
Citation: Dell’Aversana, S.; Ascione,

R.; De Giorgi, M.; De Lucia, D.R.;

Cuocolo, R.; Boccalatte, M.; Sibilio, G.;

Napolitano, G.; Muscogiuri, G.;

Sironi, S.; et al. Dual-Energy CT of

the Heart: A Review. J. Imaging 2022,

8, 236. https://doi.org/10.3390/

jimaging8090236

Academic Editors: Sarah Bugby,

Dimitra Darambara and William

E. Higgins

Received: 30 June 2022

Accepted: 30 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Review

Dual-Energy CT of the Heart: A Review
Serena Dell’Aversana 1,*,† , Raffaele Ascione 2,†, Marco De Giorgi 2, Davide Raffaele De Lucia 2 ,
Renato Cuocolo 3, Marco Boccalatte 4, Gerolamo Sibilio 4, Giovanni Napolitano 5, Giuseppe Muscogiuri 6,
Sandro Sironi 6, Giuseppe Di Costanzo 1, Enrico Cavaglià 1, Massimo Imbriaco 2 and Andrea Ponsiglione 2

1 Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
2 Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
3 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
4 Coronary Care Unit, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
5 Cardiology Unit, San Giuliano Hospital, 80014 Naples, Italy
6 Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca,

20149 Milan, Italy
* Correspondence: dellaversanaserena@gmail.com
† These authors contributed equally to this work.

Abstract: Dual-energy computed tomography (DECT) represents an emerging imaging technique
which consists of the acquisition of two separate datasets utilizing two different X-ray spectra energies.
Several cardiac DECT applications have been assessed, such as virtual monoenergetic images, virtual
non-contrast reconstructions, and iodine myocardial perfusion maps, which are demonstrated to
improve diagnostic accuracy and image quality while reducing both radiation and contrast media
administration. This review will summarize the technical basis of DECT and review the principal
cardiac applications currently adopted in clinical practice, exploring possible future applications.
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1. Introduction

Dual-energy computed tomography (DECT) is an emerging imaging technique which
consists of the acquisition of two separate datasets utilizing two different X-ray spectra
energies (“low kilovoltage peak [kVp]” and “high kVp” spectra).

Any specific material presents different X-ray absorption characteristics at varying
levels of energies [1,2]. Outlining these differences, DECT provides many more applica-
tions [3] in addition to traditional single-energy CT (SECT), which mostly gains density
and anatomical information [4].

Since its first appearance, several cardiac DECT applications have been explored, such
as virtual monoenergetic images (VMI), virtual non-contrast (VNC) reconstructions, and
iodine myocardial perfusion maps, which are demonstrated to improve diagnostic accuracy
and image quality while reducing both radiation and contrast media administration [5–8].

Although the introduction of DECT dates back to more than a decade ago [9], there has
been latency in the widespread adoption of this technology, mainly due to poor availability
of scanners, lack of diffuse clinical validation, and shortage of prognostic studies suggesting
superiority over conventional imaging techniques.

Currently, several studies are ongoing to further improve the image quality and
diagnostic accuracy of DECT, yielding the expansion of cardiac CT applications [10–12].
This review will analyze the technical basis of DECT and review the principal cardiac
applications currently adopted in clinical practice, exploring possible future applications.

2. Basic Principles of DECT

Cardiac imaging has always represented a challenging technique due to cardiac and
respiratory motion. During the last three decades, technological developments, such as
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multi-detector row scanners, improved gantry rotation times and acquisition, and post-
processing software advancements, unlocked cardiac SECT scans first and have now
unlocked DECT [3]. DECT imaging can be obtained through different techniques, which
are mainly divided into source-based and detector-based DE [1] (Figure 1).
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Figure 1. Illustrations showing the main DECT scanning techniques in clinical use. (A) Dual-source
DECT, consisting of two-source X-ray tubes and the corresponding detectors. (B) Single-source DECT
consisting of a single tube with rapid kVp switching. (C) Detector-based DECT consisting of a single
source and a dual-layer detector to obtain low- and high-energy spectra.

