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B-Carboline is a privileged class of the alkaloid family and is associated with a broad spectrum of biological properties. 3-Formyl-

9H-pyrido[3,4-b]indole is a such potent precursor belonging to this family which can be tailored for installing diversity at various

positions of B-carboline to generate unique molecular hybrids of biological importance. The present work is a step towards this and

assimilates the results related to the exploration of 3-formyl-9H-B-carbolines for the synthesis of B-carboline C-3 substituted MBH

adducts followed by evaluation of their fluorescent characteristic. The effect of contact time, solvent system, concentration and sub-

stituents was also studied during investigation of fluorescence properties of these derivatives.

Introduction

Among the polycyclic alkaloids based on indole, the tricyclic
structure B-carboline represents a promising class of pyrido-
indole alkaloids with a variety of biological activities which
make them interesting synthetic targets [1-8]. Alkaloids con-
taining the B-carboline nucleus in their molecular architecture
are present ubiquitously in nature and a large number of natural
products are reported representing this scaffold [9-16]. The key
precursor used in the biosynthesis of B-carboline is L-trypto-
phan which forms the basis of great abundance of B-carboline-
containing natural products [17]. A broad spectrum of biologi-

cal activities is displayed by this pharmacologically rich nucleus

which includes antibacterial, antifungal, anticancer, anxiolytic,
antimalarial, antiviral, anti-HIV, anti-Alzheimer, and anticon-
vulsant activities etc. [18-26]. Potent anticancer activities are
shown by the majority of B-carboline-containing compounds
[27-30]. Figure 1 summarizes some examples of f-carboline-
based drugs and bioactive natural products some of which have
even been commercialized successfully showing the impor-
tance of this nucleus [31-33]. This pharmacological richness
and colossal medicinal importance is the reason that the synthe-
sis of B-carboline-containing derivatives has been an exciting

area for researchers [34-40].
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Figure 1: Few examples of B-carboline-based drugs and bioactive natural products.

The Morita—Baylis—Hillman (MBH) reaction is an astonishing
C—C bond forming reaction between a carbonyl electrophile and
an activated alkene leading to the formation of allylic alcohol; a
highly functionalized product [41-44]. The chemistry of the
MBH reaction is decorated with several unique features viz.
atom economy, complexity generation and generation of a
chiral center from a pro-chiral electrophile. The chemistry of
the MBH reaction has gained considerable attention from the
past two decades as these MBH adducts are highly functionali-
zed and offer various points of diversity. Due to these amazing
features, these MBH adducts act as starting material on which
various organic transformations can be performed leading to the

avenues for introduction of
unlimited diversity at C-1 position

sites for -

diversification sites for
— 5

diversification
\ﬁ

synthesis of various natural and synthetic products. MBH
adducts itself display diverse biological activities like anti-
fungal, antibacterial, herbicide, antiparasitic and antitumor as
reviewed by Lima-Junior et al. (2012) [45].

It was envisaged that in comparison to the traditional methods
like Pictet—Spengler (P-S) or Bischler—Napieralski (B-N) cycli-
sation, introduction of a formyl group at C-1 or C-3 position of
the B-carboline frameworks may provide a new route for gener-
ating unlimited diversity at C-1 as well as at the C-3 position of
B-carbolines. As depicted in Figure 2, 1-formyl-B-carbolines
and 3-formyl-B-carbolines are decorated with different sites for
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Figure 2: 1/3-Formyl-9H-B-carboline: new synthons for the synthesis of B-carboline-fused and substituted frameworks.
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diversification which make these synthons a promising tem-
plate for the construction of f-carboline-fused frameworks via
C-1 N-9, C-1 N-2 and C-3 N-2 cyclisation. Similarly, B-carbo-
line-substituted molecular frameworks can be generated at C-3
position.

