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Abstract

Background: C4 photosynthesis evolved from C3 photosynthesis and has higher light, water, and nitrogen use
efficiencies. Several C4 photosynthesis genes show cell-specific expression patterns, which are required for these
high resource-use efficiencies. However, the mechanisms underlying the evolution of cis-regulatory elements that
control these cell-specific expression patterns remain elusive.

Results: In the present study, we tested the hypothesis that the cis-regulatory motifs related to C4 photosynthesis
genes were recruited from non-photosynthetic genes and further examined potential mechanisms facilitating this
recruitment. We examined 65 predicted bundle sheath cell-specific motifs, 17 experimentally validated cell-specific
cis-regulatory elements, and 1,034 motifs derived from gene regulatory networks. Approximately 7, 5, and 1,000 of
these three categories of motifs, respectively, were apparently recruited during the evolution of C4 photosynthesis.
In addition, we checked 1) the distance between the acceptors and the donors of potentially recruited motifs in a
chromosome, and 2) whether the potentially recruited motifs reside within the overlapping region of transposable
elements and the promoter of donor genes. The results showed that 7, 4, and 658 of the potentially recruited motifs
might have moved via the transposable elements. Furthermore, the potentially recruited motifs showed higher binding
affinity to transcription factors compared to randomly generated sequences of the same length as the motifs.

Conclusions: This study provides molecular evidence supporting the hypothesis that transposon-driven recruitment of
pre-existing cis-regulatory elements from non-photosynthetic genes into photosynthetic genes plays an important role
during C4 evolution. The findings of the present study coincide with the observed repetitive emergence of C4 during
evolution.
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Background
C4 photosynthesis differs from C3 photosynthesis by pos-
sessing a CO2 concentrating mechanism, which enables
C4 plants to achieve higher light, water, and nitrogen use
efficiencies [1, 2]. The higher photosynthetic efficiency
in C4 plants is achieved by elevating the concentration
of CO2 around ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBisCO). Extensive efforts have been made
to engineer a C4 photosynthetic machinery into C3

plants such as rice and wheat [3, 4]. Elucidation of the
molecular mechanism underlying the evolution of the

key components of the concentrating process in C4

plants and identifying its molecular regulators, either as
cis-regulatory elements or trans-factors and controlling
C4 photosynthetic features [5, 6] are necessary to success-
fully perform C4 photosynthesis [5, 7]. To date, despite
the establishment of the biochemical and anatomical fea-
tures of C4 photosynthesis, our understanding of the gen-
etic control of various C4 properties such as the reduction
in interveinal distance, increased number of chloroplasts
within bundle sheath (BS) cells, extensive differentiation
of M and BS chloroplast proteomes, and higher plasmo-
desmata abundance for transport between M and BS cells
[3] is limited. More efforts to identify regulatory elements
required for the establishment of cell-specific expression
patterns of C4 photosynthesis-related genes are warranted.
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Various approaches, including both forward genetics and
reverse genetics approaches, have been utilized to address
this question [8].
To date, the cis-regulatory motifs controlling the cell-

specific expression patterns of C4-related genes have
been mainly discovered through experimental approaches
such as deletion analysis [4, 5]. Recent technological
advances in computational biology have facilitated the
identification of motifs [9–11]. Such computational
analyses usually start with clustering genes from a tran-
scriptomic data set into different clusters, followed by
prediction of motifs in genes from each cluster [9–11].
One underlying assumption of this approach is that
genes within the same cluster are potentially regulated
by common cis-regulatory elements. However, there are
circumstances where this assumption is violated. For
example, let us consider three genes, A, B, and C.
Genes A and B are regulated by the same cis-regulatory
elements, whereas C is regulated by B and hence shows
the same expression pattern as that of B. If the expres-
sion pattern is used as the sole criterion in clustering
these genes, then these three genes will be misclassified
into the same gene cluster, which in turn can lead to
the inaccurate detection of cis-regulatory elements.
Gene regulatory networks constructed based on con-
ditional mutual information can solve the issue of
misclassifying genes into the same cluster because
this algorithm only detects genes with direct regula-
tory relationships [12].
In the present study, we examined the potential mech-

