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Hip and knee arthroplasty are high-volume procedures undergoing rapid growth. The large volume of
procedures generates a vast amount of data available for next-generation analytics. Techniques in the
field of artificial intelligence (AI) can assist in large-scale pattern recognition and lead to clinical insights.
AI methodologies have become more prevalent in orthopaedic research. This review will first describe an
overview of AI in the medical field, followed by a description of the 3 arthroplasty research areas in
which AI is commonly used (risk modeling, automated radiographic measurements, arthroplasty registry
construction). Finally, we will discuss the next frontier of AI research focusing on model deployment and
uncertainty quantification.
© 2024 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

Total hip arthroplasty (THA) and total knee arthroplasty (TKA),
which we will refer to as “arthroplasty” for the rest of this paper, are
high-volume procedures that have witnessed remarkable advance-
ments and growth. In the U.S. alone, there are over 7 million in-
dividuals with total hip or total knee replacements [1,2]. The national
arthroplasty volume increases annually, and this trajectory is ex-
pected to continue for the foreseeable future [3,4]. In addition to the
growing case volume, there has also been an increase in the avail-
ability of arthroplasty data due to the widespread adoption of elec-
tronic medical record systems and clinical orthopaedic registries,
which provides an opportunity for population-scale research [5,6].
Analyzing the large volume of data produced annually poses a sig-
nificant hurdle to traditional methods of data analysis that require
extensive humanmanual effort. Fortunately, the gradual adoption of
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techniques from the field of artificial intelligence (AI) in medicine
provides a new opportunity to leverage these data resources.

AI is a broad subfield of computer science that deals with tech-
nologies that are capable of mimicking human cognitive functions.
While AI is not a new field, its use in orthopaedics has grown
significantly during the last decade [7]. AI algorithms can be trained
to efficiently extract meaningful insights from large datasets, which
may enable more personalized treatment decisions, optimized sur-
gical techniques, enhanced postoperative care, and improved patient
outcomes in total joint arthroplasty. This article briefly describes AI
in the context of arthroplasty, followed by a summary of the major
AI-related research topics within arthroplasty. We will end by dis-
cussing the future direction of AI in arthroplasty.
What is artificial intelligence?

AI encompasses a range of computer systems that learn to
emulate human intelligence. Commonly used phrases “machine
learning” (ML) and “deep learning” (DL) are actually subfields of AI
(Fig 1). ML is the application of statistical models that learn patterns
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Figure 1. Subfields of artificial intelligence.
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in datasets and can provide predictions on unseen data. Many
popular algorithms involved in regression, classification, and clus-
tering can be thought of as ML models. Within ML, DL is an
increasingly popular technique that relies on the use of a specific
ML algorithm and artificial neural networks with many layers [8].
Because DL algorithms can easily process unstructured data (like
images and clinical report text) and because they learn for them-
selves what features of the data are important, they are ideal for
addressing the common challenges encountered in the medical
field. Which ML/DL solution is most appropriate is inextricably tied
to the characteristics of the dataset being analyzed.

Data can be either structured or unstructured. One example of
structured data is a spreadsheet, where each row represents an
instance and each column is a variable or feature associated with
the instances. For example, the rows in a dataset may represent
patients, with lab test results occurring in the columns. While a
table is structured data at a basic level, complex relations between
instance types can be modeled using relational database technol-
ogies such as Structured Query Language. Many statistical and ML
techniques naturally lend themselves to structured data.

The vast majority of medical data is unstructured. Unstructured
data cannot be easily formatted into rows and columns. Clinical
notes, operative reports, and medical images are all examples of
data that are unstructured. Entire subfields of AI have grown out of
the need to develop specialized ways of analyzing unstructured
data (Fig 1). Natural language processing (NLP) is a subfield of AI
that involves the development of algorithms that can interpret and
generate human language in a meaningful way [9,10]. Likewise,
computer vision refers to the field of computer science that focuses
on enabling computers to interpret visual information from images
or videos. In the context of arthroplasty research, computer vision
plays a crucial role in analyzing medical images, such as radio-
graphs, computed tomography scans, or magnetic resonance im-
aging scans, to assist in diagnosis and surgical planning. DL is
especially powerful when used for the analysis of unstructured data
because deep neural networks simultaneously learn a task and
learn which features are most important to that task.

