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Abstract

Newborns, regardless of the method of termination of pregnancy, are exposed to the first

exogenous stress factors during delivery. The purpose of the study was to evaluate the dif-

ferences in newborns’ thermal response to vaginal (VD) vs caesarean section (CS) delivery.

The temperature was measured during the first minutes of life within 122 healthy full-term

newborns, on the forehead, chest and upper-back by infrared camera (FLIR T1030sc HD).

The lowest temperatures were recorded in the forehead of VD newborns (significantly differ-

ence with CS; p < 0.001), the warmest was the chest. A significant correlation was found

between the duration of the second stage of natural childbirth and surface temperature and

pO2 in the newborn blood. The temperatures of selected body surface areas correlate highly

positively, regardless of the mode of delivery. In the case of healthy neonates, with normal

birth weight and full-term, VD creates more favourable conditions stimulating the mecha-

nisms of adaptation for a newborn than CS.

Introduction

Stress response is a fundamental requirement for the survival of the human species. All human

beings, regardless of the method of termination of pregnancy, are exposed to the first exoge-

nous stress factors during delivery. It is postulated that concluded that vaginal delivery (VD) is

significantly more stressful in comparison to elective CS, as indicated from the higher serum

cortisol levels observed in the VD [1]. Perinatal stress is strongly related to long-term program-

ming of the hypothalamic–pituitary–adrenal (HPA) axis, regulates the body’s adaptive pro-

cesses and response to stimulating factors in the course of ontogenesis, influencing

psychosomatic development [2]. For many years, comparative studies have been conducted on

the effect of the mode of delivery on the early and distant consequences for children’s psycho-

somatic traits. The increased risk of disease associated with immune function in the offspring

[3–9], sensitisation allergens, and asthma and respiratory complications [10–15], metabolic

and hormonal disorders [16–21] and the effect on colonisation of the gut flora correlated with

gastrointestinal symptoms [22–25] has been repeatedly evaluated, and the results of these stud-

ies are consistent. However, no current reports regarding the comparison of the thermal
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response of newborns born by CS vs. VD, describing the scope and distribution of body tem-

perature of newborns immediately after delivery have been found in the literature.

The temperature relationship between foetus and mother results from a combination of

endogenous heat production by the foetus and the surrounding core temperature of the

mother. The temperature different between the foetus and the mother is called the “heat

clump” and is relatively constant [26]. The foetal temperature is approximately 0.2–0.5˚C

higher than the maternal temperature in utero and the foetus’ peripheral and core tempera-

tures are almost exactly the same. The foetus is entirely dependent on the mother for tempera-

ture regulation and the uterus is a conduit for heat loss on the placenta from the foetus to the

uterine wall (for approximately 85% heat loss), owing to a positive foetal-maternal temperature

gradient [27–29]. The two most important inhibitors of non-shivering thermogenesis (NST)–

being strong anti-lipolysis inhibitors–passed via the placenta to the foetus: adenosine and pros-

taglandin E2. Both of them play a very important role in: 1. the metabolic adaptation of a phys-

iological hypoxic foetus (because NST requires adequate oxygenation); 2. their presence allows

the foetus to accumulate an adequate amount of brown adipose tissue (BAT) before birth [26].

After birth, the child, by changing its environment, is exposed to lower temperature. The

skin surface temperature is related to the difference between the body temperature and that of

the environment. The temperature gradient between the infant and the air in a delivery room

is usually around 10˚C and creates the potential for heat loss to the air and poses a considerable

threat to temperature homeostasis. The body temperature of infants drops directly after birth

because of their disproportionate body mass-to-surface ratio, not fully developed control and

executive mechanisms of thermoregulation, especially poor cutaneous vasoconstriction and

vasodilation control, small amounts of subcutaneous fat and thin skin with increased perme-

ability [30–33]. Such uncontrolled losses place the infant at risk for significant morbidities and

mortality, therefor thermal homeostasis is essential for survival.

The major source of heat loss in the first weeks of life is evaporative heat loss that occurs

when water is lost through the skin, undergoing conversion from a liquid to a gas, as during

the delivery [34–36]. The skin of an infant is covered with amniotic fluid and usually vernix

caseosa. Evaporation from the body surface of amniotic fluid and of water in amniotic fluid

causes a loss of heat. At the same time, the infant is exposed to a colder temperature than it has

experienced in utero. Exposure to colder environment may give rise to thermogenic responses

that will increase basal heat production and the skin circulation may decrease to lower the heat

losses [37]. The human body uses three responses to process the thermoregulatory informa-

tion: afferent sensing, central regulation, and efferent autonomic responses which is initiated

by a change in temperature by neurones that have thermo-sensitive receptors present in the

skin, deep tissues, spinal cord and brain [38].