Source-based DE involves the acquisition of CT measurements at two different energy
spectra, allowing material characterization via a single or double source. It includes:
(a) dual-spin mode in which a single tube performs two consecutive sequential scans, and
subsequent images overlap; (b) dual-source (DS) mode where two orthogonal X-ray tubes
working at different kilovoltages manage to perform an accurate spectral separation with
subsequent co-registration of the two images datasets obtained; (c) rapid kVp switching mode
in which a single X-ray tube rapidly varies its kVp; and (d) twin-beam mode where a single
X-ray spectrum is split into two different energy spectra through a pre-filtration system.

In detector-based DE, energy separation occurs at the detector level since the scanner is
equipped with a single X-ray source and a multilayer detector. Every layer is manufactured
in order to have maximal sensitivity to different photon energies. It mainly includes:
(a) dual-layer CT where a single X-ray tube is equipped with a dual-layer detector: the top
yttrium-based layer absorbs mostly low-energy photons, while the bottom gadolinium
oxysulfide layer absorbs the high-energy ones. Thus, through the electronics system, the
polyenergetic beam is separated into two energies; (b) photon-counting CT uses a cadmium
telluride semiconductor detector that is capable of directly converting the X-ray photons
into electrical signals. The output signal is proportional to the number of photons, and each
photon is allocated to a specific energy bin according to its energy [13].

However, since the heart and coronary arteries are rapidly moving structures, DS-
DECT and dual-layer detector DECT are the only two types of DE technology capable of
obtaining a complete simultaneous data acquisition with lower risks of misregistration
than other strategies [14].

Some of the most critical achievements of DECT were recently obtained through the
latest DS generation scanners, which now allow a wider spectral separation between the
tubes, with a tube working at 70 kVp and the other at 150 kVp, providing a maximum
difference range of 80 kVp.
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This improvement means more accurate dual-energy information and improved
material differentiation [15]. Furthermore, the introduction of tin-filtration of the X-ray
spectrum has allowed an important reduction in dose levels, despite the higher energies
applied during acquisition [16]. However, it should be taken into account that low-dose
levels reached via SECT for cardiac imaging cannot be obtained by DECT acquisition
mode [17,18]. Moreover, DECT technology makes ‘flash’ CT acquisition mode impossible
because, as previously reported, DECT needs two X-ray tubes working with different tube
voltages while high-pitch mode requires the same voltage on both X-rays tubes [19].

As expected, the amount of raw data for a DECT examination is about twice that of a
SECT one. These data allow many different reconstructions that need to be post-processed
and interpreted, thus reflecting a very complex and time-consuming workflow for both
technologists and radiologists. Hopefully, this workflow is constantly improving thanks to
automated or semi-automated post-processing software performed directly at the scanner
or workstations, which may significantly reduce the amount of time needed for analysis
and interpretation [20].

Finally, the recently introduced photon-counting CT (PCCT) could represent a game-
changer in the DECT era. In contrast to the conventional DECT, PCCT has the capability
to count both the total number of X-ray photons and their energy distribution, increasing
contrast-to-noise ratios and energy-discrimination capabilities. This translates into superior
noise characteristics, especially in low-dose scans, that can be very useful in pediatric
imaging or screening imaging, such as calcium scoring or the follow-up of dissections.
Moreover, the presence of a semiconductor material in place of a scintillator material, and
the option to subdivide detector units, can also result in higher spatial resolution. This could
be helpful for the evaluation of coronary lumen and stent patency where calcium-blooming
and metal artefacts (consequences of partial volume effects of low resolution) can lead to an
overestimation of stenosis. Improved spatial resolution can also be useful in better depicting
high-risk plaque features, such as thin-cap fibroatheroma or microcalcifications, raising
CCT predictive value. PCCT allows an “always available” multi-energy discrimination
that can be helpful in significantly reducing metal artefacts and properly image prosthetic
valves, stents, ICDs, or any other cardiac devices, consequently improving the assessment
of any peri-procedural complications [21].

3. Applications
3.1. Virtual Monoenergetic Imaging (VMI)

One of the major applications for which DECT represents a turning point in diagnostic
imaging is the possibility of processing monochrome reconstructions as if they were ob-
tained using a monoenergetic X-ray beam, hence the name virtual monoenergetic imaging
(VMI). This application can improve image quality by optimizing the contrast-to-noise
ratio and may help reduce artefacts, the dose of contrast medium, the radiation dose to the
patient, and the examination time [22–24].