Our group has previously explored 1-formyl-B-carbolines and
3-formyl-B-carbolines for the generation of B-carboline-
imidazo[1,2-a]azine conjugates at C-1 as well as C-3 position
by the application of the Groebke—Blackburn—-Bienaymé (GBB)
multicomponent approach [46,47]. Our research group has
also investigated the scope of 1-formyl-B-carbolines for gener-
ating unique molecular hybrids by application of the
Morita—Baylis—Hillman reaction [48-50]. It was also revealed
from a detailed literature survey that only limited reports have
been documented toward exploration of 3-formyl-9H-3-carbo-
lines for generating diversity at the f-carboline skeleton as
outlined in Figure 3 [51-56].
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Therefore, we herein report the synthesis of C-3-substituted
pyrido[3,4-blindole MBH adducts from substituted 3-formyl-
9H-B-carbolines by the application of the MBH reaction fol-
lowed by evaluation of their fluorescence properties.

Results and Discussion

The current study began with the synthesis of substituted
3-formyl-9H-B-carbolines (6a—e), which was accomplished by
modifying the previously disclosed process as presented in
Scheme 1 [46,47,57]. Pictet—Spengler (P-S) condensation of
L-tryptophan (1) with different aldehydes (a—e) in dry DCM at
room temperature yielded tetrahydro-f-carboline derivatives
2a—e, which were then oxidized with KMnOy, in anhydrous
DMEF for 45 minutes to yield f-carboline derivatives 3a—e. It
was encouraging to observe that the P-S condensation with
L-tryptophan (1) was much faster than with the tryptophan ester,
taking only 45 minutes to complete. Interestingly, KMnOy4 oxi-
dation was selective, with no decarboxylation seen. Within
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Figure 3: A summary of previous reports toward exploration of 3-formyl-9H-B-carbolines.
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Scheme 1: Synthesis of 3-formyl-9H-pyrido[3,4-blindole derivatives.

15 minutes, further treatment of 3a—e with methyl iodide in the
presence of K,COs3 provided the corresponding methyl ester
4a—e in high yield (83-87%) and ester functionality reduction
with LiAlH, in dry THF yielded the alcohols Sa—e in excellent
yield (90-98%). The required 3-formyl-9H-B-carbolines 6a—e
were obtained in 73-88% yield by oxidizing the alcohol deriva-
tives Sa—e with MnO, in dry DCM. The present methodology is
decorated with several advantages like scalability and selec-
tivity. Additionally, no column chromatographic purification
was required at any stage and each step was high yielding.

After the synthesis of starting materials, the Morita—Bay-
lis—Hillman reaction was explored for C-3 functionalization of
the B-carboline framework. Accordingly, 3-formyl-9H-f-carbo-
lines 6a—e were subjected to MBH reaction with acrylonitrile A
and various acrylates B-E under neat conditions in the pres-
ence of DABCO as depicted in Scheme 2. All the products were
furnished smoothly in 27-72% yield. During this study, it was
observed that the MBH reaction of 6b with acrylonitrile A
resulted in the formation of product 8bA which evidenced that
6b underwent Morita—Baylis—Hillman reaction at the electro-
philic carbonyl center as well as Michael addition reaction at
the nucleophilic nitrogen center (N-9). Similar results were ob-
tained when 6e was subjected to MBH reaction with acrylo-
nitrile A and methylacrylate B and products 8eA and 8eB were
generated as outlined in Scheme 2.

HO
CHO A-E R?
= /\Rz —
N B — e N
N~ X DABCO, \ *
H R' neat rt,1-15d H R1
6a—e

7aA-aE, 7TbB-bC,
7¢B, 7cE, 7dA—-dB, 7eD
(27-72%)

The effect of a substituent at N-9 position on the reactivity
of 3-formyl-9H-pyrido[3,4-b]indole was also investigated
during this study. For this purpose, the N-ethyl derivative 9e
of 6e was prepared and subjected to MBH reaction with
acrylonitrile A and methylacrylate B under neat conditions to
generate the corresponding MBH adducts (10eA and 10eB)
(Scheme 3). Interestingly, 9e showed more affinity towards
this C—C bond forming transformation than 6e. It is noteworthy
here that all the products were purified by column chromatogra-

phy.

