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Abstract

Objectives. Understanding the T cell receptor (TCR) repertoire of
regulatory CD4+ T-cell (Treg) populations is important for
strategies aiming to re-establish tolerance in autoimmune diseases.
We studied circulating deamidated gluten-epitope-specific CD39+

Tregs in patients with coeliac disease following an oral gluten
challenge, and we used cytomegalovirus (CMV)-specific CD39+

Tregs from healthy controls as a comparator population. Methods.
We used the OX40 assay to isolate antigen-specific Tregs by
induced surface co-expression of CD25, OX40 and CD39. RACE PCR
amplification and Sanger sequencing of the TCR b chain were used
to analyse repertoire diversity. Results. We found that, following
oral gluten challenge, circulating gluten-specific CD39+ Tregs had
an oligoclonal TCR repertoire that contained public clonotypes.
Conversely, the TCR repertoire of CMV-epitope-specific CD39+

Tregs from healthy controls was polyclonal. Discussion. These data
indicate that a biased TCR repertoire is not inherent to CD39+

Tregs, and, in this case, is apparently driven by the HLA-DQ2.5-
restricted deamidated gluten peptide in coeliac disease patients.
Conclusion. This is the first assessment of the TCR repertoire
within circulating human Tregs specific for foreign antigen. These
data enhance our understanding of antigen-specific CD4+

responses in the settings of chronic inflammation and infection
and may help guide immunomonitoring strategies for CD4+ T cell-
based therapies, particularly for coeliac disease.

Keywords: CD4+ T cells, CMV, coeliac disease, gluten, regulatory
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INTRODUCTION

The T cell receptor (TCR) repertoire diversity of
memory T-cell populations is important for
determining clearance of pathogens, is useful as a
biomarker for monitoring immunotherapies in
cancer and autoimmunity, for classifying various
inflammatory diseases, and is an important factor
in vaccine design.1 Although antigen-specific CD8+

T cells have been well studied,2,3 the TCR
repertoire of antigen-specific CD4+ T cells,
particularly regulatory T cells (Tregs), remains
underexplored. Similarly, very few human studies
have directly compared antigen-specific TCR
repertoires of effector and regulatory memory
CD4+ T cells, with evidence for both distinct
repertoires4 and clonotype sharing.5

We chose to investigate the TCR repertoire of
antigen-specific Tregs in the context of coeliac
disease, a gluten-dependent enteropathy
associated with an acquired memory CD4+ T-cell
response against deamidated gluten peptides.6

The immunodominant hierarchy of wheat gliadin
T-cell epitopes in HLA-DQ2.5 (DQA1*05:DQB1*02)+

coeliac disease patients has been well
characterised,7 and gluten-responsive effector
CD4+ T cells can be detected in the peripheral
blood of patients with coeliac disease on a
gluten-free diet, following oral gluten challenge.8

We have previously shown that the majority
(> 80%) of circulating gluten-specific CD4+ T cells
in patients with coeliac disease are CD39+ Tregs
and that the TCR repertoire of these cells may
have biases, as we identified a public TCR
clonotype (TRBV7-2; CASSLRYTDTQYF) expressed
by a DQ2.5-glia-a1/a2-specific clone.9 Previous TCR
repertoire studies of gluten-peptide-specific
effector CD4+ T cells have demonstrated biased
usage of TRBV7-2 within DQ2.5-glia-a2-specific
responses, with several public clonotypes also
detected.10–12

To confirm whether our findings in the context
of coeliac disease could be generally applied to
foreign antigen-specific CD39+ Tregs, we analysed
cytomegalovirus (CMV)-specific CD39+ Tregs as a
comparator population, utilising reponses to
15mer pp65 epitopes with known restriction
elements.13,14 These cells were obtained from
healthy individuals as there was insufficient blood
volume available from patients with coeliac
disease. Previous studies of the TCR repertoire of
CMV-specific CD4+ T cells in humans are limited
and have largely relied on ex vivo expansion of

these cells, which introduces bias into the
repertoire.5,15 Our methodology to obtain these
cells (the OX40 assay) uses 44-h antigen-
stimulated upregulation of the activation markers
CD25 and OX40 (CD134), so cells are isolated prior
to any proliferation occurring.16 To our
knowledge, this is the first description of the TCR
repertoire within human circulating regulatory T
cells specific for foreign antigens.