Virtual monoenergetic images are obtained through a post-processing technique that
calculates images at the desired level of hypothetical energy (keV). Several studies have
shown that getting reconstructions with very low keV, close to the K-edge of iodine
(33.2 keV), may improve vessel contrast [6,22]. However, while the effect of reducing
keV increases image contrast, it also results in a considerable increase in noise, producing
images that cannot be used for diagnosis except at a minimum of 70 keV [25,26].

VMI+ is a new reconstruction algorithm introduced by Grant KL et al. [20]. In detail,
the algorithm works through a regional spatial, frequency-based recombination of the
high signal at lower energies, and the superior noise properties at medium energies, to
escape noise increasing at lower calculated energies. Their method has improved image
post-processing, allowing reconstructions up to 40 keV, with a substantial increase in both
contrast-to-noise ratio (CNR) and signal-to-noise ratio [20]. Zeng et al. nicely summarized
how the application of the VMI+ protocol brings significant benefits in various fields, such
as oncology, pulmonary embolisms (Pes), active arterial hemorrhages, and liver lesions [24].
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However, several studies reported no effective match between quantitative and qualitative
image quality, as few readers prefer images at 50–60 keV due to the excessive increase in
noise below this keV, which is not justified by the increase in contrast [22,27].

The absence of a standard processing algorithm and an optimal value of VMI obviously
limits the diffusion of this application, especially considering the multitude of factors that
influence post-processing operations [6,23,24,28].

Furthermore, De Cecco et al. showed that autonomous window adjustment and
reworking results in higher reader confidence and performance, as demonstrated by better
liver lesion detection rates in the noise-optimized VMI+ series [29]. Some authors reported
differences in reader-preferred and calculated optimized window settings in abdominal
DECT angiography [30] and DECT pulmonary angiography [31].

In general, the use of 70 keV VMI reconstructions as the optimal energy level for
thoracoabdominal CT angiography images is preferred, while additional reconstructions
at 40 or 50 keV may be helpful when poor vascular contrast is noted, as suggested by
Albrecht et al. [6].

Nowadays, no large-scale work demonstrates a greater diagnostic accuracy and ef-
ficacy of using VMI in cardiac or vascular imaging. However, several papers have high-
lighted the potential of this application in the field, particularly for the evaluation of late
iodine enhancement in cardiomyopathies and myocardial ischemia [32,33] (Figure 2), as
well as for detecting active abdominal hemorrhages [34] and endoleaks [35]. Further-
more, recent investigations explored VMI potentials for coronary artery calcium (CAC)
scoring [36] and quantifying epicardial adipose tissue attenuation [37], as well as for devel-
oping protocols aimed to obtain better quality images with lower radiation doses, especially
for transcatheter aortic valve replacement planning [38,39].
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Figure 2. Late iodine enhancement dual-source DECT images in a 72-year-old man. Sub-endocardial
hyperenhancement (red arrows) can be seen in the left ventricular septal wall and apex at different
virtual monochromatic image values (A–D).
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Moreover, low keV VMI reconstructions may increase the baseline attenuation of
iodine, reducing the amount of contrast medium necessary for the patient [34], as previously
demonstrated for vascular abdominal and thoracic CT applications [23,40]. This feature
appears to be very helpful when the administration of intravenous contrast medium is
troubling, such as in case of heart or renal failure, or for patients with difficult venous
access [23] (Figure 3).
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Figure 3. Retrospective application of VMI (A–D) by dual-source DECT in a patient where the contrast
bolus was mistimed in amount; low keV reconstruction increases the attenuation of iodinated contrast
material, allowing for greater contrast-to-noise ratio.

Recently, Oda et al. [41] demonstrated that 50 keV VMI enabled a reduction in the
contrast medium dose by 50% without coronary CT angiography (CCTA) image quality
degradation in patients with renal insufficiency.

Mangold et al. also explored the impact of VMI reconstruction on the evaluation of
coronary stents, demonstrating that they may reduce the radiation dose to 49% lower than
that of 120 kV SECT [42].

Rotzinger et al. demonstrated that low-keV VMI improves vessel area segmentation
in vitro [43]. The same group observed that, in vivo, low keV VMI allows for a 40% iodine
dose and injection rate reduction, while maintaining diagnostic image quality, and improves
the CNR between lumen versus fat and muscle.