A small library of C-3-substituted pyrido[3,4-b]indole deriva-
tives was designed and synthesized which is presented in
Figure 4. All the products were characterized using NMR, FTIR
and mass spectrometry.

Fluorescence studies

Fluorescence studies of these C-3-substituted pyrido[3,4-
blindole derivatives were examined and various parameters
(contact time, concentration and solvent) were optimized for
obtaining the best results using 7dA as a model substrate. Fluo-
rescence emission spectra for optimizing the contact time were
recorded in chloroform at different intervals of time (5 min,
15 min, 1 h and 24 h) at 1 x 10™® M concentration. 7dA
displayed the highest fluorescence intensity after 15 minutes

and its fluorescence activity lasted even after 24 h with a slight

HO
R2 | R! |R2
a| CH(OMe), A | CN
b| Ph B | CO,Me
c| 2-Br-C¢H, € | CO,Et
, N© ki d| 4-Br-CgH, D | COn-Bu
R\) e 4-C|-C6H4 E COzt—BU
8bA, 8eA—-eB
34-50%

Scheme 2: Synthesis of C-3 substituted pyrido[3,4-blindole MBH derivatives (7 and 8).
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Figure 4: Library of C-3-substituted pyrido[3,4-blindole MBH derivatives 7, 8 and 10.

decrease in fluorescence intensity. Further, the fluorescence
emission profile of 7dA was recorded in chloroform at differ-
ent concentrations viz. 1 x 1070 M, 2 x 1076 M, 3 x 1076 M,
4 x 107 M and 5 x 107® M which indicated that fluorescence

intensity was found to increase with increase in concentration

and fluorescence spectra above this concentration showed a
fluorescence intensity >1000 a.u. After optimizing the time and
concentration parameters, dilutions of 7dA in different organic
solvents such as dichloromethane, DMF and ethyl acetate were

prepared for optimizing the solvent for obtaining the best fluo-
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rescence results. Fluorescence spectra were recorded after
15 minutes of sample preparation in 5 x 1079 M concentration
and fluorescence intensity was observed to be in the following
order: CHCl3 > EtOAc > CH,Cl, > DMF. The results of the op-
timization studies are presented in Figure 5 and it was con-
cluded from the studies that C-3-substituted pyrido[3,4-b]indole
derivative 7dA displayed the maximum fluorescence intensity
in chloroform at a concentration of 5 x 107 M after 15 minutes

of sample preparation.

Accordingly, fluorescence studies of all the other derivatives
were conducted following these optimized parameters, i.e.,
time: 15 min; concentration: 5 X 1076 M; solvent: CHCI;3. The
results of the fluorescence studies of all the C-3 substituted

pyrido[3,4-b]indole derivatives are presented in Table 1.

Beilstein J. Org. Chem. 2022, 18, 926-934.

Structure—fluorescence activity relationships

From the results presented in Table 1, some structure—fluores-
cence activity relationships were concluded which are outlined
in Figure 6. It was concluded from the structure—fluorescence
activity relationships of C-3-substituted pyrido[3,4-b]indole de-
rivatives that the products with o-bromopheny! substituent at R
position (7¢B and 7cE) were the most fluorescent derivatives
among all. Also, substituted phenyl derivatives were more fluo-
rescent than the dimethoxymethyl substituted derivatives
7aA-7aE. Further, it was observed that an ethyl substituent at
N-9 position of B-carboline decreased the fluorescence intensi-
ty in 10eA—10eB than 7eD which is a N-unsubstituted deriva-
tive while the Aemission Was red shifted in N-ethyl-substituted
derivatives as is clearly indicated from the data presented in
Table 1. CO,n-Bu and CO,-Bu substituents enhanced the fluo-
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Figure 5: Results of optimization for fluorescence studies: a) contact time; b) concentration; c) solvent.

