into the training set, the
validation set, and the prediction set for CNN models. In sum, 810 soybeans of each variety were used
for training. The average spectra of 10, 20, 30, 60, 90, 180, 360, 540, 720, and 810 soybeans of each variety
in the training set were used for training for average spectra modeling, and the pixel-wise spectra of
10, 20, 30, and 60 soybeans of each variety were used for pixel-wise spectra modeling. Another 180
soybeans of each variety were used for validation. The average spectra and pixel-wise spectra of the
validation set were used to validate pixel-wise CNN models and object-wise CNN models, respectively.
The parameters in CNN were chosen by an empirical method at beginning. Then, parameters were
adjusted according to the accuracy of the validation set. According to the performance of the validation
sets, all the CNN models obtained satisfactory results using the parameters selected in Figure 3. The
remaining 900 soybeans of each variety were used for prediction. Object-wise models were used
to predict the average spectra. Pixel-wise models were used to predict both average spectra and
pixel-wise spectra. To build CNN models, the category values of ZH37, ZH41, and ZH55 were assigned
as 0, 1, and 2, respectively.

Table 2 reveals the results of the object-wise CNN models that were used to predict the average
spectra. For the training set, CNN models based on different sample numbers all achieved satisfactory
results, with all accuracies reaching 100%, while the accuracy of the validation and prediction sets
showed obvious differences. The number of samples used for training was small to some extent, which
resulted in insufficient representativeness of the sample. Thus, over-fitting existed for the training sets.
For the validation and prediction sets, the accuracy increased at first, and then became stable with
the expansion of the sample size used for training. As the number of each soybean variety increased
from 10 to 810, the accuracy of the validation set and prediction set increased from lower than 90% to
above 99%. Zhao et al. explored the influence of different sample sizes used for maize variety training.
Support vector machine (SVM) and radial basis function neural network (RBFNN) models built on
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the average spectra were developed [31]. Qiu et al. also studied the effect of classification accuracy
introduced by different numbers of training samples (100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1500, 2000, 2500, and 3000) on the basis of the average spectra [19]. The same changing tendency of the
prediction set was observed in these two studies.

Table 2. Object-wise CNN models used to predict average spectra.

Number 1
Accuracy (%) Computation

Time 5 (s)Tra-average 2 Val-average 3 Pre-average 4

10 100 75.556 87.296 5.742
20 100 79.259 88.593 6.103
30 100 85.370 93.370 6.490
60 100 90.370 96.333 7.016
90 100 94.074 97.778 11.590

180 100 95.185 98.222 15.862
360 100 98.333 99.259 21.662
540 100 99.074 99.296 28.260
720 100 99.259 99.481 35.667
810 100 99.444 99.778 38.935

1 The soybean number of each variety used in the training set; 2 Accuracy of training set based on object-wise CNN
models; 3 Accuracy of object-wise CNN models to validate average spectra; 4 Accuracy of object-wise CNN models
to predict average spectra; 5 Computation time of training set.

As for comparison, a simplified ResNet architecture [34] (with two 1-D convolution layers) and a
simplified Inception architecture [25] (with two 1-D convolution layers and two parallel data channels)
were used for modeling and evaluation based on objective-wise spectra (Table 3). In order to facilitate
comparison, only 10 and 810 samples were selected.

Table 3. Object-wise ResNet and Inception models used to predict average spectra.

Model Number 1
Accuracy (%) Computation

Time 5 (s)Tra-average 2 Val-average 3 Pre-average 4

ResNet
10 100 61.111 74.000 18.210
810 100 93.333 97.556 190.509

Inception 10 100 74.630 89.111 50.004
810 100 96.852 98.889 95.604

1 The soybean number of each variety used in the training set; 2 Accuracy of training set based on object-wise CNN
models; 3 Accuracy of object-wise CNN models to validate average spectra; 4 Accuracy of object-wise CNN models
to predict average spectra; 5 Computation time of the training set.

Using 10 samples of each variety for training, the ResNet architecture achieved 100%, 61.111%,
and 74.000% for the training set, validation set, and prediction set, respectively. The training time was
18.210 seconds. Considering 810 samples of each variety for training, the ResNet architecture achieved
100%, 93.333%, and 97.556% for the training set, validation set, and prediction set, respectively. The
time for training was 190.509 seconds.

The Inception model trained by 10 samples of each variety achieved a slightly better result (100%,
74.630%, and 89.111%) than ResNet with a time consumption of 50.004 seconds for training, and the
model built based on inception architecture using 810 samples of each variety achieved a similar
result (100%, 96.852%, and 98.889%) to the ResNet model, with a time consumption of 95.604 seconds
for training.