Moreover, Huang et al. [44] showed that 50 keV VMI, compared to polychromatic
images, may offer equivalent or improved coronary image quality in CCTA performed on
dual-layer spectral detector computed tomography with half the amount of contrast media.

Furthermore, the expertise and subjectivity of the reader determined further elabora-
tion in the adjustment of the window width and level, which is an essential factor, especially
in cardiac and coronary imaging, where higher contrast quality is often required [30].

Artefact reduction represents another critical application of DECT. The primary arte-
facts that affect and reduce the quality of a CCTA examination are beam-hardening and
calcium-blooming artefacts. VMI reconstructions can limit both, although in different
ways [22].
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In myocardial DECT, beam-hardening artefacts predominantly affect the anterior wall
of the left ventricle and the descending aorta. Low-energy VMI reconstructions can solve
this problem in most cases since the beam cannot harden at higher energy levels [45,46].

Calcium-blooming artefacts often result in non-diagnostic examinations in patients
with significant and disseminated coronary calcifications or in an overestimation of the
degree of stenosis. The same issue applies to patients with previous coronary stent implan-
tations. SECT image datasets are hampered by metallic devices, such as stents, ICDs, or
prostheses, generating beam-hardening and photon-starvation artifacts [47].

High keV VMI obtained through DECT scanners can reduce these artefacts by simply
adjusting the monoenergetic level to the optimal value during the post-processing phase.
Recent studies demonstrated that the optimal monoenergetic levels to reduce artefacts in
a patient with metallic implants range from 105 to 120 keV. In these cases, high keV VMI
reconstructions (110 keV and above) can limit beam-hardening artefacts, improving image
quality and diagnosis [48,49].

Moreover, since increasing keV results in reduced contrast and overall image quality,
it appears useful to obtain reconstructions at different keV levels and optimize the study
windows. Accordingly, Ohta et al. [50] showed that maximal contrast-to-noise ratios were
observed at 70 keV for calcified and non-calcified plaque and fat in comparison with
lumen, while 70 keV and 120 keV were the best VMI keV values for non-calcified plaque in
comparison with fat.

3.2. Virtual Non-Contrast Imaging

DECT can provide selective information on the material and is therefore able to high-
light the iodine signal as occurs in perfusion maps, or it can subtract intake, such as for
virtual reconstructions without contrast (VNC) [51]. Radiologists can obtain data of the
pre-contrast and arterial phases with a single acquisition, thus exposing the patient to a
lower dose of radiation without a real non-contrast scan. VNC reconstructions are helpful
in differentiating contrast material from calcifications, as well as cardiac and mediastinal
structures [23]. The use of high-contrast VNC CT images with dual-energy material de-
composition/suppression is also feasible for coronary calcium scoring (Figure 4). Of note,
the absolute value of VNC is generally lower than that of true non-contrast-enhanced im-
ages [52]. Moreover, the VNC and contrast-enhanced CCTA data are acquired from a single
image with a perfect overlay [14], without the possibility of incorrect recordings due to
movement artefacts. This allows for an accurate dynamic evaluation of enhancement [23].
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3.3. Virtual Calcium Subtraction

Material decomposition represents an interesting DECT tool that considers iodine,
soft tissues, and calcium as reference materials for coronary arteries analysis. In detail,
through the material decomposition algorithm, specific components can be highlighted or
subtracted. For coronary artery disease, two pairs of materials are generally used: iodine-
calcium and calcium-iodine. The first one allows calcium extraction so that stenosis can be
accurately evaluated; in the latter, calcium is removed from the vessel wall while iodine
is maintained, yielding a more accurate quantification of the stenosis in the presence of
calcified plaques [13,53]. This algorithm is generally integrated with a monochromatic
evaluation of the coronaries at high-energy levels (≥80 keV) to reduce blooming and beam-
hardening artefacts and offer a precise assessment [54,55]. Recent studies also explored the
use of novel calcium-removal image-reconstruction algorithms using PCCT and observed
that it had the potential to decrease blooming artefacts caused by heavily calcified plaques,
improving lumen evaluation [56,57].

Virtual calcium subtraction reconstructions may improve coronary lumen visualization
and diagnostic confidence in patients with heavy coronary calcifications [58]. However,
further studies are needed to assess whether this technology could effectively increase
diagnostic accuracy.