anism related to the formation of new cis-regulatory
elements in the promoter region of C4-related genes.
To do this, we first identified the potentially recruited
cis-regulatory elements using gene regulatory networks
constructed based on conditional mutual information.
Furthermore, we used three sets of motifs, i.e.,
network-derived motifs, experimentally identified cis-
regulatory elements, and predicted bundle sheath spe-
cific motifs, to test whether these exist in the genes
directly linked to the C3 ortholog of C4 genes in a C3

gene regulatory network. Lastly, to explore the potential
mechanisms responsible for the recruitment of these
motifs, we explored whether the potentially recruited mo-
tifs reside in the overlapping regions between transposable
elements (TEs) and promoter regions of the C4 genes. We
discussed all these results in light of the hypothesis that
transposons play a role in the recruitment of these motifs
during the emergence of C4 photosynthesis.

Results
Identification of cis-regulatory elements that were
potentially recruited during C4 evolution
Based on the strategy shown in Fig. 1, 40 pairs of ortho-
logs of the C4 genes in maize and rice, including its

promoter sequences, were obtained. We checked the
distribution of BS cell-specific motifs in these 40 pairs
(see Methods). We identified seven motifs that might
have been potentially recruited during C4 evolution
based on the following criteria: a) these are differentially
distributed in C4 and C3 orthologs; b) these existed in
the neighboring genes of the C3 orthologs (Table 1).

Evidence for potential involvement of transposon in motif
recruitment
We next tested whether transposons played a role during
this motif movement. Considering that a small chromo-
somal distance facilitates transposition, we first deter-
mined the distance between the donor gene to the
acceptor gene relative to the total length of the chromo-
some, and identified candidate donor genes that were lo-
cated <1/10 of the total length of the chromosome from
the acceptor genes (Fig. 2; Additional file 1: Table S3). Fur-
thermore, when TE transferred a motif to another locus,
the particular motif should be within the overlapping re-
gion of TEs and the promoters of the donor gene. We
hence aligned the sequences of TEs with those of the pro-
moters of donor genes by using BLAST [13] and
identified the overlapping regions. All seven motifs that
were differentially distributed in C4 and C3 orthologs were
indeed present in the overlapping regions of TEs and
candidate donors of motifs (Table 2). These two pieces of
evidence suggest that transposons may have played a role
in the recruitment of these BS cell-specific motifs.

Recruited motifs are possible binding sites for
transcription factors
Earlier reports have shown that TEs contribute to the
formation of new TF binding sites [14, 15] and evolu-
tion of new regulatory mechanisms. Here we checked
whether the recruited motifs are potential binding sites
of transcription factors (TFs). We tested 124 TFs, for
which the position weight matrix information is avail-
able from TRANSFAC (Additional file 1: Table S4). For
the potentially recruited motifs and TFs, we calculated
their binding possibilities (see Methods). Seven of these
potentially recruited motifs showed higher (more than
two-fold) binding affinities with TFs compared to the
calculated affinity for random elements of the same
length as the motif (Table 3; see Methods). Several of
the TFs binding to these motifs were earlier identified
to be potential regulators of photosynthesis such as
Opaque-2 and GBF (Table 4) [16].

Occurrence of TE-driven motif recruitment in the
experimentally validated motifs
To test whether TE-driven motif recruitment is a
general phenomenon, we further examined whether
TEs are involved in the recruitment of motifs that were
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experimentally identified to be related to their host gene’
cell-specific gene expression pattern [5] and also the pre-
dicted cis-regulatory motifs based on the genes in the
same gene community in a gene regulatory network.
Of the 17 experimentally validated motifs, five were

identified as potentially recruited motifs (Additional file 1:
Table S5). Of these five potentially recruited motifs, four
resided in the overlapping region of TEs and their candi-
date donors (Table 5; Fig. 3). In addition, the donors of
these four motifs were proximally located to the acceptors
in their residing chromosome (Additional file 1: Table S6).
Similar to the analysis of the BS cell-specific motifs, the
five putative recruited and validated motifs showed higher
binding affinity to TFs (Additional file 1: Table S7).
We also obtained similar results in the analysis of

network-derived motifs. There were 1,034 motifs dif-
ferentially distributed in the C4 and C3 orthologs, and
1,000 of these were identified as potential recruited
motifs (Additional file 2). A total of 658 of the 1,000
potentially recruited motifs were present in the overlapping
region of TEs and candidate donors (Additional file 3),
whereas the donors were situated proximal to the accep-
tors (Additional file 4). We also calculated the binding
capacity of network-derived motifs (Additional file 5).