RESULTS AND DISCUSSION

The TCR repertoire of circulating gluten-
specific CD39+ Tregs is oligoclonal

To characterise the TCR repertoire of gluten-
specific CD4+ Tregs and Tconv cells, we utilised
our previously described OX40 assay, which
detects antigen-specific cells by induced co-
expression of CD25 and OX40 following 44-h
antigen stimulation in vitro16 (Figure 1a). In this
assay, we have validated that CD39 co-expression
identifies a sub-population of antigen-specific
cells (CD25+OX40+CD39+) highly enriched (> 80%)
for CD25highCD127lowFOXP3+ Tregs.17 In patients
with coeliac disease, we confirmed that > 85% of
the DQ2.5-glia-a1/a2-specific CD25+OX40+CD39+

cells originate from peripheral
CD25highCD127lowFOXP3+ Tregs.9 Notably, CD39�

Tconv cells comprised < 10% of DQ2.5-glia-a1/a2-
specific responses in the patients with coeliac
disease, providing insufficient cell numbers for
analysis in this study. Additionally, as previously
described,9 gluten-specific OX40 assay responses
could only be detected in post-gluten challenge,
and not pre-challenge, blood, restricting our
analysis of gluten-specific cells to CD39+ Tregs
isolated post-gluten challenge.

We isolated DQ2.5-glia-a1/a2-specific
CD25+OX40+CD39+ Tregs from three patients with
coeliac disease (Supplementary table 1) 6 days
after oral gluten challenge as previously
described9 and performed TCR clonotype analysis
(Figure 1b). In this study of TCR repertoire
diversity, only the TCR b chain was sequenced and
analysed. TRBV and TRBJ segment usage, along
with the translated CDR3 region for all
clonotypes, is listed in Table 1, and there were no
silent mutations observed. The TCR repertoire of
DQ2.5-glia-a1/a2-specific CD39+ T cells from each
individual was oligoclonal, that is containing few
clones and dominated by a few expanded
clonotypes. For individuals #0174 and #0251,
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Figure 1. TCR repertoire of gluten-peptide-specific CD39+ T cells. (a) PBMCs were isolated from n = 3 coeliac disease patients (#0174, #0512

and #0251) 6 days following oral gluten challenge, stimulated with gluten peptide DQ2.5-glia-a1/a2 for 44-h and the antigen-specific

CD4+CD25+OX40+CD39+ Tregs sorted. (b) The TCR clonotype repertoires of the CD4+CD25+OX40+CD39+ Treg populations are shown along

with the number of clonotypes analysed for each patient. Coloured segments indicate clonotypes (including variants of these clonotypes that

differed by a single residue in the CDR3 region) detected in more than one individual (this study and Qiao et al.10), and clonotype sequences are

in Table 1. (c) TCR clonotype repertoires of unstimulated total CD39+ Tregs sorted from coeliac disease patients #0174 and #0512 prior to gluten

challenge, and CD4+ cells not specific for gluten peptides from coeliac patient #0251 that were sorted from an OX40 assay as CD25�OX40� cells

post-gluten challenge (n = number of clonotypes analysed for each patient). Clonotype sequences are in Supplementary tables 2–4; data are

from a single experiment for each patient.
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clonotype 3 comprised 67% and 58%,
respectively, of all clonotypes analysed. For
individual #0512, 59% of the sampled TCR
repertoire was composed of one clonotype
(clonotype 4). For each individual, only 6–14
unique clonotypes were detected within all
clonotypes analysed (range: 88–92 clonotypes). No
conserved CDR3 motifs or residues were detected.