When an infant is born, in order to maintain its body’s core temperature, they go through

discrete physiological and behavioural responses, initiated by the hypothalamus and cutaneous

temperature receptors [39]. What constitutes a normal temperature in the newborn is still

unclear, with a wide range of temperatures being accepted as normal. Previous research

allowed to select important, thermally representative and, above all, suitable for a non-invasive

thermographic analysis of the body surface areas of a healthy, term, vaginally delivered new-

born and assess the range and distribution of temperatures within the forehead, back and

chest areas [40]. The goal of our research was to estimate the potential effect of the mode of

delivery (CS vs. VD) on: 1. the range of temperature changes in selected newborn’s body sur-

face areas immediately after delivery; 2. the nature of the temperature distribution on its body;

and 3. selected birth parameters of the newborn, which was achieved by including in the study

and analysis a group of newborns born by C-section.
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Material and methods

The research was carried out from January 2018 to November 2019 in the Gynaecology and

Obstetrics Ward, SPZOZ Hospital (an independent public healthcare institution) in

Choszczno. The study included a total of 122 healthy newborns; 48 of them were delivered by

caesarean section, while 74 vaginally delivered, full-term, healthy newborns were a compara-

tive group. All of the vaginal deliveries included in the analysis took place without the use of

instrumental assistance (obstetrical forceps or vacuum extractor).

The study was approved by the Bioethics Committee of the Pomeranian Medical University

in Szczecin (KB 0012-15/12). The participants were informed about the course of the research

and gave their written consent to participate. Immediately after birth, the temperature of

selected body surface areas was recorded with an IR camera, without wiping the newborn,

before further activities such as placing them in an open radiant warmer, and also before the

setting of neonatal clinical care. The newborn was supported by the obstetrician under the

arms in a vertical position and the temperature was measured on the anterior surface, in the

chest region; on the posterior surface, in the upper-back region; and in the newborn’s forehead

region. The analysis only included the thermograms of those newborns who scored 9–10

points on the Apgar scale (from the first minute), a medical qualification confirming the new-

borns’ condition and the healthy status of the newborns. For each selected body surface area,

the mean surface temperature (Tmean) was calculated. Thermal images were taken with a ther-

mal imaging camera (FLIR T1030sc HD) in the delivery room, with all necessary precautions

and without affecting the course of labour. The measuring procedures were carried out follow-

ing the standards of the European Thermographic Association [41]. During imaging, the

ambient temperature and humidity were constant at the measurement site, at appropriately

26˚C and 55–60%. The camera was positioned in a straight line to the subject, 1.5 meters from

the newborn’s body. Skin emissivity was adopted as 0.98. The FLIR Tools software was used to

analyse the thermograms. Additionally, data on maternal age, pregnancy order, as well as new-

born sex, birth weight, body length, pregnancy week on delivery, and newborn blood gas test

results (pH, pO2, HCO3, ctCO2, sO2) were collected.

Statistical analysis

Statistical analyses were performed with the use of the STATISTICA 11 software (StatSoft,

Poland). The values of the analysed parameters were normally distributed (which was verified

with the Shapiro-Wilk test). We presented the results of the measurements as arithmetic

means, standard deviations, and minimum and maximum values. To estimate the significance

of differences in the temperature of selected body surface areas within the group of newborns

born by CS and to compare the values of all analysed newborn traits depending on the mode

of delivery the analysis of variance (ANOVA), post hoc Tukey’s test was used.

To estimate the relationship between Tmeans values of examinated body surface areas in the

newborns from CS group the Pearson’s correlation test were performed (r indicates correla-

tion coefficient). The Spearman test was performed to verify the relationship between the

mode of delivery and selected parameters of newborn blood gas tests (pH, pO2, HCO3,

ctCO2, sO2) and the temperature of selected body surface areas. In addition, Spearman’s rank-

order correlation coefficients between the duration of the second stage of labour and selected

neonatal parameters were calculated.

