
Citation: Son, G.; Eo, T.; An, J.; Oh,

D.J.; Shin, Y.; Rha, H.; Kim, Y.J.; Lim,

Y.J.; Hwang, D. Small Bowel

Detection for Wireless Capsule

Endoscopy Using Convolutional

Neural Networks with Temporal

Filtering. Diagnostics 2022, 12, 1858.

https://doi.org/10.3390/

diagnostics12081858

Academic Editor:

Anastasios Koulaouzidis

Received: 29 June 2022

Accepted: 28 July 2022

Published: 31 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Small Bowel Detection for Wireless Capsule Endoscopy Using
Convolutional Neural Networks with Temporal Filtering
Geonhui Son 1,†, Taejoon Eo 1,† , Jiwoong An 1, Dong Jun Oh 2 , Yejee Shin 1, Hyenogseop Rha 1, You Jin Kim 3,
Yun Jeong Lim 2,* and Dosik Hwang 1,4,5,6,*

1 School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea;
higun2@yonsei.ac.kr (G.S.); ship9136@naver.com (T.E.); nanapow3@naver.com (J.A.);
yejeeshin.ee@gmail.com (Y.S.); rhs970720@naver.com (H.R.)

2 Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of
Medicine, Goyang 10326, Korea; mileo31@naver.com

3 IntroMedic, Capsule Endoscopy Medical Device Manufacturer, Seoul 08375, Korea; ykim@intromedic.com
4 Center for Healthcare Robotics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil,

Seongbuk-gu, Seoul 02792, Korea
5 Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul 03722, Korea
6 Department of Radiology and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of

Medicine, Seoul 03722, Korea
* Correspondence: drlimyj@gmail.com (Y.J.L.); dosik.hwang@yonsei.ac.kr (D.H.)
† These authors contributed equally to this work.

Abstract: By automatically classifying the stomach, small bowel, and colon, the reading time of the
wireless capsule endoscopy (WCE) can be reduced. In addition, it is an essential first preprocessing
step to localize the small bowel in order to apply automated small bowel lesion detection algorithms
based on deep learning. The purpose of the study was to develop an automated small bowel detection
method from long untrimmed videos captured from WCE. Through this, the stomach and colon can
also be distinguished. The proposed method is based on a convolutional neural network (CNN)
with a temporal filtering on the predicted probabilities from the CNN. For CNN, we use a ResNet50
model to classify three organs including stomach, small bowel, and colon. The hybrid temporal filter
consisting of a Savitzky–Golay filter and a median filter is applied to the temporal probabilities for
the “small bowel” class. After filtering, the small bowel and the other two organs are differentiated
with thresholding. The study was conducted on dataset of 200 patients (100 normal and 100 abnormal
WCE cases), which was divided into a training set of 140 cases, a validation set of 20 cases, and a test
set of 40 cases. For the test set of 40 patients (20 normal and 20 abnormal WCE cases), the proposed
method showed accuracy of 99.8% in binary classification for the small bowel. Transition time errors
for gastrointestinal tracts were only 38.8 ± 25.8 seconds for the transition between stomach and small
bowel and 32.0 ± 19.1 seconds for the transition between small bowel and colon, compared to the
ground truth organ transition points marked by two experienced gastroenterologists.

Keywords: capsule endoscopy; small bowel detection; convolutional neural networks; temporal filtering

1. Introduction

Since wireless capsule endoscopy (WCE) was first introduced in 2000 [1], small bowel
capsule endoscopy (SBCE) has become a major modality for the diagnosis of various small
bowel diseases because of its painless and non-invasive nature [2–5]. However, reading
numerous image frames is a time-consuming and tedious task for clinicians [6]. In addition,
there may be variations among readers and fatigue may also affect diagnostic accuracy [7].

