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Abstract 
Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of 
inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are 
responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast 
formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically 
diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may 
play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid 
growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified 
pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. 
Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout 
mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated 
human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-
derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian 
mutation showed no difference in TNF-A mRNA induction by LPS or TNF-A compared to WT BMMs. Osteoclast formation induced by RANKL 
was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the 
fact that mice are not always an ideal model for studying rare craniofacial bone disorders. 
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Lay Summary 
Cherubism is a rare craniofacial disorder in children that causes destructive expansion of the jawbone. Currently, the only known gene responsible 
for cherubism is SH3 domain-binding protein 2 (SH3BP2). We hypothesized that there may be other genes associated with cherubism. We used 
whole exome sequencing, a genomic technology that sequences all of the protein-coding regions of genes in the genome, and identified 
homozygous loss-of-function variants in the OGFRL1 gene in 2 independent autosomal recessive cherubism families. However, mice that have 
no functional OGFRL1 protein did not exhibit cherubism-like features. The results indicate that the effects of OGFRL1 loss-of-function in humans 
are distinct from those in mice. This highlights the fact that mice are not always the best model for studying rare craniofacial bone disorders. 

Graphical Abstract 

Introduction 
Cherubism (OMIM 118400) is a rare jawbone dysplasia in 
children. It is characterized by bilateral destructive expansion 
of the mandible due to the growth of fibrous tissue containing 
large numbers of multinucleated osteoclasts, resulting in 
the typical cherub angel-like facial swelling.1,2 The jaw 
swelling often resolves after puberty by a mechanism that 
may involve the innate immune response.3,4 The rapid bone 
degradation leads to the formation of multiple cysts in 
the mandible and maxilla. We have previously discovered 
that heterozygous missense mutations in the tankyrase-
binding motif (RSPPDG) of the adaptor protein SH3 domain-
binding protein 2 (SH3BP2) are responsible for the most 

cases of familial and sporadic cherubism.5,6 The discovery 
of cherubism mutations in SH3BP2 and the analysis of 
knock-in mouse models of cherubism revealed critical roles 
of SH3BP2-regulated signaling pathways in macrophage 
inflammation, osteoclastogenesis, and the pathogenesis of 
autoimmune arthritis and periodontitis, beyond its role in 
cherubism.3,4,7-15 Thus, cherubism was an excellent example 
for how the study of rare diseases can provide insights into 
the mechanism of common diseases. We have previously 
identified individuals with cherubism-like jawbone dysplasia 
but no mutations in SH3BP2 in 2 consanguineous families 
from Syria and India. The objective of this study was to 
identify a second gene responsible for cherubism by examining
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the 2 families and to determine the function of the gene in jaw 
homeostasis. 

Here, we show that whole exome sequencing (WES) 
combined with homozygosity mapping identified previously 
unknown homozygous loss-of-function mutations in the gene 
encoding opioid growth factor receptor like 1 (OGFRL1). 
OGFRL1 has homology with the opioid growth factor 
receptor (OGFR) and is a potential orphan receptor with 
signaling receptor activity and largely unknown function. 
Next, we investigated whether OGFRL1 deficiency recapitu-
lates cherubism-like phenotypes in mice by creating OGFRL1 
knockout mice. However, these mice failed to exhibit the facial 
swelling, jawbone erosion, jawbone loss, and development of 
macrophage-rich inflammatory infiltrates, all of which are 
characteristics of homozygous SH3BP2-mutant cherubism 
mice. CRISPR/Cas9 knock-in mice carrying the homozygous 
mutation equivalent to that found in the Syrian family also 
failed to exhibit these phenotypes. These results suggest 
that OGFRL1 plays a specific role in the development of 
fibrous dysplasia of the jawbone in humans, but a weaker 
role in mice. Identification of further OGFRL1 mutations 
in cherubism patients and clinical characterization of the 
patients will be important to determine the function of 
OGFRL1 in craniofacial development and integrity and oral 
immune responses. 

Materials and methods 
Cherubism families 
Family members were recruited according to the protocols 
approved by the Institutional Review Board of University of 
Connecticut Health. Informed consent was obtained from all 
study participants by their treating physicians according to the 
ethics guidelines of their institutions. All genetic and experi-
mental methods were carried out in accordance with relevant 
guidelines and regulations. Affected individuals underwent 
thorough clinical diagnosis. 

Exome sequencing, homozygosity mapping, and 
variant filtering 
Exome sequencing (NimbleGen SeqCap EZ Exome 64 Mb 
capture kit, 200X coverage) was performed using genomic 
DNA isolated from peripheral lymphocytes of affected 
individuals as previously described.16 SNP genotyping was 
performed using the Genome-Wide Human SNP Array 6.0 
(Affymetrix). We used homozygosity mapping to obtain the 
identity by descent with a resolution of 3 centimorgans.17 

Candidate variants were filtered based on open databases 
(dbSNP build 135, the 1000 Genomes Project), genomic 
positions, and zygosities. Variants observed in the in-house 
database were also excluded. Exonic variants localized 
in homozygosity regions were selected as candidates for 
cherubism mutations, and the pathogenicity of exonic variants 
was evaluated by Franklin or Varsome in combination with 
PolyPhen-2, Mutation Taster, and SIFT. Candidate variants 
were confirmed by Sanger sequencing (ABI 3130; Thermo 
Fisher Scientific). 