Results

Descriptive statistics of the selected parameters for mothers and newborns from both groups,

i.e. those born by caesarean section and by vaginal delivery, are summarised in Table 1. The
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groups of women did not differ in terms of age and pregnancy order. There were also no statis-

tically significant differences in anthropometric traits and newborn blood gas parameters. The

duration of pregnancy in both groups was comparable, ranging between 37 and 41 weeks.

In the conducted study, the temperature of selected body areas (forehead, chest and back)

were measured in newborns born by CS and VD. The lowest temperatures were recorded in

the forehead area of newborns, especially in those born by vaginal delivery. The range of these

temperatures ranged from 33.2 to 37˚C, while in newborns born by CS from 34.2 to 37.1˚C.

The warmest area in both cases was the chest, for which the thermal ranges for the groups are:

34.3 to 37.2˚C (VD) and 34.3 to 37.3˚C (CS), respectively.

When analysing in detail the temperature distribution within the examined group of new-

borns born by caesarean section, no statistically significant differences were found between the

mean values of temperatures of selected body surface areas. Interestingly, the previous study of

newborns from natural childbirth has shown such a variation in body area temperatures, indi-

cating a statistically significantly lower temperature in the forehead area of newborns.

The temperatures of selected body surface areas between newborns from two groups differ-

ing in the mode of delivery were successively compared (Table 2). It was shown that the only

area statistically significantly different in terms of temperature was the forehead, with the tem-

perature values of this region of the body in newborns delivered vaginally being significantly

lower compared to those delivered by caesarean section (difference 0.6˚C).

In addition, it was found that the temperatures of the examined body areas (forehead, back

and chest) strongly correlated positively with each other in newborns born by CS (Figs 1–3).

The strongest correlations were found between the forehead and other body areas, and the

Table 1. Descriptive statistics of the values of maternal and neonatal traits under analysis.

CS delivery Vaginal delivery

Mean Standard Deviation Min Max Mean Standard Deviation Min Max Anova Post hoc Tukey

Maternal age [yrs] 28.14 5.84 17 41 27 5.66 18 41 0.497

pregnancy order 1.89 1.12 1 5 1.80 1.03 1 5 0.803

pregnancy week 38.94 0.89 37 40 38.5 2.59 37 41 0.474

birth weight [g] 3373 488 2300 4760 3430 523 2340 4960 0.72

body length cm] 55.11 3.15 48 62 55.7 3.38 47 64 0.544

pH 7.35 0.06 7.3 7.48 7.36 0.07 7.19 7.49 0.894

pCO2 [mmHg] 41.83 6.92 29.5 64.5 40.67 7.36 29.2 64.5 0.447

pO2 [mmHg] 30.17 7.22 17 43 30.03 6.83 17 44 0.897

HCO3 [mmol/l] 22.93 2.03 16.6 26.1 22.16 2.14 16.6 26.1 0.129

ctCO2 [mmol] 17.69 5.72 5 37.5 17.61 5.76 5 40.9 0.937

sO2% 51.75 17.77 17 79.6 51.17 16.72 17 82.5 0.996

https://doi.org/10.1371/journal.pone.0243453.t001

Table 2. Descriptive statistics of the temperature values of selected body surface areas in newborns born by CS and VD.

CS delivery Vaginal delivery

Mean Standard Deviation Min Max Mean Standard Deviation Min Max Anova Post hoc Tukey

Tmean back (˚C) 35.74 0.64 34.5 37.2 35.51 0.72 34 37 0.165

Tmean chest (˚C) 35.86 0.71 34.3 37.3 35.64 0.68 34.3 37.2 0.162

Tmeanforehead (˚C) 35.62 0.68 34.2 37.1 35.05# 0.74 33.2 37 0.00125��

�� significance level of p < 0.01 –between groups.

# significance level of p < 0.05 –between Tmean forehead and both Tmean chest & back in vaginally delivered newborns.

https://doi.org/10.1371/journal.pone.0243453.t002
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values of correlation coefficient were r = 0.837 for the chest and r = 0.802 for the back (respec-

tively at p<0.001). Similar relationships were also found in newborns born by vaginal delivery,

although they were of much smaller statistical strength and the correlation values between the

head area and other body areas were the weakest of all [40].