Similar to previous studies,10,11 we observed
public clonotypes within DQ2.5-glia-a1/a2-specific
CD4+ T cells. One TCR clonotype (clonotype 9;
TRBV7-3; CASSIRSTDTQYF; individual #0512) was
detected that has been previously described.10 We
also identified three novel public clonotypes
(clonotypes 2, 3 and 4) that may be unique to the
DQ2.5-glia-a1/a2-specific CD39+ Treg population.
Clonotype 2 (TRBV3-1; CASSSLNTQYF), clonotype 3
(TRBV4-1; CASSQVTLPTETQYF) and clonotype 4
(TRBV7-2; CASSFGVEDEQYF), each identified in at
least two individuals, were also previously found

expressed by in vitro expanded DQ2.5-glia-a1/a2-
specific CD39+ T-cell lines and clones derived from
individual #0174.9

To ensure the repertoire skewing observed
within DQ2.5-glia-a1/a2-specific T cells was not
due to any inherent TCR repertoire bias within
these individuals, TCR analysis was also performed
on control populations. For individuals #0174 and
#0512, total memory CD39+ Tregs
(CD45RO+CD25highCD127lowCD39+) were sorted
prior to gluten challenge. Additionally, for
individual #0251 the DQ2.5-glia-a1/a2-non-specific
CD4+CD25�OX40� T cells were sorted from an
OX40 assay. Importantly, none of the TCR
clonotypes identified in either our previously
described in vitro expanded DQ2.5-glia-a1/a2-
specific T-cell lines and clones,9 or the ex vivo
DQ2.5-glia-a1/a2-specific CD25+OX40+CD39+ T cells
reported here, were detectable in these control
populations (Figure 1c and Supplementary tables

Table 1. TCR clonotypes expressed by DQ2.5-glia-a1/a2-specific CD39+ T cells isolated from coeliac disease patients post-gluten challenge