Mice 
All animal experiments were conducted under the animal 
protocol approved by the IACUC of Indiana University School 
of Medicine. Ogfrl1-floxed (Ogfrl1fl/fl) mice were generated 
by inGenious Targeting Laboratory. The targeting construct 

harboring Ogfrl1 exon 2 and 3 flanked by LoxP sites and the 
neomycin-resistance cassette flanked by flippase recombinase 
target (FRT) sites was electroporated to hybrid (C57BL/6 
× 129/SvEv) embryonic stem (ES) cells (Supplementary 
Figure S1). Electroporated ES cells were then cultured in 
medium containing G418 for positive selection. Targeted 
ES cell clones were identified by PCR and confirmed by 
the Southern blot, and one of the ES cell clones was used 
for generating chimera mice. Chimera mice were bred 
with flippase (FLP) recombinase transgenic mice for in 
vivo excision of the neomycin cassette. Mice carrying the 
Ogfrl1-floxed allele were crossed with EIIa-Cre mice to 
obtain heterozygous OGFRL1-deficient mice (Ogfrl1+/−), 
then backcrossed to C57BL/6 J mice for at least 7 times 
(N = 7). Heterozygous Ogfrl1+/− male and female mice 
were crossed to produce homozygous OGFRL1-deficient 
(Ogfrl1−/−) and control Ogfrl1+/+ mice. Ogfrl1Del-c/+ mice 
on the C57BL/6JN background that have the OGFRL1 
mutation equivalent to that identified in the Syrian family 
were created at the Indiana University Genome Editing 
Center by using the CRISPR-Cas9 system, in which the guide 
RNA (CTCCGAATCGGTCTGCCAGG) and homology-
directed repair template (TCAATGGGCAACCTGCTCG-
GCGGGGTCAGCTTCCGCGAGCCCACCACCGTGGAG-
GACTGCGACAGTACTTGGCAGACGATTCGGAGCCCG 
AGCCCGAGCAGCCGGGGCCGGCAGGCGGTGGCGAG 
GGCCAGCAGCACGACGAGCCGGAGCAGCCCAAGCA, 
underline = silent mutations for ScaI digestion) were used. 
Heterozygous Ogfrl1Del-c/+ male and female mice back-
crossed to C57BL/6 J mice for 2 generations were crossed 
to obtain homozygous Ogfrl1Del-c/Del-c and control Ogfrl1+/+ 

mice. All mice were bred and housed under specific-pathogen-
free (SPF) conditions. 

MicroCT analysis 
Jawbone tissues were fixed with 4% paraformaldehyde for 
overnight and soaked in 70% ethanol before scanning with 
the Skyscan 1176 (Bruker). The following conditions were 
used: 50 kV, 8.43 μm pixel size, 0.3-degree rotation step, 
and 926-ms exposure time. Scanned data were reconstructed 
with the NRecon software (Bruker) with the 0 to 0.12 
dynamic range for jawbones and 0 to 0.18 dynamic range 
for calvariae. The datasets were aligned with the DataViewer 
(Bruker). Volumetric and linear analyses were performed for 
jawbones. For volumetric analysis, alveolar bone between 2 
buccal roots underneath the maxillary second molar, which 
is composed of 16 slices (approximately 140-μm thickness), 
was segmented as the ROI, and the bone volume (BV) was 
measured by CT-Analyzer (Bruker) with a threshold value 
of 60. Jawbones with tooth root fusion in the second molar 
were excluded from the analysis.18 For linear analysis, the 
total distance between cementoenamel junction and alveolar 
bone crest (CEJ-ABC distance) underneath the 4 cusps of the 
second molar was measured. For calvarial bone analysis, a 
threshold value of 48 was used. Calvarial bone damage was 
assessed with BS/TV (surface roughness) and BV/TV as we 
have previously performed.19 

Ligature-induced periodontitis 
The maxillary left second molar of 10-wk-old male and female 
mice was ligated with 5-0 silk sutures (Ethicon) for 5 days. The 
maxillary right second molar was left unligated to serve as a 
control of alveolar bone analysis. Male and female mice were 
analyzed separately. To calculate the BV reduction rate (bone

https://academic.oup.com/jbmrplus/article-lookup/doi/10.1093/jbmrpl/ziae050#supplementary-data
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loss %) caused by ligature placement, the following formula 
was used: {(BV of unligated side − BV of ligated side)/BV of 
unligated side} × 100. 

Histology and histomorphometry of 
tartrate-resistant acid phosphatase-positive 
osteoclasts 
After μCT analysis, jawbone tissues were decalcified with 
EDTA (0.5 M, pH =7.2) and processed with graded ethanol 
for dehydration, xylene for clearing, and hot liquid paraffin 
for infiltration. The tissues were then embedded in paraffin. 
The paraffin blocks were sectioned at 6 μm thickness. Sagittal 
sections and coronal sections were collected on positive-
charged slides, followed by H&E and tartrate-resistant acid 
phosphatase (TRAP) staining. For histomorphometric analy-
sis of osteoclasts, the number of osteoclasts, osteoclast surface, 
and bone surface was measured on TRAP-stained sections 
of alveolar bone between 2 buccal roots of the maxillary 
second molar using the ImageJ software (NIH). Results from 
2 sections  separated by 20 to 50  μm were averaged. Bone 
samples from unligated mice or the unligated right side were 
used as controls. Measurements were performed by personnel 
blinded to sample information. 