Table 1: Results of fluorescence studies of C-3-substituted pyrido[3,4-blindole derivatives 7-8 and 10.

sample compound R? R2

1 7aA CH(OMe),  CN

2 7aB CH(OMe)» COsMe
3 7aC CH(OMe),  COEt

4 7aD CH(OMe),  COun-Bu
5 7aE CH(OMe),  COt-Bu
6 8bA Ph CN

7 7bB Ph COoMe
8 7bC Ph COoEt

9 7¢B 2-Br-CgHa COoMe
10 7cE 2-Br-CgHy4 COot-Bu
11 7dA 4-Br-CgHgy CN

12 7dB 4Br-CgHy;  COoMe
13 8eA 4-Cl-CgH4 CN

14 8eB 4-Cl-CgHq COoMe
15 7eD 4-Cl-CgHs  COun-Bu
16 10eA 4-Cl-CgHy CN

17 10eB 4-Cl-CgHy COoMe

Agx (nm) Aem (nm) flourescence intensity
(a.u.)
266 384 669.99
260 369 624.79
374 407 223.68
258 378 486.49
278 388 669.30
278 391 592.48
278 384 768.75
278 383 766.89
278 375 >1000
278 383 834.06
278 386 609.70
294 386 768.78
270 395 385.38
270 401 353.34
292 385 829.04
278 403 556.46
270 428 415.32
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Figure 6: Pictorial representation of structure—fluorescence activity relationship of C-3 substituted pyrido[3,4-b]indole derivatives 7, 8 and 10.

rescence intensity more than the other substituents (7aE, 7cE
and 7eD). It is noteworthy here that in the derivatives prepared
from the same aldehydes, a noticeable decrease in fluorescence
intensity of product 8 (Morita—Baylis—Hilman + Michael
adducts 8bA, 8eA and 8eB) was observed than in case of prod-
uct 7 (Morita—Baylis—Hilman adducts 7bB, 7bC and 7eD)
while their Agpission Was red-shifted in comparison to type 7
compounds. This difference in the fluorescence intensity values
of compound 7 and 8 may be attributed to the addition of a sub-
stituent at N-9 position of the B-carboline ring after Michael ad-
dition reaction (CH,CH,CN or CH,CH,CO,Me).

Conclusion

In conclusion, we have successfully explored 3-formyl-1-aryl-
9H-pyrido[3,4-b]indole derivatives for the C-3 functionaliza-
tion by application of the MBH reaction to generate C-3-substi-
tuted B-carboline MBH adducts. It was revealed from spectros-
copic analysis that few derivatives underwent MBH reaction as
well as Michael addition reaction to form type 8 compounds.
Additionally, the scope of the reaction was further extended and
the effect of substituents at the N-9 position on the reactivity of
3-formyl-1-aryl-9H-pyrido[3,4-b]indoles was also investigated.
Furthermore, fluorescence properties of these f-carboline
conjugates were also studied and they were found to exhibit
excellent fluorescence characteristics. Different parameters like
contact time, concentration, solvent effects and substituent
effects were examined for obtaining the optimal results. It was
observed that the MBH derivatives exhibited excellent fluores-
cence characteristics at a concentration of 5 x 107 M in chloro-
form solvent after 15 minutes of sample preparation. Deriva-
tives 7¢B and 7cE bearing an o-bromophenyl substituent at R!
position emerged as two most fluorescent compounds
in the present series. Furthermore, products of type 7
(Morita—Baylis—Hilman adducts) were more fluorescent than
products 8 (Morita—Baylis—Hilman + Michael adducts). Antimi-
crobial evaluation of the title compounds is underway and will

be reported in due course.

Supporting Information

Supporting information contains detailed experimental
procedure for the synthesis of compounds 6-9 and 10
followed by detailed characterization data and copies of
'H NMR and 13C NMR spectra of newly synthesized
compounds 6-10.

Supporting Information File 1

Experimental procedures and characterization data.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-18-92-S1.pdf]
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