Clonotype ID Expression TRBV TRBJ CDR3

Coeliac disease patient #0174

Clonotype 3 67% TRBV4-1 TRBJ2-5 CASSQVTLPTETQYF

Clonotype 3A 24% TRBV4-1 TRBJ2-5 CASGQVTLPTETQYF

Clonotype 2 6% TRBV3-1 TRBJ2-3 CASSSLNTQYF

Clonotype 3B 1% TRBV4-1 TRBJ2-5 CTSSQVTLPTETQYF

Clonotype 3C 1% TRBV4-1 TRBJ2-5 CASSQVTLPTGTQYF

Clonotype 8 1% TRBV4-1 TRBJ2-5 CASGQVILPTETQYF

Coeliac disease patient #0512

Clonotype 4 59% TRBV7-2 TRBJ2-7 CASSFGVEDEQYF

Clonotype 2 29% TRBV3-1 TRBJ2-3 CASSSLNTQYF

Clonotype 9 8% TRBV7-3 TRBJ2-3 CASSIRSTDTQYF

Clonotype 3 1% TRBV4-1 TRBJ2-5 CASSQVTLPTETQYF

Clonotype 4A 1% TRBV7-2 TRBJ2-7 CASNFGVEDEQYF

Clonotype 4B 1% TRBV7-2 TRBJ2-7 CASSLGVEDEQYF

Clonotype 2A 1% TRBV3-1 TRBJ2-3 CTSSSLNTQYF

Coeliac disease patient #0251

Clonotype 3 58% TRBV4-1 TRBJ2-5 CASSQVTLPTETQYF

Clonotype 10 9% TRBV7-3 TRBJ2-3 CASSLGGSTDTQYF

Clonotype 11 8% TRBV20-1 TRBJ2-1 CSASSSGGASYNEQFF

Clonotype 12 7% TRBV4-2 TRBJ2-7 CASSRTGQGGETQYF

Clonotype 4 3% TRBV7-2 TRBJ2-7 CASSFGVEDEQYF

Clonotype 13 3% TRBV7-3 TRBJ1-6 CASSLSFDSPLHF

Clonotype 14 3% TRBV6-2 TRBJ1-2 CASSRSYGYTF

Clonotype 15 3% TRBV5-1 TRBJ1-6 CASSLSGADNSPLHF

Clonotype 16 1% TRBV12-4 TRBJ1-4 CASSVQGITNEKLFF

Clonotype 3D 1% TRBV4-1 TRBJ2-5 CASSQVTLPTETRYF

Clonotype 3E 1% TRBV4-1 TRBJ2-5 CASSQVTLPTETQHF

Clonotype 17 1% TRBV6-2 TRBV1-5 CASSWGQGYQPQHF

Clonotype 18 1% TRBV28 TRBJ2-4 CPSFRGDIQYF

Clonotype 19 1% TRBV2 TRBJ2-5 CASSPLSFGGGQETQYF

Coloured rows match Figure 1b and indicate TCR clonotypes (including variants that differed by a single residue (underlined) in the CDR3 region)

detected in more than one individual in this study and Qiao et al. 10
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2–4). Therefore, the T-cell receptor and public
clonotype bias observed within DQ2.5-glia-a1/a2-
specific CD39+ Treg populations post-gluten
challenge are apparently driven by the gluten
antigen, as clonotypes detected in this population
do not occur at high frequencies within
circulating memory CD39+ Tregs prior to gluten
challenge. Additionally, there was no degeneracy
in the public clonotype sequences, suggesting that
convergent recombination processes were not the
key mechanism generating these clonotypes.18 It is
more likely the nature of the deamidated gliadin
epitope, and its restricted presentation by HLA-
DQ2 molecules is the key determinant of the
biased TCR repertoire in coeliac disease.2

These data extend our previous findings that
gluten-specific, but not polyclonal, CD39+ Tregs in
coeliac disease have impaired suppressive
function,9 by demonstrating these cells also have
an oligoclonal TCR repertoire that contains public
clonotypes. It will be important for future studies
to assess whether the circulating gluten-specific
CD39� effector T cells have any clonotype sharing
with CD39+ Tregs, potentially by utilising single-
cell sequencing technologies.

CMV-specific CD39+ Tregs exhibit a type 1
TCR bias and have a polyclonal repertoire

Importantly, as we are describing a novel
population using the OX40 assay, it was
important to ascertain whether an oligoclonal
TCR repertoire was a feature of circulating CD39+

Tregs with specificity for foreign antigen. To do
this, we utilised healthy individuals (n = 3) with
known responses to either of two 15mer peptides
derived from CMV pp65: CMV-P1
(LLQTGIHVRVSQPSL), reported to be restricted by
HLA-DRB1*15,13 and CMV-P4 (EHPTFTSQYRIQGKL),
reported to be restricted to HLA-DRB1*11:01.14

We chose CMV-peptide-specific CD39+ Tregs as
our comparator population as previous work had
indicated that chronic infection with CMV can
result in a biased TCR repertoire in CD8+ and CD4+

T cells.19–21 Additionally, from our previous work
we had identified healthy donors with robust
CD39+ Treg and CD39� Tconv cell responses to
these CMV epitopes.17 Donors 1 and 2 had
responses to CMV-P1, and donor 3 had a response
to CMV-P4 (Figure 2 and Supplementary table 1).
OX40 assays (44-h antigen stimulation, 10 lg mL�1

of antigen) were performed, and CMV-peptide-
specific CD4+CD25+OX40+CD39+ Tregs (and

CD4+CD25+OX40+CD39� Tconv cells) were sorted
and TCR repertoire analysed.

