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Abstract
Background: Identification of individual prostatic glandular structures is an important 
prerequisite to quantitative histological analysis of prostate cancer with the aid of a 
computer. We have developed a computer method to segment individual glandular 
units and to extract quantitative image features, for computer identification of prostatic 
adenocarcinoma. Methods: Two sets of digital histology images were used: database 
I (n = 57) for developing and testing the computer technique, and database II (n = 
116) for independent validation. The segmentation technique was based on a k-means 
clustering and a region-growing method. Computer segmentation results were evaluated 
subjectively and also compared quantitatively against manual gland outlines, using the 
Jaccard similarity measure. Quantitative features that were extracted from the computer 
segmentation results include average gland size, spatial gland density, and average gland 
circularity. Linear discriminant analysis (LDA) was used to combine quantitative image 
features. Classification performance was evaluated with receiver operating characteristic 
(ROC) analysis and the area under the ROC curve (AUC). Results: Jaccard similarity 
coefficients between computer segmentation and manual outlines of individual glands 
were between 0.63 and 0.72 for non-cancer and between 0.48 and 0.54 for malignant 
glands, respectively, similar to an interobserver agreement of 0.79 for non-cancer and 
0.75 for malignant glands, respectively. The AUC value for the features of average gland 
size and gland density combined via LDA was 0.91 for database I and 0.96 for database 
II. Conclusions: Using a computer, we are able to delineate individual prostatic glands 
automatically and identify prostatic adenocarcinoma accurately, based on the quantitative 
image features extracted from computer-segmented glandular structures.
Key words: Computer-aided classification, digital histology images, feature analysis, 
image segmentation, prostatic adenocarcinoma

INTRODUCTION

Prostate cancer is the most commonly diagnosed non-
skin cancer and second leading cause of cancer-related 
death among US men.[1] Transrectal ultrasound-guided 

core needle biopsy followed by histology is the clinical 
standard for prostate cancer diagnosis. Histological 
analysis, based on the pathologists’ visual interpretation 
of the biopsy tissue, is regarded universally in medicine as 
the gold standard, but it is also subjective and therefore 
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not immune to inter- and intra-pathologist variability.[2-5]  
Quantitative analysis with the aid of computational 
methods may help reduce the level of subjectivity.[6]  
Computer methods for automated prostate cancer 
detection and grading have been proposed based on 
texture image feature analysis, fourier and wavelet 
analysis, graph theory, fractal analysis, and other analyses 
that are not gland-specific.[7-15] Promising results that 
are reported in these studies suggest that incorporating 
computational methods into histological analysis can be 
helpful to the clinical interpretation of prostatic tissue.

Prostatic glandular structures (or prostatic glands) 
include both acini and ducts, which are normally 
difficult to distinguish microscopically. Segmentation of 
individual glandular units is important because abnormal 
growth patterns of glands are the first signs that lead 
pathologists to suspect prostate cancer.[16] Small, crowded, 
and compact glands often indicate malignancy.[17] To 
measure these histological characteristics quantitatively, 
segmentation of individual glands is crucial. However, 
while segmentation of surrogate structures such as 
glandular lumina, with or without epithelial-cell 
cytoplasm, has been reported,[18-20] segmentation of the 
complete glandular unit has not been accomplished. The 
goal of this study is to segment the complete individual 
glandular units in digital histology images for the purpose 
of prostate cancer identification. We hypothesize that 
quantitative image features extracted from the gland 
segmentation results can be used to identify prostatic 
adenocarcinoma from non-cancer prostatic tissue.

METHODS

Image Databases and Image Acquisition
We acquired digital histology images from hematoxylin-
eosin (HE) stained 5 μm sections of formalin-fixed and 
paraffin-embedded prostatic tissue. Images were taken from 
regions of interest (ROIs) containing either non-cancer 
glandular structures or adenocarcinoma with Gleason grade 
3 patterns. Non-malignant abnormal conditions such as 
atrophy were not further differentiated. Tissue ROIs were 
free of severe artifacts caused by tissue preparation.

Two image databases were collected. Database I consisted 
of 57 digital color images (20 containing adenocarcinoma) 
from 15 prostatectomy sections of eight patients from 
Northwestern University. Database I was used to develop 
and evaluate image-processing techniques. Database 
II consisted of 116 digital images (44 containing 
adenocarcinoma) from 31 prostatectomy sections of 17 
patients who were operated upon in 2001 or 2002 at the 
University of Chicago. Database II was used to validate 
the image-processing techniques.