Under these circumstances, artificial intelligence (AI) or deep learning algorithm [8,9]
is becoming a technology that opens a new horizon in the reading of WCE. As AI algorithms
have been used for lesion detection in various medical imaging modalities, papers on lesion
detection in SBCE are also being actively published [10–12]. Various studies such as
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classifying organs, turbid, bubbles, clear blob, wrinkle, and wall and detecting bleeding or
polyps have been presented [13–17]. They have been proven to be effective in diagnostic
fields. Moreover, due to a long reading time of SBCE, clinicians expect the automated lesion
detection algorithms to be a complementary tool that can shorten the reading time.

For the AI-based automated reading of SBCE, it is important that the small bowel is
preceded by automated classification as a preprocessing step. Furthermore, even if the
AI algorithms are not directly developed for automated reading, it is possible to reduce
the reading time for gastric transition time out of the total reading time by automated
small bowel detection. Because (i) the capsule endoscope moves depending on gravity
and gut peristalsis, and (ii) the pylorus and ileocecal valve, which are anatomic landmarks,
are sphincter-like structures, it is rare for the capsule to regurgitate. Understanding these
characteristics of SBCE, automatic anatomical distinction can be performed only for the
small bowel by detecting the two transition points for stomach to small bowel and small
bowel to colon. The most related work using this step is [17], which classifies single frame
images into three organs including stomach, small bowel, and colon. However, this method
cannot yield the organ transition points between the three organs.

Consequently, in this study, we proposed the automated organ transition point de-
tection algorithm using a convolutional neural network (CNN) with temporal filtering.
First, the CNN classifies each image taken from gastrointestinal tracts into the three classes
including stomach, small bowel, and colon. Second, the temporal filter remarkably reduces
the number of misclassified frames from the CNN by correcting each class probability of
a frame using the long-term probabilities yielded from the adjacent frames. Finally, by
thresholding the temporally filtered probabilities for the “small bowel” class, the frames
from the small bowel, which are mapped to value 1, and the frames from the other two
organs, which are mapped to value 0, are differentiated. Since organs were filmed in order,
if the small bowel can be accurately classified, the stomach and colon are also classified.
In this way, the proposed algorithm detects the two transition points for stomach to small
bowel and small bowel to colon with long-term dependencies in WCE frames.

2. Materials and Methods
2.1. Study Design
2.1.1. Data Acquisition

Two hundred and sixty WCE (MiroCam MC1000W and MC1200, Intromedic Co., Ltd.,
Seoul, Korea) cases performed at Dongguk University Ilsan Hospital between 2002 and
2022 were retrospectively acquired to be used for training and validation of the proposed
small bowel detection method. All WCE images were extracted in JPEG format with matrix
size of 320 × 320 and 3 fps using MiroView 4.0 (Intromedic Co., Ltd., Seoul, Korea). Cases
with adult patients (>20 years) were included in this study. Cases in which the capsule
endoscope did not pass into the colon and cases in which organs could not be visually
distinguished were excluded. Our study was conducted with the approval of Institutional
Review Board of Dongguk University Ilsan Hospital (DUIH 2022-01-032-001).

2.1.2. Data Preparation

Two gastroenterologists specializing in capsule endoscopy (Oh DJ and Lim YJ from
Dongguk University Ilsan Hospital) independently performed image labeling for organ
classification. They read the whole images from each WCE case manually and marked
them as stomach, small bowel, and colon, and cross-checked with each other. The 200
labeled case datasets were then classified into training (140 cases, 70%), validation (20 cases,
10%), and test (40 cases, 20%) set. The training set consisted of 1,572,274, 8,721,126, and
7,809,614 frames for stomach, small intestine, and colon, respectively. The validation set
consisted of 136,266, 971,231, and 883,745 frames for stomach, small intestine, and colon,
respectively. The test set consisted of 278,455, 2,046,571, and 1,541,448 frames for stomach,
small intestine, and colon, respectively. The whole process is shown in Figure 1.
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Figure 1. Flowchart of the study design.