Next, in order to verify the actual effect of the mode of delivery on the examined parameters

of newborns, an analysis Spaerman’s rank-order correlation of the mode of delivery (vaginal

vs. caesarean section) with the newborn’s birth parameters was performed: the week of foetal

life (pregnancy week on the day of delivery), sex, body weight and length, biochemical blood

parameters and surface temperature of selected body surface areas. As results from the statisti-

cal analysis show, the correlation only occurred in the case of the value of Tmean forehead tem-

perature with the mode of delivery, i.e. delivery by CS does not cause a decrease in

temperature in the head area, as is the case during vaginal delivery (Table 3).

An important parameter differentiating the course of natural childbirth is the duration of

its second stage. The average duration of this stage in the examined women was 29.7 ± 12.08

minutes and had a statistically significant effect on the surface temperatures of two body areas,

Fig 1. A correlation between Tmean forehead and Tmean chest in newborns born by CS.

https://doi.org/10.1371/journal.pone.0243453.g001
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i.e.: Tmean chest (r = -0.256; p = 0.041) and in particular Tmean forehead (r = - 0.434;

p = 0.00023). It was clearly demonstrated that the longer the second stage of labour, the lower

the temperature values of these body areas (Table 4). At the same time, a significant correlation

was found between the duration of the second stage of natural childbirth and pO2 in the new-

born blood (r = - 0.406; p = 0.0016).

Discussion

One of the most important factors determining the health and survival of a newborn, apart

from the heart rate, breathing rate and blood pressure, is to maintain proper body tempera-

ture. Both hypo- and hyperthermia during the first days of life are potentially dangerous for

newborn health and life. Despite, as mentioned in the introduction, numerous studies assess-

ing the effect of the mode of delivery on vital signs, health status of newborns as well as the

long-term health effects, there are no studies assessing the thermal response to delivery,

including its course, and comparative studies for its type (VD vs. CS). Research from recent

years conducted in the area of the thermal characteristics of newborns and infants mainly

Fig 2. A correlation between Tmean forehead and Tmean back in newborns born by CS.

https://doi.org/10.1371/journal.pone.0243453.g002
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Fig 3. A correlation between Tmean back and Tmean chest in newborns born by CS.

https://doi.org/10.1371/journal.pone.0243453.g003

Table 3. Spearman’s rank-order correlation of the mode of delivery (vaginal delivery vs. cesarean section) with

selected newborn parameters.

Newborn parameters Spearman’s rank-order correlation coefficient P

pH -0.015 0.628

pCO2 [mmHg] 0.088 0.439

pO2 [mmHg] 0.015 0.945

HCO3 [mmol/l] 0.174 0.59

ctCO2 [mmol] 0.009 0.697

sO2% -0.001 0.851

Tmean back (˚C) 0.160 0.131

Tmean chest (˚C) 0.161 0.103

Tmean forehead (˚C) 0.362� 0.000188�

� significance level of p < 0.05.

https://doi.org/10.1371/journal.pone.0243453.t003
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focus on monitoring body temperature, including its surface, in premature and very low birth

weight (VLBW) newborns in the early neonatal period [42–45]. However, studies from earlier

years describing the skin temperature values of different body areas in neonates, due to the dif-

ferent range of sensitivity of the tools used, had a large impact on variation in results [26, 44].

It is postulated that monitoring of central and peripheral temperature in infants is essential

[46] and may prevent morbid outcomes due to early detection of ischaemia and possibly sepsis

[47]. Therefore, in the light of indications recommended by WHO (maintenance of appropri-

ate body temperature as a primary principle of newborn care and thermal protection for all

infants), it seems reasonable and important to undertake this research subject by us [48].

Foetal temperature is approximately 0.3–0.5˚ C higher than in an adult [26, 49], i.e. so

much higher than maternal temperature on average. After delivery the core and skin tempera-

tures of a term neonate can decrease at a rate of approximately 0.1˚C and 0.3˚C per minute,

respectively; however, it should be kept in mind that, according to WHO (1997), a decrease of

core body temperature to 36–36.4˚C is defined as mild and to 35.9–32˚C as moderate hypo-

thermia [50, 51]. The American Academy of Pediatrics defined the lower limits of normal tem-

perature for an infant as 36.4˚C [52]. According to the literature data, general temperature

ranges for infants should be as follows: rectal temperature 36.5–37.5˚C, skin temperature

36.2–37.2˚C, and temperature of axillary sites 36.5–37.3˚C [39].