For all cases in each database, a uropathologist reviewed 
the tissue sections retrospectively and marked ROIs for 

digital image acquisition. After the digital images were 
acquired, the same pathologists reviewed the digital 
images to confirm diagnosis.

A Carl Zeiss AxioCam HRC charge-coupled device digital 
camera mounted on an Olympus BX41 microscope was used 
to acquire ROI digital histology images. Both the ocular and 
objective lenses were at 10X and the total magnification was 
100X. Digital color images were saved with a matrix size of 
650 × 515, which corresponded to a physical field of view of 
1.152 × 0.912 mm2. Illustrations of benign and malignant 
glandular structures are shown in Figure 1.

Image Artifact Correction
A flowchart of our image-segmentation technique is 
shown in Figure 2, illustrated with an example image. 
Raw digital images contain artifacts of vignetting (non-
uniform illumination) and color cast (a color tint that 
masks the entire image) caused by image acquisition. 
To remove these artifacts, we acquired an additional 
background-reference image under exactly the same 
acquisition condition as the raw image (same microscope 
magnification, illumination, and focus), but with a blank 
area of the slide (no tissue) in the microscope field of 
view. We then divided the raw image, pixel-by-pixel in 
each color channel, by the background-reference image. 
This method is similar to flat-field corrections of pixel-
to-pixel variations in the sensitivity of digital detectors.[21]

Segmentation of Four Tissue Components
Tissue component segmentation consisted of three steps: 
(1) after decomposing a corrected color image into the 
red, green, and blue color channels, we applied principal-
component analysis to remove correlations between 
the three color-channel images; (2) we used a k-means 
clustering method to identify four types of tissue 
components: glandular lumina, stroma, epithelial-cell 
cytoplasm, and epithelial-cell nuclei; and (3) we applied 
mathematical morphological operations to remove small 
isolated regions and fill holes. We describe these steps in 
more detail as follows.

The red, green, and blue color channel images represent 
intensities of the respective color components in an 
image, and their spatially corresponding pixels are usually 
highly correlated. We transformed these images linearly 
to their principal components such that their spatially 
corresponding pixels became mutually uncorrelated.[22,23] 
We then normalized the principal components such that 
their pixel variances became equal, and used the resulting 
normalized principal components in the k-means clustering 
analysis.

K-means clustering is an iterative method that partitions 
abstract data into a user-specified number of non-
hierarchical clusters based on similarity (measured by 
distances between data points in the abstract feature 
space) such that each data point belongs to the nearest 
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we identified the glandular lumina and cell nuclei clusters 
based on the observation that glandular lumina have the 
brightest pixel values in all three color channels, whereas, 
cell nuclei have the darkest pixel values. Subsequently, 
we morphologically dilated the glandular lumina and 
identified the cluster that most overlapped the dilated 
glandular lumina as the epithelial-cell cytoplasm cluster, 
because the epithelial cell cytoplasm was spatially closer 
to the glandular lumina than the stroma. Finally, the 
remaining cluster was identified as the stroma cluster. 

cluster.[24,25] We applied the k-means clustering method to 
partition the image pixels (each with three color principal 
components) into four clusters (therefore, k = 4) that 
correspond to the four types of tissue components. 

The initial cluster centroids were generated randomly 
and the k-means clustering was applied 20 times 
independently to each image. One final result that 
had the smallest sum of within-cluster variances was 
identified from the 20 runs. The clusters were then 
identified as a specific tissue component as follows: First, 

Figure 2: Flowchart of computer gland segmentation techniques

Figure 1: Digital histology images of (a) benign glands and (b) malignant adenocarcinoma glands. L = glandular lumen; S = stroma; and     
E = prostatic epithelium

a b
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Additional post processing was necessary to refine the 
segmentation results. For the glandular lumina, a binary 
morphological opening operation with a seven-pixel 
diameter circular kernel was applied once, to separate 
the lumina that were joined together mistakenly. Then, 
the isolated ‘lumina’ that were smaller than 50 pixels 
(~150 µm2) were removed. For the stroma, the binary 
morphological closing operation with a five-pixel-
diameter circular kernel was applied once, to merge the 
incorrectly separated stromal regions, and holes less than 
500 pixels (~1,500 µm2) in size were filled to integrate 
stromal cell nuclei into the surrounding stroma. Other 
cell nuclei that were not a part of the stroma and with a 
size greater than 10 pixels (~30 µm2) were identified as 
epithelial-cell nuclei. Finally, any pixel initially identified 
as belonging to the epithelial-cell cytoplasm, but was later 
included in one of the other three tissue components as 
a result of post-processing was reclassified as not being a 
member of the epithelial-cell cytoplasm.