2.2. Proposed Organ Classification Method
2.2.1. Organ Classification

Using the ResNet50 model [18] as a backbone network, the model is trained to classify
three-class organs including the stomach, small bowel, and colon. This classification is a
preprocessing step for detecting the start frame and the end frame of the small intestine. To
adjust class imbalance among different organs, data augmentation or downsampling was
conducted for each organ class so that the ratio of stomach, small bowel, and colon images
is approximately 1:2:1. For cases from normal and abnormal patients, stomach images
were augmented by two-fold using the horizontal and vertical flip. For cases from normal
patients, small bowel and colon images were downsampled with the ratio of 2/3 and
1/3, respectively. For cases from abnormal patients, small bowel and colon images were
downsampled with the ratio of 3/4 and 3/7, respectively. The number of the final training
set images was 12,326,713, consisting of 3,144,548, 6,192,886, and 2,989,729 images for the
stomach, small bowel, and colon, respectively. Our method was implemented in PyTorch
and our models were trained on an NVIDIA RTX A5000 D6 24GB GPU. Adam Optimizer
with a learning rate of 0.001 and cross entropy (CE) loss was used. Categorical classification
(i.e., softmax activation), the standard categorical CE loss, is given by the equation:

Lce = − 1
N

N

∑
n=1

C

∑
c=1

yn
c × log(hθ(xc, n)) (1)

where N is the number of training examples, C is the number of classes, yn
c is the target

label for training example n for class c, x is the input for training example c, and hθ is the
model with neural network weights θ.
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The batch size is set to 128, and 224 × 224 resizing is applied. We report the test results
extracted by the model that showed the best performance on the validation set.

2.2.2. Transition Frame Detection

At the inference time, given a WCE video, our goal is to find the two transition frames
for stomach to small bowel and small bowel to colon. First, the classification model (i.e.,
ResNet50) outputs probabilities of three classes (i.e., stomach, small bowel, and colon) for
each frame. We only use the probability from “small bowel” to apply our temporal filtering
method. The WCE video is fed to the pre-trained CNN as an input in chronological order
to obtain the small bowel probability values, and then the temporal filtering is applied.
The results of Savitzky–Golay filtering [19] and median filtering are added and halved,
then values greater than 1 are mapped to 1, and values less than 0 are mapped to 0. If the
maximum value is less than 1, values are divided by the maximum value. The filtering
range is set to 1,001 frames for each filter. After filtering, the small bowel and the other two
organs are separated by the threshold value of 0.87, which is obtained empirically. Then,
it is determined that the minimum frame index being predicted as the small bowel is the
beginning of the small bowel region, and the maximum frame index is determined as the
end of the small bowel region. Finally, since the front and rear regions of the small bowel
are stomach and colon regions, respectively, the three organs are classified through the
proposed method. The whole process of the proposed method is shown in Figure 2. The
code will be available on our GitHub page (https://github.com/MAILAB-yonsei, accessed
on 22 June 2022).
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2.2.3. Relevance-CAM

To analyze where the trained 2D CNN model (i.e., ResNet50) focused on endoscopic
images to classify organs, a relevance-weighted class activation map (Relevance-CAM) [20],
which is an explainable model [20,21], was applied to ResNet50. The Relevance-CAM was
extracted from the feature maps (i.e., the output of the convolutional and pooling layers) for
the predicted class and then resized to the WCE image size (i.e., 320 × 320) and overlapped
onto the original WCE image.

2.2.4. Metrics

The performance of the proposed method is quantitatively analyzed in terms of
accuracy, precision, recall, and f1 score.

Precision is the fraction of relevant instances among the retrieved instances, while
recall is the fraction of relevant instances that were retrieved. Both precision and recall are
therefore based on relevance, and f1-score is the harmonic mean of precision and recall.

https://github.com/MAILAB-yonsei
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3. Results

In Figure 3, Relevance-CAM results for representative organ images are shown. We
were able to verify that the organ classifying process performed by the trained model
was similar to those of endoscopists using the Relevance-CAM in which regions with
clinical significance were indicated by the red color. We found that the model tends to
classify organs through structural information such as wrinkles, the areas around dark
areas captured along the track direction, submucosal vascular patterns, residual materials,
and bubbles. In particular, bubble areas tend to be darkly weighted in small bowel images
whereas they are brightly weighted in colon images because residual materials and bubbles
frequently appear in the colon.
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Figure 3. Relevance-CAM results from three organs. (WCE images taken by MiroCam MC1200 and
processed by MiroView 4.0—http://www.intromedic.com/eng/main, accessed on 22 June 2022).
The jet color maps show class activation maps in which the reddish and bluish colors refers to 1 and
0, respectively.