3.4. Iodine Perfusion Maps

Iodine perfusion maps represent one of the most exciting applications of DECT.
These maps result from merging iodine-selective reconstruction over the typical anatom-
ical image, and subsequently emphasize the iodine signal manually on the workstation
(Figure 5) [1,14,59]. This is based on the principle that gadolinium and iodinated contrast
agents share similar kinetics and both can access what had been the intracellular space
through the ruptured cell membrane when myocardial necrosis occurs [60].
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Figure 5. Coronary dual-source DECT: (A) Left circumflex coronary artery shows severe proximal
stenosis due to the presence of a calcified plaque. (B) Iodine perfusion map depicts the perfusion
defect of the inferolateral wall (arrow) corresponding to a myocardial scar (arrow) in the short axis
LGE MR sequence (C), suggestive of necrosis.

It is important to underline that DECT perfusion evaluates myocardial blood volume
at a single time point instead of using dynamic CT perfusion techniques that allow a
multiphase dynamic quantification of myocardial blood flow through time [8]. DECT
perfusion generally consists of a static acquisition to visualize the “first-pass perfusion”.
Dynamic DECT perfusion is rarely an option for the higher radiation dose due to the
multiple acquisitions and because SECT offers a more excellent temporal resolution.

Stress CT is another essential technique for perfusion imaging, even if the best pharma-
cological strategy is still debated [46]. However, stress image acquisition, before rest to avoid
contrast contamination in the myocardium, seems to be the first choice for most centers.
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Many recent studies have demonstrated that introducing iodine perfusion maps in-
creases the diagnostic accuracy of cardiac CT scans when compared with cardiac MRI,
single-photon computed tomography (SPECT), and invasive catheterization angiogra-
phy [61–66]. By ensuring the quantification of intramyocardial iodine uptake and a better
qualitative assessment of myocardial extracellular space, the iodine perfusion maps allow
distinguishing ischemia from infarction [67], thus providing functional and anatomical
information at the same time.

Myocardial blood volume can be obtained through iodine maps of any cardiac
DECT [66]. However, further investigations are needed to establish the optimal acquisition
protocol for myocardial infarction and ischemia.

Outlining the iodine distribution in the myocardium, iodine maps favor the radiologist
with a better qualitative assessment of perfusion defects, increasing the infarct detection
rate, especially when compared with stress CCTA [67,68]. Furthermore, a quantitative as-
sessment of myocardial blood supply can be obtained through an evaluation of myocardial
iodine uptake in mg/mL [1,69], with the mean value of iodine concentration different in
the ischemic myocardium compared to the healthy or infarcted myocardium [70].

Hence, quantitative and qualitative evaluation through iodine perfusion maps may
potentially improve diagnostic accuracy for myocardial infarction and stress-induced
ischemia [8,68,69].

Moreover, recent studies demonstrated that iodine perfusion maps could be useful for
predicting the hemodynamic significance of coronary artery stenosis, eventually outlining
a decrease in iodine uptake in the corresponding territory [67,71]. Furthermore, perfusion
maps could play a role in detecting late-enhancing tissue [72] and ultimately favoring
differentiation between chronic or reversible myocardial ischemia [14,73]. However, io-
dine perfusion maps obtained via first-generation DECT scanners typically expose the
patients to high radiation; thus, the availability of advanced CT technology is mandatory
in this context.

3.5. Plaque Imaging and Analysis

Plaque rupture and acute thrombotic coronary occlusion generally occur on thin-
cap fibroatheromas, which have been the main target of vulnerable plaque imaging in
recent years [74]. As known, CCTA can identify many characteristics associated with
vulnerable plaques, such as low attenuation, positive remodeling, spotty calcifications, and
the napkin-ring sign [75–77].

DECT could play a role in evaluating high-risk plaques thanks to its capability to
use X-rays at different energies, which impact the attenuation values of different plaque
elements, such as fibrous tissue and necrotic core. However, evidence on plaque imaging
of DECT is few and often conflicting [23]. DECT may well distinguish calcified- from
non-calcified plaques, with no real advantage in the classification of other plaque types
compared to the conventional CT [78] (Figure 6). However, in a recent study, Obaid et al.
showed that using CCTA at two different energy levels (100 and 140 kV) can improve the
sensitivity and specificity for identifying plaque’s necrotic core ex vivo, while the diagnostic
accuracy in vivo for the detection of necrotic core is still suboptimal [79].