The temperatures from selected areas of the body recorded by us were within a fairly wide

range, often going beyond those indicated as normative for skin temperature, from the lowest

values around 33.2˚C in the forehead region for newborns born by vaginal delivery and 34.2˚C

in newborns born by caesarean section, up to the highest values in the chest region, amounting

to 37.2 and 37.3˚C, respectively. Our research confirms previous reports that immediately

after birth, body temperature can drop between 1˚C and 3˚C and the greatest drop occurs in

the first few minutes after birth but can last for several hours [29]. The highest drop in body

surface temperature of newborns was recorded in the head area: 2.45˚C (VD) and 1.89˚C (CS).

For the remaining analysed areas, the average drop in temperature was for the back: 1.98˚C

(VD) and 1.77˚C (CS), and the lowest for the chest: 1.86˚C (VD) and 1.64˚C (CS).

These results confirmed earlier observations that the chest is the warmest and the forehead

the coldest of the selected regions. The head accounts for 21% of the total surface area of the

infant’s body and large proportion of the total body heat loss will be from this region, allowing

a quick response following thermal changes. Attention should be paid to the studies of other

Table 4. Correlation of the duration of the second stage of labour with biochemical parameters and temperatures

of selected body surface areas in newborns born by vaginal delivery.

Newborn parameters R (correlation coefficient) P

pH -0.257 0.136

pCO2 [mmHg] 0.112 0.694

pO2 [mmHg] -0.406 0.016��

HCO3 [mmol/l] -0.229 0.185

ctCO2 [mmol] 0.017 0.924

sO2% -0.311 0.69

Tmean back (˚C) -0.199 0.115

Tmean chest (˚C) -0.256 0.041��

Tmean forehead (˚C) -0.434 0.00023���

�� significance level of p < 0.01

���significance level of p<0.001.

https://doi.org/10.1371/journal.pone.0243453.t004

PLOS ONE Thermal stress during delivery

PLOS ONE | https://doi.org/10.1371/journal.pone.0243453 December 9, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0243453.t004
https://doi.org/10.1371/journal.pone.0243453


scholars who, although they did not show significant differences in temperature within the leg,

back, arm, head and abdomen, using infrared thermography for detailed registration of ther-

moregulation in premature infants, found, like us, that the area remaining relatively coldest

during the first incubator phases and standardised skin-to-skin care was the supranasal region

of the head. These results suggest that an active regulation process via skin temperature differ-

ences exist in the head region [53].

It has been shown that regardless of the mode of delivery, there are strong, positive correla-

tions between the temperatures of selected newborn’s body areas (forehead, back and chest),

immediately after delivery, and their strength and significance level is significantly higher in

the case of delivery by CS compared to the newborn’s VD described above [40]. The previous

study has also shown that following the vaginal delivery, the temperature of the newborn’s

head significantly decreases compared to the rest of the body surface, and in the case of caesar-

ean section no such thermal changes were observed in newborns. The statistically significant

differences between the values of forehead temperature in newborns born by CS vs. VD

obtained in the described study prompted us to look for a factor that may have an impact on

lowering the temperature of this area in newborns born by vaginal delivery. It was assumed

that this could be the duration of the second stage of labour and the correlation between the

duration of the second stage of labour and the value of all Tmean temperatures of selected body

surface areas was calculated, and additionally the newborn parameters. It was shown that the

temperature of the forehead area decreased the more the longer the second stage of labour

lasted. However, it should be noted that the duration of the second stage of labour in the exam-

ined women ranged from 9 to 52 minutes, which is within the normative values considered

normal. The extended second stage of labour is defined as lasting more than 2 hours. Pro-

longation of the second stage of labour promotes intrauterine hypoxia [54]. The presented

studies also showed a significant negative correlation between the duration of the second stage

of labour and partial pressure of oxygen (pO2). Oxygen deficiency in the organism induces an

increase in anaerobic metabolism, as well as an increase in lactic acid and a decrease in blood

pH production. It should be noted, however, that despite these relationships, no significant dif-

ferences in the values of blood gas parameters between groups of newborns were found

depending on the mode of delivery.

Every healthy, full-term newborn is inevitably exposed to physiological stress related to

birth, as well as thermal stress, resulting from changes in the environment and the temperature

difference between body and ambient temperatures, which is confirmed by our research.