Identification of Individual Glandular Units
Subsequently, we segmented individual glandular units 
with a seeded region-growing method, using the glandular 
lumina and epithelial-cell cytoplasm combined as region-
growing seeds (i.e., initial estimate of glands). We removed 
all pixels that were within a distance of three pixels from 
any epithelial cell nuclei from the region-growing seeds, 
to help reduce the occurrence of spatially proximate or 
touching glands becoming merged incorrectly. Also, lumen 
regions smaller than 50 pixels (~150 µm2) in size, which 
were not likely to be true lumina, were not used as seeds. 
The region-growing method was applied iteratively and 
simultaneously with a 3 x 3-pixel kernel to all region-
growing seeds. Every new pixel to be included in the 
grown glands was checked to prevent pixels that belonged 
to the stroma, and pixels that would cause two or more 
glands to merge, from being identified as pixels of glands. 
The iterative process ended when all glands ceased to 
grow. We then filled any holes and removed any regions 
smaller than 1,000 pixels (~3,000 µm2) in size, and 
labeled each resulting region as an individual gland.

Evaluation of Segmentation of Glandular Units
We evaluated gland segmentation results in two 
experiments, one qualitative and one quantitative, using 
the image database I (n = 57). (Image database II was 
used for validation). In the qualitative experiment, a 
pathologist and a researcher subjectively evaluated the 
computer segmentation results on a five-point scale: +2 
(excellent), +1 (good), 0 (acceptable), -1 (fair), and -2 
(poor). They also estimated in each image the numbers 
of false-positive glands (non-glandular regions that the 
computer incorrectly marked as glands) and false-negative 
glands (glands that the computer missed).

In the quantitative experiment, two researchers manually 
outlined individual glands and their results were compared 

with the computer segmentation results. The researchers 
did not distinguish malignant from benign glands or 
whether cancer was present in an image in manual gland 
outlining (they were naïve observers not having been 
trained to recognize cancerous glands). Researcher A 
outlined all individual glands twice independently and 
researcher B outlined individual glands once. Researcher 
B did not outline any partial gland truncated at the 
margins of an image.

We used the Jaccard similarity coefficient to measure the 
similarity in each image between two gland segmentation 
results.[26] The Jaccard similarity coefficient was defined 
as the ratio of the total area of intersection to the total 
area of union between two segmentation results (of the 
computer or a researcher). Both complete and partial 
glands (truncated at the image margin) were included, 
except that when researcher B’s manual outlines (which 
did not include truncated partial glands) were used as one 
set of gland segmentation results, the Jaccard similarity 
coefficient was calculated only on the complete glands.

Image Feature Extraction and Evaluation
From the computer gland-segmentation results we obtained 
quantitative measures of glandular size, circularity, and 
spatial density of gland distribution. These features were 
motivated by the experience that malignant glands tend 
to be small and crowded with compact shapes. Gland size 
was calculated from the number of pixels within a gland 
and expressed in the unit of square millimeters (mm2). 
The average gland size over an image was calculated. 
Glandular circularity was defined as P2/4πA, where P was 
the perimeter and A was the area of the gland. The average 
glandular circularity over an image was calculated. Density 
of gland distribution was defined as the number of glands 
divided by the total area of an image. 

We evaluated the effectiveness of these features in 
distinguishing malignant from non-cancer glands using the 
receiver operating characteristic (ROC) curve, which is a 
plot of sensitivity versus 1 – specificity (or false-positive 
rate).[27-29] We obtained the maximum-likelihood estimate 
of ROC curves[30] and used the area under the ROC curve 
(AUC)[31] as a summary statistic of the ROC curve. 

Analysis of Combination of Image Features
We used the Fisher linear discriminant analysis (LDA)
[25,32] to combine two of the features to distinguish 
malignant from non-cancer glands. We used the leave-
one-out (LOO) cross-validation procedure,[33] in which in 
any one re-partitioning of the image database, all images 
except for one are used to train an LDA, whereas the 
excluded image is used to test the LDA, and exhaustive 
re-partitioning of the image database ensures that each 
image is used once, and only once, as a test image. Test 
results from all images are combined subsequently for 
ROC analysis.
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RESULTS

Segmentation of Glandular Units
An example of computer segmentation and human 
outline of prostatic glandular units is shown in Figure 3. 
The computer correctly identifies a majority of glands, 
and several spatially proximate glands that touch each 
other are segmented correctly as individual glands. 
Partial glands at the margin of the image are segmented 
similarly as researcher A’s outlines (researcher B did 
not outline partial glands). However, the computer 
segmented glands are not as smooth in their boundaries 
as human outlined glands, and a few small glands are 
missed.