Table 1 compares the performances of Zou’s method [17], ResNet50, TeCNO [22], MS-
TCN++ [23], and our proposed method. All metrics listed in Table 1 show the classification
performances for the stomach, small bowel, and colon. While Zou’s method and ResNet50
are methods that utilize only single frame information, TeCNO and MS-TCN++ perform
the classification using additional video information. Although the ResNet50 model is
used for three-class classification before temporal filtering, the process changes to binary
classification for small bowel detection (i.e., whether an image is from the small bowel or
not) after the filtering. Nevertheless, since we know that the stomach and colon exist in
front and rear of the small bowel, respectively, it is possible to determine the location of the
small bowel using the three-class classification model.

As a classification model, ResNet50 shows better performance compared to Zou's
method. In addition, when the temporal filter is applied, the accuracy and other classifica-
tion performance metrics clearly become higher. ResNet50 with the temporal filter shows
almost perfect classification performance in the other metrics. Even the proposed method
shows higher performance than the method that utilizes video information.

Table 1. Quantitative results for organ classification. The proposed method (i.e., ResNet50 + temporal
filter) yields the best performance.

Methods Accuracy Precision Recall F1 Score

Zou’s 0.751 0.689 0.768 0.712
ResNet50 0.880 0.876 0.872 0.872
TeCNO 0.900 0.920 0.873 0.892

MS-TCN++ 0.937 0.941 0.896 0.869

Proposed 0.998 0.998 0.998 0.998
The highest values for each metric are bold-faced.

Figure 4 shows the results of the proposed method for six cases randomly chosen
from the test set. Through the entire process, the transition points were obtained, and the
frame errors compared with the labeled marks were calculated. The transition time errors

http://www.intromedic.com/eng/main
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are shown in the bottom graph for each case. We found that the temporal filtering is very
robust to misclassified images. As shown in all cases in Figure 4, after temporal filtering,
the misclassified images (i.e., of which probability is close to 0 for small bowel or close to 1
for the other organs) are dramatically reduced. In particular, the second and third cases
in Figure 4 show lots of misclassified frames in the colon region. Therefore, the filtered
probabilities in the colon region are also relatively high (i.e., larger than 0.5). However, it
was possible to differentiate the images to the small bowel or colon by proper thresholding.
We set the threshold value to 0.87, which showed the best performance for the validation
dataset. It can be interpreted that the temporal filter corrects the wrong classification using the
probabilities that can be considered as features of length one estimated from adjacent frames.

Time errors for each case can be calculated with the frame errors and fps (which is
three for all test cases) for each case. Figure 5 shows the time errors calculated from the
two transition points for stomach to small bowel and small bowel to colon. The time error
for the transition between stomach and small bowel is averagely 38.81 s with a standard
deviation of 25.8 s, and the time error for the transition between small bowel and colon is
averagely 32.04 s with a standard deviation of 19.1 s. For the 40 test cases, there were only
9 cases where the transition time error was greater than 1 minute. Moreover, all transition
time errors were less than 2 min. The results for each case are shown in Table S1.

1 
 

 

Figure 4. Qualitative results of the proposed small bowel detection method from six cases. Please
refer to the supplementary material to see the results from all test cases.
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4. Discussion

The proposed small bowel detection method for WCE was developed based on the
clinician’s marked frames for the two organ transition points, including stomach to small
bowel and small bowel to colon boundary frames. The proposed method comprises a
deep learning model (i.e., ResNet) followed by a temporal filter (i.e., the combination of a
median filter and a Savitzky–Golay filter). For training and testing, a total of approximately
24,000,000 WCE images from 200 cases were used. Testing of the algorithm resulted in a
high accuracy of 99.8% for the three-class organ classification and the average time error
of 35.4 s for the organ transition frame prediction. Through this, we confirmed agreement
between organ transition frames before and after small bowel predicted by the proposed
method and those marked by WCE readers.