Immediately after delivery, newborns begin to lose heat, through urine and stool (3% of

heat loss), high transepidermal water loss and evaporation (27% of heat loss), convection, con-

duction, and radiation (70%), dependent on the ambient air pressure, temperature and humid-

ity, the temperature of surrounding surfaces and are in the group of patients at increased risk

of developing hypothermia mainly in the first 24 hours of life [33]. Under optimal environ-

mental conditions, the heat loss from term neonates is about 35 W/m2. Losses of 70 W/m2 are

close to the maximum for which a neonate can compensate. In response to birth, during every

one minute, under normal delivery room conditions, a newborn loses approximately 200 cal/

kg [55, 56] and must rapidly elevate its heat production. Changes in temperature within the

body are detected by specialised thermoreceptors located throughout the skin and the body

core, including the viscera, brain, and spinal cord [57]. Localised heating or cooling of any of

these structures induces global feed-back responses that oppose the applied temperature

change. When the infant’s surface temperature decreases in response to sudden exposure to

extrauterine environments, signals from peripheral and central thermoreceptors reach the

hypothalamus through afferent pathways.
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Except behavioral effectors, three physiological ones are particularly important for thermo-

regulation in humans under cold conditions: control of skin blood flow (through peripheral

vascular constriction), involuntary muscle movements (shivering) and BAT thermogenesis.

The engagement of specific thermoregulatory mechanisms is hierarchical, meaning that differ-

ent effectors become activated at different temperature thresholds. In adults, exposure to cold

activates vasoconstriction before shivering or BAT thermogenesis, in concurrence with the rel-

ative energy cost of these different mechanisms [58]. While shivering thermogenesis does

occur in neonates, it is usually a response to extreme thermal stress and is insufficient to pro-

tect the infant due to the relative immaturity of the skeletal muscles resulting in diminished

heat production. Similarly, vasomotor responses, controlled primarily by the release of norepi-

nephrine from sympathetic fibres innervating vascular smooth muscle in the skin, which pro-

motes vasoconstriction, are not effective in neonatal. The significant role of non-shivering

thermogenesis (NST) at birth has been well recognised. It is the primary mode of heat produc-

tion requiring an increase in norepinephrine and thyroid-stimulating hormone. Brown fat

stores laid down from week 25 week of gestation [59, 60] constitute only 1.4% of the body

mass of human newborns, over 2,000 grams, and after delivery diminish quickly during cold

stress [61]. BAT differs morphologically and metabolically from white adipose tissue, it con-

tains numerous fat vacuoles, triglycerides and the presence of abundant sympathetic innerva-

tions and blood supply. A signal transmitted via the sympathetic nervous system to brown

adipocytes causes norepinephrine to be released, which initiates enhancement of lipolysis in

brown adipocytes, mainly by β-adrenergic receptor, and triggers non-shivering thermogenesis,

which is the main homeothermic heat production mechanism in newborns [62]. Heat produc-

tion occurs through uncoupling ATP synthesis via the oxidation of fatty acids in the mitochon-

dria, utilising the uncoupling protein (UCP). The resulting norepinephrine release causes

vasoconstriction, glycolysis, and uncoupling of mitochondrial oxidation in brown adipose tis-

sue and lead to generating heat production. Effectiveness of this mechanism is possible in full-

term newborns, because the appropriate amount of brown fat and the levels of 5’/3’-mono-

deiodinase and thermogenin build up only later in foetal development [26, 63, 64].

Catecholamines released by the adrenal medulla during birth play a key role in the adapta-

tion of a newborn to extrauterine life. Respiratory, metabolic and cardiovascular adaptations

to hypoxia and other stresses associated with delivery are dependent upon a profound surge of

adrenomedullary activity which occurs despite the immaturity of connections between the

central nervous system and the adrenal gland. The "non-neurogenic" response seen in the foe-

tus and neonate is thus essential to survival, and any interference either with catecholamine

release or with catecholamine actions at adrenergic targets results in loss of the ability to sur-

vive hypoxia or other stressors. The immature secretory mechanism disappears as a result of

development of neural connections, and factors which accelerate ontogeny of neural compe-

tence thus lead to premature loss of non-neurogenic secretory capabilities and a consequent

increase in vulnerability. The foetus and neonate also have unusual proportions of adrenergic

receptor subtypes in many tissues; these confer reactivity to specific stimuli associated with

birth and with periods in which tissue differentiation may be under adrenergic control. Sym-

pathetically mediated cutaneous vasoconstriction represents the “first line of defence” during

exposure to cold environmental temperatures. Decreases in mean skin and/or internal temper-

atures cause reflex activation of sympathetic vasoconstrictor nerves, resulting in cutaneous

vasoconstriction and decreases in skin blood flow [65–67].