Dual-energy X-ray absorptiometry 
Isoflurane-anesthetized mice were scanned on a PIXImus II 
densitometer (GE Lunar) at 4, 8, 12, 16, and 24 wk of age. 
Lean mass, fat mass, bone area, BMC, and areal BMD were 
measured for the whole body (excluding the skull and tail), 
LS (L3- L5), and right lower limb (distal to the acetabulum) 
using the Lunar ROI tools. 

Calvarial injection with LPS or TNF-α 
Ultra-pure LPS from Escherichia coli (0111:B4) (100 μg in  
20 μL PBS/injection, Invivogen) was injected twice in an 
interval of 48 h, then analyzed at 48 h after the last injection. 
Mouse recombinant TNF-α (1 μg in 20  μL PBS/injection, 
PeproTech) was injected daily for 5 times, then analyzed at 
24 h after the last injection. For vehicle controls, mice received 
PBS (20 μL/injection). 

Bone marrow-derived M-CSF-dependent 
macrophage culture 
BM cells from tibiae and femurs were collected from 7- to 
8-wk-old mice. Red blood cell-free BM cells were incubated 
with α-Minimum Essential Medium (MEM) containing 10% 
FBS and penicillin/streptomycin for 3 h on Petri dishes. Non-
adherent BM cells were seeded onto 6-well plates (5.0 × 105 

cells/well) and cultured with M-CSF (25 ng/mL, PeproTech) 
for 4 days to expand bone marrow-derived M-CSF-dependent 
macrophages (BMMs). Subsequently, BMMs were cultured 
without M-CSF for 4 h, then stimulated with E. coli LPS 
(Invivogen) or mouse recombinant TNF-α (PeproTech). 

RNA-seq analysis of BMMs 
BMMs isolated from tibia and femur of Ogfrl1−/− and litter-
mate control Ogfrl1+/+ mice were lysed to isolate total RNA. 
RNA-seq analysis was conducted at the Indiana University 
Center of Medical Genomics. Sequence data were mapped 
with the RNA-seq aligner STAR. Differentially expressed 
genes (DEGs) were analyzed using the edgeR software. 

Single-cell RNA-seq analysis of jawbone cells and 
BM cells 
Single-cell RNA-seq experiment was conducted at the Indi-
ana University Center of Medical Genomics. Maxillae and 
mandibles were obtained from 8- to 10-wk-old C57BL/6 J 
male WT mice. After the removal of incisors and molars, the 
remaining jawbone tissues were cut in small pieces (approx-
imately 2 × 2 mm in size), then serially digested with type I 
collagenase (250 U/mL, Worthington Biochemical) in α-MEM 
and EDTA (5 mM, pH = 7.4, ACROS Organics) in Ca- and 
Mg-free Hanks’ Balanced Salt Solution (HBSS) as previously 
described.19 Each digestion step was performed for 30 min 
under 170 rpm shaking in a CO2 incubator (5% at 37◦C). 
Cells obtained from the second to the ninth digestion steps 
were pooled and cultured on dishes coated with type I collagen 
for 48 ho. Non-adherent cells were removed and remaining 
adherent cells were used as jawbone cells. 

BM cells were flushed out from tibiae and femurs of 10-
wk-old Ogfrl1−/− and Ogfrl1+/+ mice using HBSS, then 
treated with RBC lysis buffer (Invitrogen) for 4 min to remove 
red blood cells. Cell suspensions were further treated with 
histopaque 1083 (Sigma-Aldrich) to minimize the contami-
nation with dead cells. About 20 000 cells were loaded on a 
multiple-channel micro-fluidics chip of the Chromium Single 
Cell Instrument (10X Genomics) with a targeted cell recov-
ery of 10 000. Single cell gel beads in emulsion containing 
barcoded oligonucleotides and reverse transcriptase reagents 
were generated with the v3.1 Next GEM Single Cell 3′ reagent 
kit (10X Genomics). Following cell capture and cell lysis, 
cDNA was synthesized and amplified. An Illumina sequencing 
library was then prepared with the amplified cDNA. The 
resulting library was sequenced on the Illumina NovaSeq 
6000. 150 bp including cell barcode and unique molecular 
identifier (UMI) sequences and 100 bp RNA reads were 
sequenced. Cell Ranger 5.0.1 (10X Genomics) was utilized to 
process the raw sequence data. Briefly, cellranger mkfastq was 
implemented to demultiplex raw base sequence calls generated 
from the Illumina sequencer into sample-specific FASTQ files. 
The FASTQ files were then aligned to the mouse reference 
genome mm10 with the STAR aligner. The aligned reads were 
traced back to individual cells and the gene expression level of 
individual genes was quantified based on the number of UMIs 
detected in each cell. The filtered feature-cell barcode matrices 
generated by CellRanger were used for further analysis. The R 
package SoupX version 1.5.2 was used to remove the ambient 
RNA from the data. The R package Seurat version 4.0 was 
used for analyses. 