The threshold value of 0.87 for filtered probability values shows the best accuracy
and robustness for the validation dataset. The reason why the value was set to higher
than 0.5 is that, in specific cases, especially in the colon region, there are many images
misclassified as small bowel, so the filtered probability values are higher than 0.5 for those
colon images (e.g., Figure 4). In this case, when a threshold of 0.5 was chosen, the accuracy
was considerably reduced because of the misclassified frames in the colon region. On the
other hand, since the number of frames in the small bowel region that were misclassified by
ResNet50 was relatively small, the filtered probability values were close to one as shown in
Figure 4. Therefore, even when a threshold value of 0.87, which is close to one, was set,
there was no case in which the small bowel images were misclassified in all validation or
test sets.

As there is no standard algorithm for the classification of digestive organs, it can be
difficult to judge the importance and performance of the developed algorithm. Therefore,
it is critical to compare the algorithm with the clinically classified organs that are already in
use by clinicians. We focused on how close the algorithm can predict the organ transition
times compared to those marked by WCE readers. Furthermore, since there was no public
WCE dataset for the corresponding organ classification task, data collection and annotation
were also performed at our local institution (i.e., Dongguk University Ilsan Hospital).

The use of the dataset obtained from only one vendor (i.e., Intromedic Co., Ltd., Seoul,
Korea) is an experimental limitation of this study. Moreover, because the number of cases
used in this study (i.e., 260 cases) is relatively small, more extensive studies are required
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to validate the clinical usefulness of the proposed method. Another limitation to consider
is that WCE cases were acquired for a long time span (i.e., 20 years) and it is uncertain
how this will affect the generalizability of the proposed AI model and results. In our future
work, datasets from other vendors and multi-center data will be obtained so that multi-center
studies or meta-analysis can be conducted to validate the generalizability and usefulness of the
proposed method. Through this, the clinical validity would be more thoroughly confirmed.

Various algorithms, such as automated disease detection [6,24], a frame reduction
system [25,26], cleansing score determination [27], and 3D reconstruction for the small
bowel [28], have been developed to reduce the WCE reading time or increase convenience
of reading. It is expected that these technical advances will greatly reduce the clinician's
reading time and fully automate the clinician's diagnosis process, but there are several
challenges, one of which is that the small bowel region must be extracted before those
algorithms are applied. This is because most of the developed WCE disease detection
algorithms are focused on the small bowel and are learned with only small bowel data, so
it is difficult to apply those algorithms to full-length WCE videos that include frames from
other organs. Therefore, only small bowel frames from an input full-length WCE video
must be extracted first, so that the developed algorithms can be automatically applied. In
conclusion, our small bowel detection method can be seen as a pre-processing step for the
algorithms targeting small bowel. It is expected that it will be possible to fully automate
the detection and analysis of small bowel diseases for WCE by combining the proposed
method with the aforementioned automated algorithms.

Performance can also be improved by extending the proposed method to the temporal
segmentation method that can utilize video information [23]. It is also expected to be used
in cases such as surgical video phase recognition [22,29].

5. Conclusions

In this study, we propose a small bowel detection method for WCE using a CNN
with the temporal filtering method. The time errors of organ transition were averagely
30 seconds and all errors were less than two minutes. Consequently, we demonstrate that
the small bowel regions detected by the proposed method were highly correlated with
clinical organ transitions marked by clinicians.

For many clinical cases, it is hard to specify where the transition between organs is
because of various factors including very dark regions due to bleeding or melena, unde-
tectable mucosa due to residual materials in the digestive organs, etc. Nevertheless, our
method enables accurate small bowel localization in most WCE cases including abnormal
cases such as bleeding, inflammatory, and vascular diseases.
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