Discussion
Evidence supporting the recruitment of pre-existing
cis-regulatory elements from non-photosynthetic genes
into C4 genes
In the present study, we evaluated the possibility that a
motif may have been recruited if it satisfies two criteria.
First, this motif pre-exists in the neighboring genes
surrounding an ortholog of a C4 photosynthetic gene in
the rice genetic regulatory network; however, the ortho-
logs of the C4 photosynthesis gene does not contain this
motif. Second, this motif appears in the C4 ortholog of
this photosynthesis gene. Based on these two criteria, we
identified 7 out of the 65 bundle-sheath specific motifs
to have been recruited during C4 emergence (Table 1).
In addition to these predicted BS-specific motifs, we fur-
ther examined the recruitment of cis-regulatory elements
previously identified through experimental approaches
to be associated with cell-specific expression [5], as well
as motifs derived from gene regulatory networks. The
results of these analyses also suggested a large-scale re-
cruitment of pre-existing cis-regulatory elements from
non-photosynthetic genes into C4 photosynthetic genes
during C4 evolution (Additional file 1: Tables S5, S6 and
S7; Additional files 2, 3, 4 and 5).

Fig. 1 Distribution of motifs in genes before and after recruitment. a Before the recruitment, the donor (orange dot) is located in a neighboring gene of
the acceptor (purple dot) in a gene regulatory network (GRN). b Before the recruitment, the donor contains the motif (orange block) and the acceptor
(purple block) lacks the motif. c After a copy-and-paste recruitment, the acceptor (purple block) contains the motif (orange block, whereas the donor also
maintains the motif. d After a cut-and-paste recruitment, the acceptor (purple block) recruits the motif (orange block), whereas the donor loses the motif
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Evidence for the potential role of transposable element in
the recruitment of C4-specific motifs
TEs contribute to the interactions among various gene
regulatory networks and the control the expression of
genes [17–20] and lncRNA [21]. These can potentially
contain binding sites for TFs [20]. Earlier work has sug-
gested that about half of TF-binding sites are derived
from TEs in human and mouse [14]. TEs may therefore
contribute to the evolution of species-specific regulatory
functions and phenotypes. In the present study, all seven
putative recruited BSC-specific motifs were detected
within the overlapping region of TEs and the promoter
regions of candidate donor gene (Table 2). Furthermore,
these donors are located near the acceptors in one
chromosome, suggesting that TEs may have played an
important role in the recruitment process. Similar re-
sults were obtained for the experimentally validated
motifs and network-derived motifs (Additional file 1:
Tables S5, S6 and S7; Additional files 2, 3, 4, 5 and 6).
Similar to the function of TEs in human and mouse
[14], the recruited motifs showed higher binding affinity
to TFs. We hence propose that these putative recruited
motifs might have contributed to the formation of new
TF-binding sites and consequently modified the interac-
tions among various gene regulatory networks in rice
and maize. Not all of the putative recruited motifs were
presented within the overlapping regions of TEs and the

Fig. 2 Proportion of donors that were proximal to the acceptor.
For each acceptor (X axis) and each potentially recruited bundle
sheath-specific motif (colored block), the proportion of donors (colored
segments along the Y axis) that were near to the acceptor in the
chromosome where the acceptor gene resides is indicated

Table 1 Predicted bundle sheath cells specific motifs. The potentially recruited motifs are shown in red color.
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promoter regions of candidate donor genes (Table 1),
thereby suggesting other mechanisms for the emergence
of these motifs during C4 evolution.