Osteoclast differentiation assay 
Non-adherent BM cells were cultured on Petri dishes with M-
CSF (25 ng/mL) for 3 days for differentiation into BMMs. 
BMMs were harvested and cultured on 48-well plates 
(2.5 × 104 cells/well) and further stimulated with M-CSF 
(25 ng/mL) and RANKL (50 ng/mL; PeproTech) for 3 days. 
Osteoclasts were visualized with TRAP staining. TRAP-
positive cells with more than 3 nuclei were counted by the 
OC_Finder.20 

Osteoclast resorption assay 
BMMs were seeded on Osteo assay plates (Corning) at a 
density of 8.3 × 103 cells/well, and further stimulated with M-
CSF (25 ng/mL) and RANKL (50 ng/mL) for 7 days. After
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removing cells with 10% bleach, non-resorbed areas were 
identified by von Kossa staining. Resorbed area (%) per well 
was measured by the ImageJ software (NIH). 

Serum TNF-α 
Serum TNF-α levels were measured by Mouse TNF-A DuoSet 
ELISA kit (R&D Systems). Sera were separated from blood 
using vacutainer collection tubes (BD) and stored at –80◦C 
until use. 

qPCR analysis 
cDNAs were synthesized from 500 ng of total RNA using 
a High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems). PowerUP SYBR Green Master Mix (Applied 
Biosystems) was used for the qPCR reaction in the QuantStu-
dio 3 (Applied Biosystems). Gene expression levels were cal-
culated using the relative standard curve method. Gapdh 
was used as an internal control for normalizing target gene 
expression. Primer sequences are listed in figure legends of 
Supplementary Figures. 

Statistical analysis 
Student’s t-test or one-way ANOVA followed by Tukey– 
Kramer post hoc test were used to compare groups. P < .05 
was considered as statistically significant. Males and females 
were analyzed separately. 

Results 
Identification of homozygous loss-of-function 
OGFRL1 mutations in autosomal recessive 
cherubism families 
We have previously reported that there are patients diagnosed 
with cherubism who do not have mutations in SH3BP2, 
suggesting that a second gene responsible for cherubism may 
exist.5 We had identified a consanguineous family affected 
with fibrous dysplasia of the jaw diagnosed with cherubism 
without mutations in SH3BP2 from Syria. WES with 200 X 
coverage was performed using DNA samples isolated from 
2 affected individuals in the family (Figure 1A,  #6 and 7 in  
the pedigree). We worked with the hypothesis that cherubism 
in this consanguineous family is inherited as an autosomal 
recessive trait and that homozygous mutations located within 
the identical-by-descent regions of the genome are responsi-
ble for cherubism in this family. We searched for homozy-
gous DNA variants shared by the 2 affected individuals and 
identified 6 exonic DNA variants on autosomal chromo-
somes (Supplementary Table S1A). To genetically exclude 
genes that are not linked to cherubism, we chose a homozygos-
ity mapping approach and identified 4 homozygous genomic 
regions that are common in the 2 affected individuals using 
human genome assembly GRCh37 between: (1) rs838730 and 
rs4853963 on chromosome 2, (2) rs9453014 and rs16873343 
on chromosome 6, (3) rs1957923 and rs12880358 on chro-
mosome 14, and (4) rs6085399 and rs4815533 on chro-
mosome 20 (Supplementary Table S1B). Three homozygous 
variants in the COL6A3 (coding collagen type VI alpha 3 
chain on chromosome 2), OGFRL1 (coding OGFRL1 on 
chromosome 6), and SETD3 (coding SET domain containing 
3, actin N3(tau)-histidine methyltransferase on chromosome 
14) were located within these homozygous regions. Strik-
ingly, only the OGFRL1 variant, which deletes a cytosine in 
exon 1 of the gene (NM_024576.5:c.75del, hereafter referred 

as c.75delC), was apparently pathogenic and definitely dis-
rupted the OGFRL1 protein structure due to a frameshift 
(NP_078852.3:p.(Asp26ThrfsTer93)), resulting in the lack of 
the OGFR conserved domain (pfam04664, Figure 1B). Fur-
thermore, the OGFRL1 variant was the only novel variant 
that is not reported in the Genome Aggregation Database 
(gnomAD v4.0.0, https://gnomad.broadinstitute.org). Sanger 
sequencing confirmed the c.75delC homozygous mutation 
only in affected individuals, but not in unaffected members of 
the family (Figure 1A and C). We also searched for common 
compound heterozygous variants in the 2 affected individuals 
and found that DTX3, KMT2B, and SCAF1 variants are likely 
to be pathogenic (Supplementary Table S1C). 