Scientific research indicates that increased levels of catecholamines in neonates born by

vaginal delivery reflect not only the response to acute stress, but also the body’s attempt to

increase the chances of survival after birth, and neonates born by caesarean section may be in

a disadvantageous adaptation situation [68]. The study by Hägnevik et al. suggests that

PLOS ONE Thermal stress during delivery

PLOS ONE | https://doi.org/10.1371/journal.pone.0243453 December 9, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0243453


vaginally delivered infants showed high levels of catecholamines, arterial glucose and free fatty

acids and glycerol at birth compared to infants born by caesarean section under epidural or

general anaesthesia [17, 69]. The stress of journeying through the birth canal is not harmful to

most infants. In fact, the surge of “stress” hormones it triggers can be important to the neona-

te’s survival outside the womb. The thermogenic response begins within minutes of birth and

continues for many hours causing a two- to three-fold increase in oxygen consumption during

cold stress at birth.

Due to limitations resulting from the thermoregulatory abilities, newborns are exposed to

chilling immediately after birth. Pre-term neonates and those with z VLBW require special

thermal supervision due to insufficient brown fat stores which can lead to poor heat produc-

tion, increased surface area to body mass ratio which can also lead to heat loss, inability to

change posture due to the immaturity of musculoskeletal system, and immature skin that is

poorly keratinised leading to large heat and moisture loss [63, 70]. It should be remember that

both the term and pre-term neonate may be incapable of thermoregulation [70, 71].

It can be stated that in the case of birth by caesarean section, sudden exposure of the whole

body to a new environment creates conditions for multiplied surface effects of temperature

and humidity of the environment on the exteroreceptors of newborn’s skin compared to the

progressive birth by vaginal delivery, which seems to be unfavourable from the point of view

of the newborn’s ability to acclimate to new ambient conditions. Previous clinical experience

suggests that infants delivered by caesarean section have difficulties maintaining normal body

temperature during the first 90 min after birth. The study by Christensson et al. (1993) indi-

cates that in the subsequent minutes after delivery axillary and skin temperatures are signifi-

cantly higher in the vaginally delivered neonates than in those delivered by caesarean section

[72].

Neonates who had no skin-to-skin contact with their mother immediately after delivery are

4.3 times more likely to be hypothermic when compared to those who have this contact. The

possible reason could be the in utero body temperature of the foetus being consistent with

maternal temperature. Neonates who had skin-to-skin contact immediately after delivery with

their mother gain heat through conduction which is consistent with their temperature in the

womb during exposure of the newborn to extrauterine environment [73].

Conclusion

Based on the results of this study, it can be stated that despite the same thermal / humidity con-

ditions prevailing in the delivery room, the drop in body surface temperature of newborns

immediately after delivery is within a fairly wide range. Individually differentiated from a max-

imum of 4.3˚C to a minimum of 0.2˚C, being 1,64–2.45˚C on average, regardless of the mode

of delivery.

Immediately after vaginal delivery, there is a decrease in the temperature of the forehead

area in newborns, which is not recorded in the case of caesarean section. Particularly impor-

tant in the case of VD, in terms of its impact on the temperature range, is the duration of the

second stage of labour, the prolongation of which leads to a decrease in the temperature of the

neonate’s forehead skin, in relation to the chest and back areas. In the case of CS, immediately

after delivery, no thermal differentiation is observed in body surface areas under discussion.

In the case of healthy neonates, with normal birth weight and full-term, vaginal delivery

creates more favourable conditions stimulating the mechanisms of adaptation for a newborn

than caesarean section. Since it is known that mammalian newborns increase heat production

within minutes after birth, some heat loss after delivery, rather slow and progressive (VD) than

simultaneous for the whole body surface (CS), may be an important stimulus for metabolic
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adaptation; in addition, its extent is perhaps more suitable for immediate postnatal physiologi-

cal adaptation of newborns to avoid a drop in body temperature proven to be detrimental to

infants [74].

The temperatures of selected body surface areas correlate highly positively, regardless of the

mode of delivery. It is necessary to monitor the temperature of selected areas of the newborn’s

body in the event that the second stage of labour is prolonged. To assess a newborn’s tempera-

ture, it is important to use selected areas of the body’s surface that are important in terms of

thermoregulation, and to use a reliable, accurate measuring instrument, which is an IR

camera.
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