Results of subjective evaluation of computer gland 
segmentation are shown in Figure 4. The average 
ratings on all images not containing adenocarcinoma 
are 0.6 ± 0.91 (mean ± standard deviation) and 1.4 

± 1.05, respectively, given by the pathologist and the 
researcher. The average ratings on all images containing 
adenocarcinoma are -1.2 ± 0.77 and -0.8 ± 0.94, 
respectively, given by the pathologist and the researcher. 
The average numbers of false-negative glands missed by 
the computer are estimated to be 3.1 ± 2.37 and 13.1 
± 9.99 in non-cancer and cancer images, respectively, 
given by the pathologist; and 4.5 ± 3.75 and 20.7 ± 
12.57, respectively, given by the researcher. The average 
numbers of false-positive glands marked by the computer 
are estimated to be 2.9 ± 1.50 and 10.9 ± 12.07 in 
non-cancer and cancer images, respectively, given by the 
pathologist; and 4.1 ± 2.78 and 8.3 ± 6.04, respectively, 
given by the researcher. Despite apparent differences in 
the ratings given by the pathologist and the researcher, 
their evaluations are substantially concordant. In 
particular, their results agree that the computer 
segmented non-cancer glands more accurately than 
malignant glands. 

Figure 3: Example images of (upper left) original image (after artifact correction), (upper right) computer gland segmentation results, 
(lower left) researcher A’s manual outlines of glands, and (lower right) researcher B’s manual outlines of glands
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Jaccard similarity coefficients for comparison of 
segmentation results of the researchers and the computer 
are shown in Figure 5. Intra-observer agreement (of 
researcher A) has the highest similarity: the average 
Jaccard coefficients are 0.87 ± 0.07 and 0.85 ± 0.06 for 
non-cancer and cancer images, respectively. The average 
Jaccard coefficients for interobserver agreement (between 
researchers A and B) are 0.79 ± 0.09 and 0.75 ± 0.09 for 
non-cancer and malignant images, respectively. Intra- and 
interobserver Jaccard coefficients are expected to be less 
than perfect (i.e., 1.0, which corresponds to identical gland 
outlines) because of subjectivity in the visual perception 
of the glands. The average Jaccard coefficients between 
the computer and researcher A are 0.63 ± 0.13 and 0.48 
± 0.09 for non-cancer and malignant images, respectively, 
and 0.72 ± 0.08 and 0.54 ± 0.12, respectively, between 
the computer and researcher B. These results show that 
interobserver agreement is slightly less than intraobserver 
agreement and that human-computer agreement is 
similar to interobserver agreement for non-cancer glands.

Image Feature Performance and Classification 
Results
The ROC curves of the three individual glandular 
features calculated from computer segmentation results, 
and of two of the three features combined, are shown in 
Figure 6, on both databases I and II. For database I, the 
AUC values of the individual features of average gland 
size, gland density, and average gland circularity are 0.92 
± 0.04 (maximum-likelihood estimate ± standard error), 

0.80 ± 0.06, and 0.51 ± 0.08, respectively. These results 
indicate that both average gland size and gland density 
are effective in classifying glands as cancerous or non-
cancerous, and average gland circularity is not effective, 
probably because the computer does not segment 
malignant glands accurately enough. 

Combining average gland size and gland density with 
an LDA yielded an AUC value of 0.91 ± 0.05. For 
comparison, when the features were calculated from 
manual gland outlines, the AUC values for average gland 
size, gland density, average gland circularity, and average 
gland size and gland density combined were 0.99 ± 0.02, 
0.96 ± 0.03, 0.93 ± 0.03, and 0.99 ± 0.01, respectively, 
from researcher A’s outlines, and 0.995 ± 0.009, 0.96 
± 0.02, 0.96 ± 0.02, and 0.995 ± 0.009, respectively, 
from researcher B’s outlines. Performance of the features 
calculated from computer segmentation results on image 
database II (n = 116) was similar to that on image 
database I. The AUC values were 0.97 ± 0.02, 0.94 ± 
0.02, 0.66 ± 0.05, and 0.96 ± 0.02 for average gland size, 
gland density, average gland circularity, and average gland 
size and gland density combined, respectively. 