Next, WES analysis was performed on an affected 
individual in another consanguineous cherubism family 
from India (Figure 1D). We looked for homozygous and 
compound heterozygous gene variants that are predicted 
to be likely pathogenic and carefully examined whether 
these variants exist within the cherubism candidate genes 
identified in the Syrian family (Supplementary Table S1D 
and E). Notably, we identified OGFRL1 as the only gene that 
overlapped between the candidate genes from the 2 cherubism 
families. The homozygous cytosine-to-thymine substitution 
(NM_024576.5:c.337C > T, hereafter referred as c.337C > T) 
in exon 3 of the OGFRL1 resulted in the generation 
of a premature stop codon (NP_078852.3:p.(Arg113Ter)) 
(Figure 1E). The affected individual in the Indian family 
did not have homozygous variants in either COL6A3 or 
SETD3, nor did he have compound heterozygous variants 
in either DTX3, KMT2B, or  SCAF1. Sanger sequencing 
confirmed the c.337C > T homozygous mutation in the 
affected individual (Figure 1F). Interestingly, the c.337C > T 
putative loss-of-function allelic variant was counted 24 times 
in 1 612 002 allele numbers in the gnomAD v4.0.0 dataset 
(rs140294148; 21 counts from non-Finnish European, 1 
count from African/African American, 1 count from South 
Asian, and 1 count from remaining populations). However, no 
homozygous individuals were reported in these populations 
(https://gnomad.broadinstitute.org/variant/6-71293548-C-
T?dataset=gnomad_r4). Taken together, our WES analysis 
identified loss-of-function mutations in OGFRL1 for 2 
genetically distinct families affected with autosomal recessive 
cherubism, strongly suggesting that OGFRL1 is a novel gene 
responsible for cherubism. 

Mice lacking OGFRL1 or carrying the mutation 
equivalent to that in the Syrian family do not 
recapitulate jaw dysplasia 
We have previously demonstrated that homozygous SH3BP2 
knock-in (P416R) cherubism mice (Sh3bp2KI/KI) recapitulate 
the major characteristics of cherubism, such as facial swelling 
with closed eyelids, jawbone destruction, alveolar bone loss, 
and increased osteoclastogenesis under SPF and even germ-
free conditions.3,7 To generate a new mouse model for cheru-
bism and investigate the role of OGFRL1 in vivo, we  created  
OGFRL1 knockout mice (Ogfrl1−/−) by deleting exon 2 and 3 
of the Ogfrl1 gene (Supplementary Figure S1). The homology 
of the consensus coding sequence between human OGFRL1 
(34482.1) and mouse Ogfrl1 (35526.1) is approximately 
82.0%. Likewise, OGFRL1 protein identity (human Q5TC84 
vs mouse Q8VE52) is approximately 79.1%, indicating a 
functional similarity of OGFRL1 between humans and mice. 
The Ogfrl1−/− mice were fertile and grew normally until
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Figure 1. Loss-of-function mutations in the OGFRL1 gene identified in families affected with an autosomal recessive form of jawbone dysplasia; 
(A) left: the pedigree of a Syrian family affected with autosomal recessive jawbone dysplasia diagnosed with cherubism; right: facial appearances of 
individuals #2, 6, and 7; (B) top: the gene structure of OGFRL1; a red arrow indicates the location of the homozygous NM_024576.5:c.75del mutation 
(hereafter referred as c.75delC); bottom left: location of the putative OGFR conserved domain in OGFRL1; bottom right: frameshifted OGFRL1 protein 
(NP_078852.3:p.(Asp26ThrfsTer93)) due to the c.75delC mutation; (C) electropherograms of partial sequences of exon 1 of OGFRL1 showing the 
normal wt sequence and the heterozygous (het) or homozygous (hom) c.75delC mutation; Sanger sequencing confirmed that #1, 2, 3, 4, 5, 8 are 
heterozygous for the mutation, #6 and 7 are homozygous for the mutation, #9 has the WT sequence; (D) left: the pedigree of an Indian family affected 
with autosomal recessive jawbone dysplasia diagnosed as cherubism; middle: facial appearance of an affected individual; right: an X-ray image of the 
jawbone of the affected individual; white arrows indicate the expansile mandible; (E) top: the location of the homozygous NM_024576.5:c.337C > T 
mutation (hereafter referred as c.337C > T) in OGFRL1 found in the Indian family (red arrow); this gene mutation generated a truncated OGFRL1 
protein (NP_078852.3:p.(Arg113Ter), hereafter referred as p.Arg113Ter) lacking the OGFR conserved domain; bottom: truncated OGFRL1 protein due to 
p.Arg113Ter mutation; (F) electropherograms of partial sequences of exon 3 of OGFRL1 showing the WT sequence and the homozygous c.337C > T 
mutation; (A, D) filled box = affected male; filled circle = affected female; open box = unaffected male; open circle = unaffected female; (B, E) filled 
boxes = exons coding for OGFRL1 protein; open boxes = 5’ and 3’ UTRs. 
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24 wk of age (Supplementary Figure S2). However, unlike 
Sh3bp2KI/KI mice, Ogfrl1−/− mice did not exhibit swollen 
face, alveolar bone loss, jawbone erosion, inflammatory infil-
trates in the gingiva, or inflammatory bone erosion on the 
calvaria (Figure 2A−F). In contrast to Sh3bp2KI/KI mice, there 
was no increase in serum TNF-A levels in Ogfrl1−/− mice (data 
not shown). 