Furthermore, Tanami et al. demonstrated that the diagnostic performance of CT
analysis for ex vivo plaque characterization was superior at lower energy settings (80 kV)
to differentiate lipid-rich plaques from fibrotic plaques [80]. Moreover, the ratio of the CT
attenuation value at the 80 kV setting divided by the 140 kV setting (Hounsfield ratio [HR],
80:140) could be a practical tool for plaque classification [80].

However, further studies are warranted to explore the potential role of DECT in
unravelling the characterization of non-calcified plaques [81]. In the near future, thanks to
its higher spatial resolution, PCCT could play a pivotal role in helping to outline high-risk
plaques features, such as thin-cap fibroatheroma or microcalcifications.
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Figure 6. Coronary dual-source DECT in a 65-year-old man presenting with chest pain. (A) Automat-
ically generated curved multiplanar reformation of the right coronary artery demonstrates greater
than 75% stenosis (green asterisk). (B) Plaque analysis using monochromatic coronary reconstruction
showing a clear separation of quantitative values (HU) at low keV (red asterisk: calcific plaque; green
asterisk: fibrous plaque).

3.6. Extracellular Volume (ECV)

The extracellular volume (ECV) represents a marker of reactive interstitial fibrosis or
scar-replacement fibrosis and may represent an added value in several conditions, including
both ischemic and non-ischemic manifestations [82]. Although cardiac MRI is the primary
imaging modality in this regard, with T1-mapping increasingly adopted in clinical practice,
DECT is gaining importance as an alternative technique with good comparability and
accuracy [83]. Of note, measurements by DECT are only performed on the iodine maps,
thus allowing accurate ECV quantification with minimal erroneous recording [84].

In a recent study, Wang et al. evaluated the feasibility and accuracy of DECT technique
in determining the ECV in 35 patients with heart failure, using 3T MRI as the reference
standard, showing a good correlation between the two techniques [85].

Ohta et al. evaluated myocardial ECV for each cardiac segment using iodine density
image with single-source DECT in 23 patients, using MRI T1 mapping as the reference
standard, demonstrating a strong correlation between both methods for either regional or
segmental evaluations [86].

4. DECT Limitations

As described in previous sections, cardiac DECT presents several advantages, offering
new essential applications that can improve the radiologist’s contribution to the clinical
setting. However, some disadvantages should be acknowledged. First of all, DECT scanners
are expensive, approximately 25% more than an equivalent SECT, as a consequence of the
complex hardware manufactured, which raises their cost. Moreover, these scanners need
specific complex software to fully exploit the technology, with consequent price elevation.
In addition, radiologists and technicians need extensive training to fully take advantage of
DECT’s potential.

Furthermore, some limitations are directly linked to the subtypes of multi-energy CT
scanners. Due to its lower temporal resolution, rapid kVp switching DECT is prone to
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motion artefacts, even if this scanner allows excellent energy separation and projection-
based VMI reconstructions.

Finally, DS, sequential DECT and twin-beam scanners generally provide higher tempo-
ral resolution but with a higher rate of misregistration of the two energy datasets. Instead,
dual-layer detector CT permits perfect simultaneous registration of both energy datasets
even if it is more prone to misregistration of photons by one of the two layers [87].

5. Conclusions

The implementation of DECT in cardiac imaging allows several advantages, mainly
consisting of improved image contrast, generation of virtual monoenergetic images, metal
artefacts reduction, and virtual calcium subtraction. Moreover, plaque characterization,
iodine perfusion maps, and the opportunity to assess late iodine enhancement as well
as to quantify ECV complete DECT arsenal. Therefore, DECT represents a cutting-edge
technology that is radically changing this field of imaging, going beyond the traditional
concepts of material density. Moreover, through its higher spatial resolution and CNR, the
recent introduction of PCCT could represent a pathbreaking element for DECT era, allowing
novel clinical applications, such as calcium and stent subtraction, which could enhance
coronary and in-stent lumen visibility. Further research and technological advantages are
expected in the next future to strengthen DECT applications in clinical practice.
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