We observed that CMV-peptide-specific CD39+

Tregs from all three donors had a polyclonal TCR
repertoire, being a repertoire containing many
clones and without dominant clonal expansions,
although there was some bias towards usage of
particular TRBV segments (Figure 2 and
Supplementary tables 5–9). For donors 1 and 2, we
also sorted CD39� Tconv cells and observed that,
although the pattern of TRBV segment usage was
similar, there were no shared clonotypes with
CD39+ Tregs, consistent with these being distinct
populations, as previously described.4 Although no
clonotype sharing was observed between
regulatory and effector populations, the individual
frequencies of CMV-specific clonotypes were too
small to enable statistical analysis of similarity. We
used flow cytometry to confirm a normal
distribution of TCR Vb family usage within ex vivo
unstimulated CD4+ T cells for donors 1 and 2 using
TCR Vb mAbs (IOTest� Beta Mark Kit, Beckman
Coulter, Brea, CA, USA; Supplementary figure 1). In
all donors, regulatory and effector CD4+ T-cell
responses to CMV peptides exhibited a type 1 TCR
bias, as indicated by preferred TRBV segment
usage,2 with a polyclonal clonotype repertoire
with high diversity mostly composed of low-
frequency clonotypes.

CD39+ Treg populations with higher avidity
for CMV peptides also exhibit a polyclonal
repertoire

The CD4+ T-cell response to deamidated gluten
peptide DQ2.5-glia-a1/a2 in patients with coeliac
disease is highly specific and has likely developed
over repeated antigen exposure; therefore, we
asked whether a population of CMV-peptide-
specific CD39+ Tregs selected for higher avidity
might exhibit a biased TCR repertoire, particularly
as this has been described for CMV-specific CD8+

T-cell responses.20 We confirmed using a dose
titration that CMV-peptide-specific CD39+ Tregs
had higher avidity for antigen than CD39� Tconv
cells (Figure 3a).

CMV-P1-specific T regulatory and conventional
cell populations containing higher avidity
clonotypes were isolated from donor 1 following
an OX40 assay stimulated with 2.5 lg mL�1 of CMV
peptides, being the dose where the maximal OX40
assay response was reduced by 75% (Figure 3a).
Analysis of TCR sequences from cell populations
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Figure 2. TCR repertoire of CMV-peptide-specific CD39+ and CD39� CD4+ T cells. For n = 3 healthy donors, PBMCs were stimulated with

10 lg mL�1 antigen for 44 h and the antigen-specific CD4+CD25+OX40+ cells sorted into CD39� cells and CD39+ Tregs, as shown in the FACS

plots. TCR repertoire was assessed by 50RACE and Sanger sequencing, and the percentage usage of each TCR Vb family is shown for (a) donor 1

CMV-P1-specific cells, (b) donor 2 CMV-P1-specific cells and (c) donor 3 CMV-P4-specific cells. The number of TCR clonotype sequences analysed

is represented by n for each subset. There was insufficient CMV-P4-specific CD39� cells sorted from donor 3 to enable analysis. Clonotype

sequences are in Supplementary tables 5–9; data are from a single experiment for each donor.
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containing higher avidity clonotypes revealed that,
for donor 1, the TCR repertoire was equally diverse
as seen in populations inclusive of lower avidity
responses (10 lg mL�1), with no overlap in TCR

clonotypes observed (Supplementary tables 10 and
11). Within CD39+ Treg and CD39� Tconv cells
responding to either high- or low-dose antigen,
the TRBV usage hierarchy did not alter
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Figure 3. Effect of antigen concentration on proportions of CD39+ Tregs in recall responses. (a) For CMV-P1 and CMV-P4 responses, the

proportion of CD39+ Tregs and CD39� Tconv cells are shown for a log dilution of antigen concentrations from 10 to 1 lg mL�1. Data represent

3–4 independent experiments for each donor, median � interquartile range. Black arrows indicate the CMV-P1 concentrations used to sort

higher and lower avidity responses for donor 1. (b) Percentage usage of TCR Vb families is shown for CD39+ cells and CD39� cells responding to

2.5 and 10 lg mL�1 of CMV-P1 from donor 1. The number of TCR clonotype sequences analysed is shown (Supplementary tables 5, 6, 10 and