We and others have shown that SH3BP2 cherubism muta-
tions increase macrophage inflammation and osteoclastogen-
esis.3,4,7,8,21 Since we found that Ogfrl1 is highly expressed 
in monocyte and macrophage populations (Supplementary 
Figure S3A and B), we hypothesized that the lack of OGFRL1 
may promote inflammatory responses of macrophages and 
osteoclast formation induced by RANKL in vitro. Unex-
pectedly, BMMs from Ogfrl1−/− mice showed Tnf upreg-
ulation induced by LPS or TNF-A at comparable levels to 
BMMs from Ogfrl1+/+ mice (Supplementary Figure S3C). 
There was no difference in the capacity to form TRAP-
positive (+) multinucleated cells in the presence of RANKL 
between Ogfrl1+/+ and Ogfrl1−/− BMMs (Supplementary 
Figure S3D). The mineral resorption capacity was compara-
ble between Ogfrl1+/+ and Ogfrl1−/− TRAP+ multinucle-
ated cells (Supplementary Figure S3E). In vivo, no  increase  
in osteoclast formation was observed on the alveolar BS 
(Figure 2G). Consistent with these observations, we were 
not able to identify DEGs between BMMs from Ogfrl1+/+ 

and Ogfrl1−/− mice (Supplementary Figure S3F). In addition, 
single-cell RNA-seq analysis of BM cells from Ogfrl1−/− mice 
did not identify cell clusters that were significantly different 
from Ogfrl1+/+ mice (Supplementary Figure S4A and B). The 
gene expression profile of each cluster was almost identical 
between Ogfrl1+/+ and Ogfrl1−/− BM cells (Supplementary 
Figure S4C). It is also known that the SH3BP2 cherubism 
mutation increases the susceptibility to alveolar bone loss 
caused by periodontitis.13 We challenged Ogfrl1−/− mice with 
ligature-induced periodontitis and found that loss-of-function 
of OGFRL1 did not increase the susceptibility to periodontitis 
(Figure 2H). Next, Ogfrl1−/− mice were challenged by calvar-
ial injection with LPS or TNF-A. We found a slight increase 
in bone erosion by LPS in Ogfrl1−/− mice compared to 
Ogfrl1+/+ mice only in males, but we did not find a significant 
difference by TNF-A injection for both sexes (Supplementary 
Figure S5A and B). 

Next, we hypothesized that the frameshifted OGFRL1 
gene product by the c.75delC mutation may have a dominant 
negative effect to causes cherubism. To test this hypothesis, a 
cytosine deletion in exon 1 of the Ogfrl1 gene, equivalent to 
the mutation discovered in the Syrian family, was introduced 
in mice using the CRISPR/Cas9 technology (Supplementary 
Figure S6A−D). However, none of the phenotypes observed 
in the SH3BP2 cherubism mice were recapitulated in the 
Ogfrl1Del-c/Del-c mice or in the Ogfrl1Del-c/Del-c BMMs 
(Figure 3A−H, Supplementary Figure S7A and B). Taken 
together, these data suggest that a simple loss-of-function 
of OGFRL1 does not lead to a cherubism-like phenotype in 
mice and that the cherubism-causing mechanism by OGFRL1 
mutations may be specific for humans. 

Discussion 
In 2001, SH3BP2 was identified as the first gene responsible 
for cherubism.5 In this study, approximately 80% of 

cherubism cases had mutations in SH3BP2. A more recent 
study also reported a cherubism case with no mutations in 
SH3BP2.22 Pathogenetically, all SH3BP2 mutations associated 
with cherubism were heterozygous missense mutations 
located in exon 9, which encodes the RSPPDG tankyrase-
binding motif.6,23 These mutations caused the escape 
of SH3BP2 protein from ubiquitin-mediated proteasome 
degradation, resulting in the upregulation of downstream 
signaling involving SYK in macrophages and osteoclasts.3,6 

During the current study, we found that 5 different pathogenic 
DNA variants in the tankyrase-binding motif that cause 
cherubism were counted in the gnomAD database (2 counts 
for R415Q and P418R, one count for P418T, P418L, and 
P418H. Total 7 counts in about 1 435 000 alleles), suggesting 
that cherubism is more prevalent than we thought. The 
creation and analysis of knock-in mouse models for cherubism 
and SH3BP2-deficient mice revealed that SH3BP2 is a critical 
regulator of myeloid cell activation, osteoclastogenesis, and 
the development of periodontitis, inflammatory arthritis, 
and autoimmune diseases.3,4,7-15 Thus, findings from the 
cherubism study exemplify the long-standing notion that the 
study of rare diseases often provides important insights into 
normal physiology and contributes to the understanding of 
mechanisms for more common diseases. 

The aim of this study was to discover a novel gene respon-
sible for cherubism and to demonstrate that this gene plays 
an important role in jawbone integrity and remodeling. To 
achieve this goal, we investigated 2 consanguineous families 
with cherubism without mutations in SH3BP2. WES analysis 
of affected individuals identified novel homozygous loss-of-
function mutations in the gene encoding OGFRL1, whose 
molecular functions and cellular roles are poorly understood. 
Homozygosity mapping of one of the families supported that 
OGFRL1 is the novel cherubism gene. OGFRL1 is a mem-
ber of a family of proteins that share the conserved OGFR 
domain. OGFRL1 shares 36.1% amino acid homology with 
OGFR. OGFR is known to be expressed in a variety of tissues 
and organs and is activated by the opioid peptide growth 
factor (OGF), which is chemically termed Met5-enkephalin, 
in corneal epithelial cells, endothelial cells, and epidermal 
keratinocytes,  as well as in T/B cells.24-31 The OGF-OGFR 
axis has been shown to regulate the in vivo functions of 
osteoblasts and osteocytes and to be involved in the in vitro 
differentiation of mesenchymal stem cells into osteoblasts and 
the proliferation of cancer cells.32-39 In contrast, Ogfrl1 is pre-
dominantly expressed in the brain, BM, and spleen.40 In the 
BM, myeloid lineage cells express higher levels of Ogfrl1,40 

which is supported by the single-cell analysis in our current 
study. At present, the only function known about OGFRL1 is 
its capacity to promote the hepatic cell regeneration in mice.40 