DISCUSSION

We have developed an image-segmentation method 
to identify prostatic glandular units in HE images and 
extracted several quantitative glandular features useful 
for identifying prostate cancer and benign tissue. 

Figure 4: Subjective and qualitative evaluation of computer segmentation results by (left) a pathologist and (right) a researcher. Shown are 
histograms of (top) overall accuracy, and (bottom) estimates of false-negative and false-positive glands in the computer segmentation results
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Unlike previous studies [18-20] in which glandular lumina 
(with or without partial epithelial cell cytoplasm) were 
segmented as a surrogate structure of the glandular 
units, we segmented the outline of complete glands. 
We also evaluated our segmentation results both 
qualitatively and quantitatively, and our method could 
be used to compare with other segmentation methods 
in the future.

In this initial study of our computer segmentation 
technique, we used only ROI images acquired from 
prostatectomy specimens because of the abundance and 
intact morphology of both non-cancer and malignant 
glands. This abundance of complete glands was crucial 

to our development of the computer techniques. To 
be clinically useful, the computer techniques must also 
work well on images of biopsy specimens, in which the 
number of complete glands might be limited. The 
limited number of complete glands and the presence of 
partial glands in biopsy specimens would undoubtedly be 
more challenging for computer segmentation techniques. 
However, carefully developed computer techniques based 
on prostatectomy specimens could be expected to work 
well on biopsy specimens also, if the computer techniques 
successfully capture the essential features of the prostatic 
glandular structures. We plan to test our technique on 
biopsy specimens in a future study.

Figure 5: Comparison of Jaccard coefficients (left) between repeated gland identification by researcher A (intraobserver comparison) 
and between glands identified by researchers A and B (interobserver comparison); (middle) between repeated gland identification by 
researcher A (intraobserver comparison) and between glands identified by the computer and researcher B (human-computer comparison); 
and (right) between glands identified by the computer and both researchers (human-computer comparisons)

Figure 6: Receiver operating characteristic (ROC) curves of the individual and combined glandular features calculated from computer 
outlines of individual prostatic glands in images of (left) databases I, and (right) II. Area under the ROC curve (AUC) can be interpreted 
as a summary index of classification performance. An AUC value of 0.5 indicates a ‘random call,’ whereas an AUC value of 1.0 indicates 
perfect separation of non-cancer and cancer glands



J Pathol Inform 2011, 2:33	 http://www.jpathinformatics.org/content/2/1/33

We included only images of Gleason grade 3 
adenocarcinoma in this study and did not include 
images of Gleason grade 4 or 5 high-grade 
adenocarcinoma. Gleason grade 3 adenocarcinomas 
are much more common in prostatectomy specimens 
than high Gleason grade adenocarcinomas. Gleason 
grade 3 adenocarcinomas have well-defined glandular 
structures and they sometimes retain certain histological 
features similar to non-cancer glands. In contrast, high 
Gleason grade adenocarcinomas are composed of poorly-
differentiated, ill-defined, and fused glands—complete 
and separate glandular units often cannot be found. 
Because of this, segmentation of glands in high-grade 
adenocarcinomas is significantly more difficult, or even 
impossible, because of the disruption or complete loss 
of glandular formation. In this study, we have focused 
on the correct identification of low-grade prostatic 
adenocarcinoma. In future studies, we will investigate 
high-grade adenocarcinomas. 

We collected two separate sets of images and used one 
(database I, n = 57) to develop and test the computer 
techniques and the other (database II, n = 116) for 
independent validation. These two sets of images were 
acquired from two different institutions and two different 
pathologists selected the ROIs of non-cancer and 
malignant glands. Therefore, the similar performance of 
the image features in these two sets of images suggests 
that our computer techniques are robust to variations in 
digital histology images, which are due to variations in 
tissue preparation and variations in ROI selection. 

Our computer technique of glandular structure 
segmentation is based on k-means clustering and 
region growing. The k-means clustering algorithm is 
an unsupervised segmentation method, and its results 
depend solely on the image in question, and except 
for the value of k chosen a priori, are not influenced in 
any way by any other (e.g., training) images. Because 
of this feature, although color variations were large 
between our two image databases collected from two 
different institutions, the k-means clustering method 
produced good segmentation results in both sets of 
images. This consistency and robustness are an advantage 
of our computer technique especially because gland 
heterogeneity is common in both non-cancer and 
malignant prostatic tissue.