Implications of transposon-driven recruitment of
cis-regulatory elements to the evolution of C4
photosynthesis
C4 photosynthesis differs from C3 photosynthesis in
various aspects, including recruitment of new decarb-
oxylation enzymes, re-adjustment of nitrogen metabolism,
starch metabolism, and partitioning of the photosynthetic
enzymes or proteins into bundle sheath and mesophyll
cells [22]. Given these large number of differences be-
tween C3 and C4 photosynthesis, it is remarkable that C4

photosynthesis has independently emerged in more
than 60 lineages [23]. Furthermore, the emergence of
C4 photosynthesis occurred within a relatively short
geological period. This is because 40 million years ago,
the global atmospheric CO2 concentration dropped,
and C4 photosynthesis started to show its competitive
advantage over C3 photosynthesis [1], thereby eventually
resulting in C4 photosynthesis 20 million years later [24].
How can such a complex trait have evolved in such a short
timeframe? This study provides new sequence-based evi-
dences that recruitment of pre-existing motifs might have
been a mechanism for C4 evolution, which in turn may have
contributed to the rapid evolution of C4 photosynthesis.
Furthermore, we showed that the new regulatory mech-

anism involving C4 photosynthesis might have been created
through transposon-mediated motif movements. Genome
duplication has been regarded as a major mechanism
responsible for the creation of material for neofunctionali-
zation or creation of new genes during C4 emergence [25].
However, several recent analyses have shown that the copy
number of C4-related genes are not necessarily higher than
those in C3 species [26]. Transposon-driven creation of
new genes hence might have been used as an alternative
mechanism for the creation of novel regulatory mecha-
nisms for C4-related genes. Furthermore, considering
that during C4 evolution, not only those motifs from
the promoter regions, but also those in the coding se-
quences were potentially recruited [26–28]. Therefore,
transposons were utilized as ideal mechanism for the
recruitment of regulatory motifs because these can
mobilize elements without particular location prefer-
ences [21]. Considering that there are relatively a
lower number of whole genome duplication events
during the evolution of land plants, this transposon-
driven emergence of new genes might have been the
predominant mechanism that has substantially con-
tributed to the rapid evolution of new functions dur-
ing the evolution of C4 photosynthesis of the low-
CO2 oligocene period [24]. Additional experimental
evidence is needed to test this potential mechanism.

Table 2 Predicted bundle sheath cell specific motifs that might
have been recruited into C4 related enzymes through transposable
elements
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Conclusions
The present study has provided sequence-based evi-
dence that suggests that transposon-mediated movement
of motifs might have played a role in the formation of
new cis-regulatory elements during the evolution of C4

photosynthesis. More experiments are needed to test
this possibility. However, if this is true, then this may
serve as a possible mechanism for the rapid emergence
of C4 photosynthesis within a relatively short geological
period during the Oligocene [24].

Methods
The whole analysis pipeline was composed of three
sessions: 1) analysis of the possibility of motif recruit-
ment; 2) analysis of whether TE-mediated motif move-
ment served as the mechanism responsible for the
observed motif recruitment; 3) analysis of whether the
recruited motifs served as binding targets of TFs. The
pipeline of the analysis is shown in Fig. 4, and the de-
tails are described in the following sections.

Gene regulatory network reconstruction and motif
prediction based on the network
The rice and maize GRNs were built using a PCA-CMI
algorithm [12] using rice and maize transcriptomics data.
With the constructed maize gene regulatory network, we
classified the genes into communities with Markovian
clustering algorithm [29] (MCL, http://micans.org/mcl/),
and in each community of genes, we predicted motifs by
using the Weeder2.0 software [30] (http://159.149.160.51/
modtools/). We obtained a total of 54 communities and
1,649 motifs (hereby defined as network-derived motifs).

De novo prediction of BS-cell specific motifs
We downloaded transcriptomics data for both the BS
cells and mesophyll cells [31]. A total of 1,045 genes that
showed relatively higher expression levels in BS cells
were classified into clusters by K-mean clustering, with
the number of clusters selected based on Figure of merits
(FOM) using the R package clValid (http://cran.r-project.
org/web/packages/clValid/index.html). The motifs of genes
of each cluster were predicted by using Weeder2.0 using
the sequence 3 kb upstream of the transcription start site
(TSS). We obtained 65 motifs in BS-specific genes (Table 1).
These motifs were annotated as BS cell-specific motifs.