First, we explored the in vivo significance of OGFRL1 by 
generating both global OGFRL1-deficient mice and OGFRL1 
Syrian knock-in mutant mice. Based on the successful recapit-
ulation of key features of human cherubism in SH3BP2 P416R 
mice, we expected that these OGFRL1 mutant mice would 
exhibit facial swelling with abnormal jawbone resorption.7 

Unexpectedly, neither knockout nor knock-in lines showed 
any signs of cherubism-like facial appearance or jawbone 
erosion. Since we have previously shown that heterozygous 
SH3BP2 cherubism mice have increased susceptibility to 
inflammatory bone resorption induced by periodontitis and 
calvarial TNF-A injection,8,13 we challenged OGFRL1 loss-
of-function mice with these inflammatory inducers. However,
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Figure 2. OGFRL1 knockout mice fail to recapitulate human cherubism; (A) facial appearance of OGFRL1-deficient male mice at 12 wk old; (B) two-
dimensional microCT images of alveolar bone at the maxillary second molar; (C) microCT analysis of the alveolar bone underneath the maxillary second 
molar and the CEJ-ABC distance of the maxillary second molar; n = 11, 11, 14, 9, 11, 11, 14, 9, 11, 11, 14, 9 from left to right; (D) three-dimensional microCT 
images of the maxilla and 3 molars; (E) H&E staining images of the maxilla; (F) three-dimensional microCT images of the calvaria and H&E staining images 
of calvarial tissues; (G) TRAP staining of the alveolar bone underneath the maxillary second molar and histomorphometric analysis for osteoclasts; n = 5,  
5, 5, 7 from left to right for both N.Oc/BS and Oc.S/BS; (H) left: two-dimensional microCT images of the alveolar bone at the maxillary second molar after 
ligature placement; right: microCT analysis of BV underneath the maxillary second molar with or without ligature placement and the percentage of alveolar 
bone loss underneath the maxillary second molar after ligature placement; n = 5, 6, 5, 6, 5, 12, 5, 12, 5, 6, 5, 12 from left to right; (E, F, G) bar = 500 μm. 
∗P < .05 with Tukey–Kramer post hoc test; NS = not significant; data are presented with box and whisker plots. 
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Figure 3. OGFRL1 mice carrying a mutation equivalent to that in the Syrian family fail to recapitulate human cherubism; (A) facial appearance of OGFRL1 
knock-in male mice at 12 wk old; (B) two-dimensional microCT images of alveolar bone at the maxillary second molar; (C) microCT analysis of the alveolar 
bone underneath the maxillary second molar and the CEJ-ABC distance of the maxillary second molar; n = 8, 10, 9, 9, 9, 13, 11, 10, 9, 13, 11, 10 from left 
to right; (D) three-dimensional microCT images of the maxilla and three molars; (E) H&E staining images of the maxilla; (F) three-dimensional microCT 
images of the calvaria and H&E staining images of calvarial tissues; (G) TRAP staining of the alveolar bone underneath the maxillary second molar and 
histomorphometric analysis for osteoclasts; n = 8, 8, 8, 8 from left to right for both N.Oc/BS and Oc.S/BS; (H) left: two-dimensional microCT images of the 
alveolar bone at the maxillary second molar after ligature placement; right: microCT analysis of BV underneath the maxillary second molar with or without 
ligature placement and the percentage of alveolar bone loss underneath the maxillary second molar after ligature placement; n = 8, 10, 7, 9, 9, 9, 10, 9, 8, 
9, 8, 9 from left to right; (C, G, H) Del-c = Del-c/Del-c homozygote. (E, F, G) bar = 500 μm. ∗P < .05 with Tukey–Kramer post hoc test; NS = not significant; 
data are presented with box and whisker plots. 
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no significant increase in bone loss was observed. These 
data suggest that the loss-of-function effects of OGFRL1 in 
humans may be much greater and more impactful than in 
mice and that the pathogenesis of cherubism caused by loss-
of-function mutations of OGFRL1 is fundamentally different 
from that caused by gain-of-function mutations of SH3BP2. 
To investigate whether OGFRL1 has any genetic interactions 
with SH3BP2, we further generated Sh3bp2KI/+ mice on the 
Ogfrl1−/− background (Ogfrl1−/−;Sh3bp2KI/+). However, 
these compound mutants did not develop facial swelling or 
jawbone erosion (data not shown), suggesting that OGFRL1 
and SH3BP2 act independently to cause human cherubism. 