11); data are from a single experiment.
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substantially, indicating that the higher avidity
TCRs utilise TRBV segments that are also dominant
after stimulation with high-dose antigen
(Figure 3b). These preliminary data indicate that
CMV-P1-specific CD39+ Treg populations
containing both high- and low-avidity clonotypes
had a polyclonal TCR repertoire that was distinct
from CD39� Tconv cells. Of note, previous studies
of CMV pp65- and glycoprotein B- epitope-specific
CD4+ T cells, that defined these cells by IFNc
production or cytotoxicity, observed a more biased
TCR repertoire containing clonal expansions.19,21 In
contrast, we show that using the OX40 assay to
sample a more functionally diverse epitope-specific
CD4+ T-cell population reveals a highly diverse,
polyclonal TCR repertoire. The TCR repertoire of
CD4+ T cells specific for CMV peptides P1 and P4 has
not been previously assessed, and it is known that
differences in peptide–MHC complexes can drive
either a polyclonal or an oligoclonal TCR
repertoire.22 Our data support previous reports of
polyclonal CD4+ T-cell TCR repertoires in
populations specific for other viral antigens from
Epstein–Barr virus and influenza A.23,24 However,
our data require confirmation in a larger cohort to
provide a more accurate description of the TCR
repertoire diversity of CMV-pp65-epitope-specific
CD4+ T-cell populations.

Conclusion

In conclusion, our data indicate the TCR repertoire
of gluten-specific CD39+ Tregs in patients with
coeliac disease is oligoclonal and may contain
unique public clonotypes, whilst CMV-peptide-
specific CD39+ Tregs contain a polyclonal TCR
clonotype profile. These data suggest that the
oligoclonal repertoire of gluten-specific CD39+

Tregs is not inherent to CD39+ Tregs with
specificity for foreign antigen, but is instead driven
by the antigen and its precise HLA restriction. This
exploratory study extends upon our previous work
identifying that CD39+ Tregs dominate recall
responses to gluten and have impaired suppressive
function.9 Further work should validate the
presence of gluten-specific public clonotypes
unique to Treg cell populations in a larger coeliac
disease cohort. These data, detailing the restricted
TCR repertoire of gluten-specific Tregs, may be
useful in monitoring the effectiveness of novel
immunotherapies aiming to re-establish tolerance
in patients with coeliac disease.

METHODS

Subjects and samples

Patients with coeliac disease were recruited after provision
of informed consent (Human Research Ethics Committees:
Royal Melbourne Hospital ID: 2003.009; The Walter and Eliza
Hall Institute of Medical Research ID: 03/04). Enrolment
criteria were as follows: biopsy-proven disease conforming
to ESPGHAN guidelines, HLA-DQ2.5+ and compliant on
gluten-free diet for ≥ 6 months (Supplementary table 1). All
patients with coeliac disease undertook a 3-day gluten
challenge by consuming four slices of commercial white
bread daily (approximately 10 g/day of wheat gluten).8

Healthy donor blood was collected from volunteers (St
Vincent’s Hospital Human Research Ethics Committee ID:
HREC/13/SVH/145). Peripheral blood was collected into
lithium heparin vacutainers (Becton Dickinson (BD), Franklin
Lakes, NJ, USA), transported at ambient temperature and
processed within 8 h of collection. Mononuclear cells were
obtained by centrifugation over Ficoll-Paque (GE Healthcare,
Chicago, IL, USA).

HLA typing

For coeliac disease patients #0174 and #0251, HLA-DQB1
and HLA-DQA1 alleles were determined using PCR–
sequence-specific oligonucleotide hybridisation (Victorian
Transplantation and Immunogenetics Service, Melbourne,
Australia). For coeliac patient #0512, the presence of alleles
encoding HLA-DQ2.5, DQ2.2 and DQ8 was determined by
detecting five single-nucleotide polymorphisms (rs2187668,
rs2395182, rs4713586, rs7454108 and rs7775228) as per our
previous study.9 HLA genotyping of healthy individuals was
performed by the Institute for Immunology & Infectious
Diseases using Illumina next-generation sequencing
(Murdoch University, Perth, Australia).