The region-growing method helped to delineate gland 
boundaries accurately. Being at the center of a glandular 
unit, the glandular lumen is often a good approximation 
of gland location and shape, and using the lumina as 
the initial seeds to region growing helped us to obtain 
accurate gland segmentation results. Furthermore, the 
rule of maintaining at least a minimum distance from 
epithelial-cell nuclei prevented spatially proximate glands 
from merging together and helped to delineate gland 

boundaries accurately, because epithelial-cell nuclei 
are often a good approximation of the gland margin, 
especially when the color contrast between stroma and 
glands is small.

Our results suggest that the Jaccard similarity coefficient 
is useful in comparing computer segmentation results 
against intra- and interobserver variation in the manual 
outlining of individual glandular units. However, a 
limitation of this similarity measure is that it is based on 
size (area) alone without taking into account the shape 
of the segmented glands. It also does not differentiate 
relatively minor errors in otherwise correctly identified 
glands from misses of entire glands or incorrect 
inclusion of non-glands. Although it is possible to 
modify the definition of the similarity coefficient 
to differentiate between these two types of errors, 
additional and arguably arbitrary thresholds are required 
to do so. On the other hand, our qualitative evaluation 
of the computer segmentation results complements the 
results of the Jaccard similarity coefficient because the 
pathologist and the researcher took into consideration, 
to some degree, the differences between these errors 
in their subjective evaluations of the computer 
segmentation results.

It is important to note that the intra- and interobserver 
similarity (or disagreement) in the manual outlining 
of individual glandular units that we present here is 
not a measure of intra- and interobserver variability in 
prostate cancer detection. The researchers who outlined 
the glands had not been trained to recognize prostate 
cancer and they treated all glandular units equally 
without any regard to whether they were cancerous, 
or whether cancer was present elsewhere in an image. 
It is unknown how variability in manual glandular unit 
outlining is related to variability in cancer detection, 
because pathologists do not outline glandular units 
explicitly when making a diagnosis. The purpose of 
this analysis was strictly to identify the similarities 
and differences between computer and human gland-
segmentation results. 

Our computer technique segments non-cancer glands 
more accurately than malignant glandular units. This 
is partly because the formation of glandular units is 
intact in non-cancer glands, but often deviates from 
the norm in malignant glands (e.g., with small glands). 
Our computer technique tends to miss small glands 
because of a size threshold that we imposed to reduce 
the number of false-positive glands identified by the 
computer. Because cancer glands tend to be small, cancer 
glands are affected disproportionally more frequently. 
However, even with these obvious limitations, our results 
show that image features extracted from the gland 
segmentation results can already be effective in classifying 
prostatic adenocarcinoma from non-cancer glands, which 
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is ultimately the goal of computer segmentation of 
individual prostatic glandular units.

We analyzed the quantitative image features of average 
gland size, gland density, and average gland circularity 
to identify small, crowded, and compact glands that are 
hallmarks of prostatic adenocarcinoma. Both the average 
gland size and gland density were effective in identifying 
prostatic adenocarcinoma. The average gland circularity 
was not as effective as expected, probably because the 
computer did not segment malignant glands well enough 
to allow accurate calculation of the gland shape. These 
results suggest that quantitative image features based 
on computer-segmented glands could be used to classify 
Gleason grade 3 adenocarcinoma accurately from non-
cancer glands.

The computer techniques were developed on digital ROI 
images selected by pathologists. To eliminate potential 
bias in the selection of ROIs and to be practical in future 
applications, the computer techniques need to be tested 
on whole-slide images. Although we have not had the 
opportunity to test that, we expect, with refinement and 
improvement on the segmentation of cancer glands, the 
gland-segmentation technique developed in this study to 
work well on whole-slide images. We plan to test that in 
future studies.

In summary, we report a computer image-analysis 
technique for automated segmentation of individual 
prostatic glandular units in digital images of HE sections 
of the prostate. Analysis of quantitative image features 
shows that average gland size and gland density are 
effective in differentiating prostatic adenocarcinoma from 
non-cancer glands. These results indicate that individual 
prostatic glandular units can be segmented automatically 
with the help of a computer, and that digital image 
features can be extracted from computer segmentation 
of prostatic glandular structures to identify prostatic 
adenocarcinoma accurately. With further development, 
our techniques could be useful for computer-aided 
histological analysis of prostate cancer.
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