In agreement with observations suggesting differences in the 
effect of OGFRL1 between humans and mice, similar differ-
ences have been recognized between human cherubism and 
our SH3BP2 cherubism mice. Although heterozygous SH3BP2 
mutations are sufficient to cause autosomal dominant cheru-
bism in humans, homozygous SH3BP2 mutations are required 
to cause facial swelling with jawbone destruction in mice.3,4,7 

In addition, homozygous SH3BP2 cherubism mice develop 
much more severe systemic inflammatory lesions outside the 
craniofacial skeleton that have not been reported in human 
cherubism patients.3,7 In support of these facts, a recent 
study showed that the efficacy of imatinib, a BCR-ABL fusion 
protein inhibitor, differs between human and mouse cheru-
bism, suggesting that the key signaling mechanisms that cause 
human cherubism are not identical to those in mice.41,42 SYK 
has been shown to be a promising therapeutic target for cheru-
bism in our studies with SH3BP2 cherubism mice.3,43 Given 
the possible differences in cherubism pathogenesis between 
humans and mice, it may be conceivable that SYK inhibitor 
treatment for human cherubism may not be as effective as for 
cherubism in mice. 

We also investigated the role of OGFRL1 in macrophages 
based on the hypothesis that OGFRL1 and SH3BP2 mutations 
share some of the pathogenic pathways resulting in cheru-
bism. Since our previous studies showed that the SH3BP2 
cherubism mutation increased macrophage inflammation and 
RANKL-induced osteoclastogenesis, Ogfrl1−/− BMMs were 
stimulated with LPS, TNF-A, or RANKL. However, we found 
no evidence that OGFRL1 controls macrophage inflamma-
tion and osteoclastogenesis. Consistent with these results, 
no significant DEGs were identified by RNA-seq analysis of 
Ogfrl1−/− macrophages or single-cell RNA-seq analysis of 
Ogfrl1−/− BM cells compared to these Ogfrl1+/+ cells. These 
results suggest that the impact of OGFRL1 on macrophages 
and osteoclasts is not the same between human and mice. 
Further extensive investigations will be required to determine 
the function of OGFRL1 in human myeloid lineage cells 
compared to that in mouse myeloid lineage cells. 

The mouse is the most commonly used model organism 
in human disease research.44 In particular, knockout mouse 
models have been an invaluable resource for the study of rare 
diseases.45,46 However, despite being such a well-established 
model, the suitability and validity of the mouse for recapit-
ulating human disease have been controversial, for exam-
ple, in studies comparing human and mouse immune func-
tions and responses.47-50 Notably, according to a report, null 
mutations in human and mouse orthologs often result in 
different phenotypes, and more than 20% of human essential 
genes have nonessential orthologs in mice.51 Our investigation 
of OGFRL1 knockout and knock-in mice, which stemmed 
from the discovery of OGFRL1 loss-of-function mutations in 

cherubism families, supports the idea that studying human 
diseases using mouse models may not always lead to beneficial 
outcomes. Also, it suggests that OGFRL1 plays much more 
significant roles in humans than in mice. The discrepancies 
may be due to species-specific phenotypic thresholds, life 
spans, and living environments that involve different micro-
bial conditions. 

Despite our efforts to characterize Ogfrl1−/− and 
Ogfrl1Del-c/Del-c mice, the current study has limitations that 
should be addressed in future investigations. To conclude 
whether OGFRL1 loss-of-function mice recapitulate human 
cherubism and to determine the role of OGFRL1 in vivo, 
the use of other oral disease models52 or different genetic 
backgrounds other than C57BL/6 will be essential. Also, we 
cannot exclude the possibility of compensation for OGFRL1 
functions by other genes/proteins in mice. Genetically, the 
identification of additional cherubism patients carrying 
OGFRL1 mutations and the study of induced pluripotent 
stem (iPS) cells from these affected individuals or iPS cells 
introduced with OGFRFL1 loss-of-function mutations will be 
important to complement the current study. Although highly 
unlikely, it is also conceivable that our findings in OGFRL1 by 
WES are indeed coincidental and that other DNA variants in 
regulatory elements (eg, for SH3BP2 transcription), introns, 
or non-coding RNA genes contribute to the development 
of cherubism in these families. To explore whether loss-
of-function of OGFRL1 causes cherubism by upregulating 
SH3BP2 expression, investigation of SH3BP2 protein levels 
in patient tissue samples would be important. 

In conclusion, we discovered OGFRL1 loss-of-function 
mutations in 2 unrelated autosomal recessive cherubism fam-
ilies with different ethnic backgrounds. However, OGFRL1 
loss-of-function mice did not recapitulate the characteristic 
features of cherubism. Identification of additional cherubism 
patients with OGFRL1 mutations and clinical character-
ization of these patients will be necessary to determine 
the functions of OGFRL1 in humans. Our Ogfrl1−/− and 
Ogfrl1Del-c/Del-c mouse lines will serve as essential tools to 
complement such human cherubism studies. 

Limitations in the current genetic study: We acknowledge 
the limitations of our genetic approach in the current cheru-
bism study. Our strategy for identifying a second gene causing 
cherubism is based on the objective assumptions that exonic 
mutations in the same gene are causative for cherubism in both 
families and that genetic diseases in consanguineous families 
can be caused by autosomal recessive and homozygous gene 
mutations located in the identical-by-descent regions of the 
genome. Therefore, it is important to note that there is still a 
possibility that homozygous DNA variants in the OGFRL1 
gene region other than the OGFRL1 exons or compound het-
erozygous or homozygous variants outside of the OGFRL1 
gene may be responsible for cherubism in the consanguineous 
families examined in this study. However, we believe that the 
probability is extremely low and that such scenarios are very 
unlikely to happen. 
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