The performance of the simplified ResNet architecture and Inception architecture was worse
than that of the simple CNN model. The complex architectures of these two models need much
more parameters, which would lead to the over-fitting problem. The time consumption for modeling
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was also higher than that of the CNN model with simpler architecture, which was good enough for
practical applications.

Compared with object-wise CNN models, CNN models using pixel-wise spectra for training,
validation, and prediction were also studied (Table 4). In order to compare the modeling performance
of different CNN models, the same pixels of validation and prediction sets were selected for CNN
models using different soybean numbers for training, with 208,788 pixels prepared for training and
1,057,007 pixels chosen for prediction. The prediction set of pixel-wise spectra and average spectra
were both presented in Table 4.

Table 4. Pixel-wise CNN models used to predict pixel-wise spectra and average spectra.

Number 1.
Pixels 2 Accuracy (%) Computaion

Time 7 (s)Training Validation Prediction Tra-pixel 3 Val-pixel 4 Pre-pixel 5 Pre-average 6

10 12,546

208,788 1,057,007

94.165 73.002 74.741 79.741 315
20 24,719 93.337 73.632 74.736 80.370 468
30 37,280 94.612 76.102 77.864 88.556 558
60 75,969 92.069 81.725 83.875 95.556 1140

1 The soybean number of each variety used in the training set; 2 Pixels used for training, validation, and prediction
of pixel-wise models; 3 Accuracy of training set based on pixel-wise CNN models; 4 Accuracy of pixel-wise CNN
models to validate pixel-wise spectra; 5 Accuracy of pixel-wise CNN models to predict pixel-wise spectra; 6 Accuracy
of pixel-wise CNN models to predict average spectra; 7 Computation time of the training set.

For the training set, the accuracy was varied from 93%–96% for all four CNN models. There
were no obvious accuracy differences of the pixel-wise validation and prediction sets for CNN models
built using 10, 20, and 30 soybean kernels of each variety. CNN models using 60 kernels of each
variety outperformed the other three models in pixel-wise spectra prediction and average spectra
prediction, with accuracy reaching 83.875% and 95.556%, respectively. Comparing the prediction sets
of pixel-wise spectra and average spectra, the prediction accuracy of average spectra was higher than
that of pixel-wise spectra, with accuracy in the range of 79%–96% for the three varieties of soybeans.
What is more, the accuracy of the prediction of average spectra reached 95.556% by CNN models using
60 soybeans for model building, which was close to the CNN models using the average spectra of 810
samples of each variety. These results illustrated the feasibility of using pixel-wise CNN models to
identify soybean varieties. Zhang et al. also used pixel-wise spectra to build SVM models to predict
the pixel-wise spectra and average spectra of coffee beans. They selected 2000 pixels of each variety
randomly from 600,000 pixels for modeling, and decent results were also obtained [21]. Feng et al.
also extracted pixel-wise spectra to build SVM, k-nearest neighbors algorithm (KNN), and RBFNN
models for raisin variety classification. It also achieved good results [33]. These studies proved the
great potential to establish models based on pixel-wise spectra to obtain satisfactory results.

Comparing the computation time of object-wise CNN models and pixel-wise CNN models, the
computation time of both two models would increase as the number of samples used for the models
increased. Although the modeling time of pixel-wise CNN models was longer than that of object-wise
CNN models, the input variables of pixel-wise CNN models were a thousand times more than those of
object-wise CNN models, so the computation time was still acceptable.

A majority vote was also applied to the pixel-wise CNN models to improve modeling performance.
Pixel-wise prediction was conducted to each soybean kernel, and the specific variety of each soybean
kernel was determined by calculating the percentage of pixel-wise prediction results of each variety in
one single soybean, and assigned as the variety with the largest percentage.

The results of pixel-wise CNN models and the vote results of each soybean variety are shown
in Table 5. Compared with the pixel-wise prediction of each variety, variety identification by voting
performed better among all the three sets. The results of the training set by voting all reached 100%,
while the accuracy of the pixel-wise training set was in the range of 83%–99%. For the validation and
prediction sets, the classification accuracy using pixel-wise spectra was inferior to that achieved by
using voting for variety determination, and the differences became larger with the increased number of
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soybeans in the training set. With the increased number of soybeans in the training set, the prediction
results were also improved for both pixel-wise prediction and voting. The prediction results of
pixel-wise CNN models using 60 soybeans by voting performed better than that of the average spectra.

Table 5. The results of pixel-wise CNN models and the vote results of each soybean variety. ZH37:
Zhonghuang37, ZH41: Zhonghuang41, and ZH55: Zhonghuang55.