Distribution of motifs in promoter regions of C4-related
genes of maize and its orthologs in rice
When a particular motif (orange block, Fig. 1) is recruited
into an acceptor gene (purple block/dot, Fig. 1) from a
neighboring gene (orange dot, Fig. 1) in the gene regulatory
network (GRN, Fig. 1), it is necessary that the promoter
region of the donor gene contains this motif and the ac-
ceptor lacks this motif prior to the recruitment event
(Fig. 1). In the present study, we focused on motif recruit-
ment into 78 C4 genes [31] (Additional file 1: Table S8).
As illustrated in Fig. 1, we first scanned the sequence 3

kb upstream of the TSS (downloaded from Ensembl Plant,
http://plants.ensembl.org/index.html) in the C4 genes and
their orthologous genes in rice to check whether a particu-
lar motif was present or not. For a cis-regulatory element
validated experimentally to be involved in C4 photosyn-
thesis, we aligned the element to the promoter sequences
of C4 genes and their orthologous genes in rice. For pre-
dicted motifs based on gene regulatory network, we used

Table 3 Potentially recruited bundle sheath cells specific motifs have higher binding affinity with TFs compared to randomly
generated sequence of the same length
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Table 4 The identified transcription factors which showed high binding affinities to BS cell specific motifs and brief description of
the TFs
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Table 5 Transposable elements that may have played a crucial role in mediating transfer of experimentally validated motifs from
the candidate donors to a C4 acceptor gene
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MAST [32] (http://meme.nbcr.net/meme/tools/mast) to
check its distribution in the promoters of genes in the
genome.
We then examined whether the motifs differentially

existed between C4 genes and their orthologous C3 genes.
For those motifs differentially distributed between C4 and
C3 orthologs, we examined its distribution in the rice gene
regulatory network to determine whether there is a possi-
bility that motifs in C4 orthologs were recruited from the
neighboring genes.

Distribution of the candidate acceptors and donors in the
chromosome
To assess whether the donor genes were proximal to
the acceptor gene, we identified the donors residing
within a region around 1/10 of the length of chromosome
surrounding the acceptor gene (i.e., d(accepter, donor)
< 0.1). The length and number of genes in all 12 rice
chromosomes were downloaded from NCBI (http://
www.ncbi.nlm.nih.gov/assembly/GCF_000005425.2). The
genes locus and description were downloaded from
RAP-DB (http://rapdb.dna.affrc.go.jp/). The distance
between acceptor and donor was calculated as
follows:

Fig. 3 Proportion of donors that were proximal to the acceptor
where experimentally validated cis-regulatory element (motif)
resides. For each acceptor (X axis) and each potentially recruited
motif (colored block), the proportion of donors (colored segments
along Y axis) that were near to acceptor where the acceptor gene
resides is indicated
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Fig. 4 Pipeline for the analysis of motif recruitment. a analysis of the possibility of motif recruitment; b analysis to determine whether a transposable
element is involved in the recruitment; c analysis to determine whether a recruited motif is a potential binding target of transcription factors
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d accepter; donorð Þ ¼ donor start site−accepter start site
chromosome length

Sequence alignment of TEs with the promoters and
motifs of donor genes
We further examined whether a motif resides within the
overlapping region between TEs and the promoter re-
gion of the donor gene. To do this, we first checked the
distribution of motifs in different categories of TEs,
i.e., retrotransposons, class II transposons, including
the miniature inverted-repeat transposable elements
(MITEs), which have earlier been shown to be important
in determining species diversity in Oryza sativa [33–35].
The sequences of these TEs were downloaded from Plant
Repeat Databases [36] (http://plantrepeats.plantbiology.
msu.edu/index.html). We aligned the sequences of TEs
containing a particular motif with the promoter regions of
candidate donors of this motif by using BLAST (http://
blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the overlap-
ping region, and checked the distribution of motifs across
the overlapping region.