Antigens

A HLA-DQ2.5-restricted 15mer (50 – LQPFPQPELPYPQPQ – 30)
that encompasses two overlapping immunodominant
deamidated wheat gliadin T-cell epitopes, DQ2.5-glia-a1a
(PFPQPELPY) and DQ2.5-glia-a2 (PQPELPYPQ),7 synthesised to
≥ 95% purity (Pepscan, Lelystad, The Netherlands) was used at
50 lg mL�1, as previously optimised.9 Two previously
described13,14 15-mer CMV-peptides, CMV-P1 (50 – LLQTGIHV
RVSQPSL – 30) and CMV-P4 (50 – EHPTFTSQYRIQGKL – 30),
synthesised to > 95% purity (Mimotopes, Mulgrave, Australia),
were used at 10 lg mL�1 (unless specified otherwise).

OX40 assay

The OX40 assay was performed as previously described16,17

using PBMCs at 2 9 106 cells mL�1 in RPMI supplemented
with 5% human serum, 1% L-glutamine and 1% Penicillin-
Streptomycin (Invitrogen, Carlsbad, CA, USA). Cells were
either left unstimulated or incubated with antigen for 44 h
at 37°C (5% CO2).
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Flow cytometry

Staining was performed as previously described9 using: from
BD anti-CD3-PerCP-Cy5.5 (SK7), CD4-AF700 (RPA-T4), CD25-
APC (2A3) and OX40 (CD134)-PE (L106); CD45RO-ECD
(UCHL1; Beckman Coulter) and from eBioscience, San Diego,
CA, USA, CD127-eFluor450 (eBioRDR5) and CD39-PECy7 (A1).
The IOTest� Beta Mark Kit (Beckman Coulter) was used
according to manufacturer’s instructions, in combination
with anti-CD3 and anti-CD4 mAbs. A four-laser LSRII flow
cytometer (BD) was used and analysis performed using
FlowJo software (v8.8.7 Treestar Inc, Ashland, OR, USA).

Cell sorting

Cell sorting was performed using a three-laser FACS Aria II
cell sorter (BD) to > 95% purity. For analysis of TCR
diversity, 10 000 cells were sorted from each population.

Analysis of TCR diversity by 50RACE PCR

Total RNA was extracted from sorted cell populations
utilising TRIzol reagent (Invitrogen) as per the manu-
facturers’ protocol. T-cell receptor clonotypes were analysed
using 50 Rapid Amplification of cDNA Ends (RACE) PCR
(Clontech), as previously described.25 Briefly, RNA was
reverse transcribed using the SMARTerTM cDNA RACE Kit
(Clontech Laboratories, Inc, Mountain View, CA, USA) and
then purified using the Wizard� SV gel and PCR Clean-Up
System (Promega, Madison, WI, USA) according to
manufacturers’ instructions. The TRBV region was amplified
using the Advantage� 2 PCR enzyme system and the
SMARTerTM cDNA RACE Kit (Clontech Laboratories, Inc) and
the MBC2 reverse primer (50-TGCTTCTGATGGCTCAAACAC
AGCGACCT-30; Sigma-Aldrich, St Louis, MO, USA). Gel-
purified TRBV DNA was ligated by TA cloning into the
pCR�4-TOPO�vector, using the TOPO TA Cloning� Kit for
Sequencing (Invitrogen) and transformed into OneShot�

TOP10 Chemically Competent Escherichia coli (Invitrogen).
Transformed cells were grown on LB agar plates containing
100 lg mL�1 ampicillin (selective for transformed cells
containing a ligated vector). Colonies were transferred to
each well in a 96-well PCR plate and vector inserts amplified
using Platinum� Taq DNA Polymerase High Fidelity PCR
(Invitrogen) with M13 forward (50-TTTTCCCAGTCACGAC-30)
and reverse (50-CAGGAAACAGCTATGAC-30) primers (Sigma-
Aldrich). Sanger sequencing of purified TRBV DNA was
performed at the Australian Genome Research Facility
(Sydney, Australia). Sequences were analysed by using the
ImmunoGenetics (IMGT) V-quest database and are reported
using IMGT nomenclature.26 TRBV sequences were only
included in analysis if they were functional rearranged
coding sequences.
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