Set Number 1
Accuracy (%)

ZH37 ZH41 ZH55 All

Tra-pixel 2

10 99.604 94.138 88.035 94.165
20 99.429 92.553 87.214 93.337
30 98.989 94.390 89.876 94.612
60 97.056 83.849 94.552 92.069

Val-pixel 3

10 91.677 76.386 49.875 73.002
20 90.519 79.339 50.071 73.632
30 86.811 82.075 58.803 76.102
60 82.521 78.030 84.583 81.725

Pre-pixel 4

10 94.938 77.774 51.766 74.741
20 94.703 78.737 51.069 74.736
30 92.277 82.186 59.416 77.864
60 87.901 79.681 83.859 83.875

Tra-vote 5

10 100 100 100 100
20 100 100 100 100
30 100 100 100 100
60 100 100 100 100

Val-vote 6

10 100 96.111 58.333 84.815
20 100 98.333 58.333 85.556
30 100 98.889 72.222 90.370
60 99.444 96.111 98.889 98.148

Pre-vote 7

10 100 96.111 57.889 84.667
20 100 97.000 57.556 84.852
30 100 99.222 74.444 91.222
60 100 96.667 99.667 98.778

1 The soybean number of each variety used in the training set; 2 Training set based on pixel-wise CNN models
used to predict pixel-wise spectra; 3 Validation set of pixel-wise CNN models used to predict pixel-wise spectra;
4 Prediction set of pixel-wise CNN models used to predict pixel-wise spectra; 5 Training set of pixel-wise CNN
models used to vote the percentage of pixel-wise prediction results; 6 Validation set of pixel-wise CNN models used
to vote the percentage of pixel-wise prediction results; 7 Prediction set of pixel-wise CNN models used to vote the
percentage of pixel-wise prediction results.

The overall results indicated that vote-based pixel-wise CNN models built on a few samples (60
kernels of each variety) could be used to identify soybean varieties, which significantly improved the
sampling and modeling efficiency.

3.4. Prediction Maps

In order to present the classification results more intuitively, prediction maps were obtained by
applying CNN models on the pixel-wise spectra of 60 soybean kernels of each variety. Figure 6 reveals
the pseudo-color images (1000, 1200, and 1400 nm) of near-infrared spectra and the corresponding
pixel-wise prediction maps of three varieties of soybeans. One near-infrared spectral image of each
variety was randomly selected to form the prediction map. Distinguishable prediction differences
could be observed from Figure 6. The color distribution indicates the prediction result of the variety of
soybean in the near-infrared spectral image. Blue, yellow, and orange colors stand for the prediction
results assigned to ZH37, ZH41, and ZH55, respectively. It can be seen from Figure 6b,c that the color
differences could be found within a single soybean kernel. Satisfactory results were obtained since
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nearly all the soybean kernels were correctly classified. Specially, the marked kernel in Figure 6b was
the only one being misclassified as ZH55, because in this situation, 52.16% of pixels were identified as
ZH55. On the whole, the prediction maps revealed the possibility of classifying soybean variety by
calculating the ratio of classification results of pixel-wise CNN models built on a few samples.
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4. Conclusions

Hyperspectral imaging coupled with a CNN model showed great potential for soybean variety
classification. Three varieties of soybeans (Zhonghuang37, Zhonghuang41, and Zhonghuang55) were



Sensors 2019, 19, 4065 13 of 15

prepared for study to explore the possibility of building reliable models with few samples. Pixel-wise
spectra and average spectra were both extracted for comparison. PCA was applied to form PCA
scores scatter plot images for qualitative analysis, which presented the differences of three varieties of
soybeans. Object-wise and pixel-wise CNN models were both established. Average spectra were used
for prediction in both object-wise CNN models and pixel-wise CNN models. Pixel-wise spectra were
only used for prediction in pixel-wise CNN models. Object-wise CNN models achieved decent results
when the samples used for training had more than 360 kernels of each variety, while satisfactory results
were obtained by pixel-wise CNN models using a few samples (60 kernels of each variety). A majority
vote, which further improved the classification accuracy, was adopted to make the final decision for
variety determination. CNN models based on pixel-wise spectra with a few samples achieved good
results. The results illustrated the great potential and advantage of hyperspectral imaging to identify
soybean varieties with a few samples using pixel-wise spectra rather than a large scale of samples
using average spectra. The pixel-wise models performed well on average spectra, extending the use of
pixel-wise spectra. Moreover, CNN could deal with a large number of pixel-wise spectra efficiently
and rapidly, illustrating the great potential of CNN in related studies. The results in this study would
also help to identify other samples with a similar situation. In future research, samples of different
origins, years, and varieties should be taken into consideration.
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