Enrichment of motifs in TF binding sites
To explore whether a recruited motif can potentially
function as a binding site for TFs, we aligned motifs with
the position weight matrix information for TFs (down-
loaded from TRANSFAC) (http://www.gene-regulation.
com/pub/databases.html). To test whether the motif
enrichment was statistically significant, for each motif,
we aligned to the TF binding sites PWM, we ran-
domly constructed 1,000 short sequences with the
same length of the motif and aligned these to TF
binding sites PWM. For both the potential recruited
motifs and the randomly constructed sequences, we
calculated the match ratio (MR), which is defined as

MR elements; TFð Þ ¼ elements matched to the TF bingding sitej j
elementsj j ;

where |S | is the size of a set S, and elements can either be
the potentially recruited motifs set or random sequences
set of the same length as the potentially recruited motifs.
The binding affinity of the motifs and the TFs were then

assessed by the relative match ratio (relative MR) relative

MR motifs; TFð Þ ¼ MR motifs; TFð Þ
MR random elements; TFð Þ ; where random

elements are random sequences of the same length as
potentially recruited motifs. Only elements with
lengths > 5 were considered in this study.

Availability of supporting data
The data sets used to construct GRN for rice and maize
in the present study along with their NCBI accession
numbers are listed in Additional file 1: Tables S1 and S2
(http://www.ncbi.nlm.nih.gov/sra/). The sequences of genes
for both rice and maize were downloaded from Ensembl

Plant (http://plants.ensembl.org/index.html). Location and
description of rice genes were downloaded from (RAP-DB,
http://rapdb.dna.affrc.go.jp/). Information on genomes of
Oryza sativa was downloaded from NCBI (http://www.
ncbi.nlm.nih.gov/assembly/GCF_000005425.2). Sequences
of transposable elements in Oryza sativa were down-
loaded from a plant repeat database (http://plantrepeats.
plantbiology.msu.edu/index.html). Sequences of TF bind-
ing sites were downloaded from TRANSFAC (Additional
file 1: Table S5). The list of C4 genes is presented in
Additional file 1: Table S8.
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Additional file 1: Table S1. Basic information on the collected RNA-SEQ
data on rice mature leaves that was used in the construction of the rice
gene regulatory network. Table S2. Basic information of collected RNA-SEQ
data on maize mature leaves that was used in the construction of the maize
gene regulatory network. Table S3. Candidate acceptors and donors of
potentially recruited BS cell-specific motifs. Those donors that were not
farther than 10 genes along the same chromosome where the acceptor
gene resides are listed. A brief description of the acceptor gene is also
provided. Table S4. Brief description of TFs binding sites obtained from the
TRANSFAC database. Table S5. Experimentally validated cell-specific motifs.
Those potentially recruited motifs during C4 evolution are labeled as red.
Table S6. Candidate acceptors and donors of potentially recruited C4
related motifs were experimentally validated. Donors not farther than 10
genes along the same chromosome where the acceptor gene resides are
listed. A brief description of the acceptor gene is also provided. Table S7.
The potentially recruited experimentally validated motifs show higher
binding affinities with TFs compared to randomly generated sequences
of the same length as the motif. Table S8. List of C4 genes used in the
analysis of the present study. These genes were obtained from Li et al. 2010.
(PDF 360 kb)

Additional file 2: Potentially recruited network-derived motifs related to
C4 photosynthesis. (XLSX 15 kb)

Additional file 3: Potentially recruited network-derived motifs located
within the overlapping region of transposable elements and the promoter
region of the donor gene. (XLSX 1074 kb)

Additional file 4: Candidate acceptors and donors of the recruited
network-derived motifs, along with a brief description of each acceptors.
Only those donor genes that were not farther than 10 genes from the
acceptor gene are listed. (XLSX 110 kb)

Additional file 5: Potentially recruited network-derived motifs detected
within transcription factor binding sites (TFBS). (XLSX 27 kb)

Additional file 6: Network-derived motifs with the probability of ‘A,’ ‘T,’
‘C,’ ‘G’ in each site. (PDF 708 kb)
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