The following 3 sections will focus on major arthroplasty
research topics.
Risk modeling

The use of AI in risk modeling refers to the analysis of patient
data to make predictions that can then assist with clinical decision-
making. While clinical prediction models have always been a
fundamental part of biomedical research, the concomitant rise in
computing power and large datasets has catalyzed the use of AI
techniques in prediction models [11,12]. In this section, we will
focus on complication and outcome prediction on the topic of risk
modeling.

Using the enormous quantity of patient data now available, DL/
ML models can predict the likelihood of complications such as in-
fections, implant-related issues, and other adverse events with high
accuracy. Yeo et al. used structured clinical data points to develop
ML models that predict surgical site infections following a primary
TKA [13]. While the most important features in that model were
mostly previously identified factors for infection, the ML algorithm
employed allowed for much higher accuracy than traditional ana-
lytic methods. Wyles et al. created an algorithm able to show how
the risk of periprosthetic fracture changes in a specific patient
based on surgical factors such as uncemented femoral fixation,
collarless femoral implants, and surgical approach [14]. Likewise, Jo
et al. developed a model that used patient demographics, labs, and
history to predict transfusion requirements after a TKA. This model
also demonstrated good predictive performance when applied to
patient data from an external institution [15]. In many cases, ML
models learn a data distribution from a single institution too well
and fail to generalize to data elsewhere. There are many more ex-
amples of risk modeling for TKA and THA complications including
prolonged opioid abuse [16], delirium [17], and acute kidney injury
[18].

ML/DL models can also integrate data of multiple types. Wyles
et al. created a model capable of incorporating the possible dislo-
cation risk modification based on surgeon decisions such as the use
of dual-mobility constructs and elevated liners [19]. In a subse-
quent publication, Khosravi et al. demonstrated that adding
embedding data (the abstract features a DL model learns during
training) from a radiograph to that model improved its
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performance [20]. Further, this algorithmwas designed to show the
patient-specific risk in addition to the degree of risk modification
achievable with surgical decisions, thus yielding actionable tools
for surgeons.

Similar to complication prediction, outcome prediction models
forecast patient outcomes after surgery, including pain levels,
functional improvements, and overall satisfaction with the pro-
cedure. In a study using Medicare data, the investigators developed
an algorithm to predict postoperative outcomes, which was then
compared to 3 of the most commonly used risk adjustment indices
[21]. The novel Complexity Score had the highest accuracy in pre-
dicting perioperative morbidity. Harris et al. developed a model to
predict the Activities of Daily Living, Pain, Symptoms, and Quality of
Life subscales of the Knee Injury and Osteoarthritis Outcome Score
following a TKA [22]. Fontana et al. used presurgical registry data to
train 4 different models to predict which patients would not ach-
ieve 2-year postsurgical minimally clinically important differences
following total joint arthroplasty with fair-to-good ability [23].

In comparison with traditional statistical methods, ML/DL
models typically achieve higher predictive performance at the
expense of explainability. This “Black Box Phenomenon” represents
a key challenge that differentiates AI-based calculators from other
calculation tools. Several explainable AI techniques, from feature
importance metrics to saliency maps and uncertainty quantifica-
tion, can help end users of an algorithm feel more confident about
how a model is making its prediction. Which method is most
appropriate is specific to the ML/DL model employed. Additionally,
some may be concerned about the impact of online, publicly
available calculators and how they could confuse rather than help
patients. Clear explanations of how individual factors impact a risk
score will help with popular usage as well. The advent of a trusted
and accurate calculator for patient-specific postoperative compli-
cations and outcomes offers an additional tool for clinicians in or-
der to continue to improve shared decision-making between
surgeons and patients.
Automated radiographic analysis

Medical providers in orthopaedic surgery rely on imaging to
diagnose pathology, plan treatment, and monitor outcomes. It is
perhaps the most important data source in arthroplasty. Clinicians
take measurements using imaging to assess either the degree of
anatomic abnormality in a patient or to determine the position of
implanted components, for example. In the context of revision
surgery, accurate identification of existing implants’ manufacturer
and model is paramount. While this information plays a significant
role in providing optimal patient care, the measurements them-
selves can be tedious, difficult to perform, and potentially subject to
significant interrater variability. Computer vision algorithms can
automate radiographic measurements and improve measurement
robustness.

AI in radiology is a huge topic, spawning numerous journals and
conferences in recent years. In arthroplasty research, AI studies
have focused mostly on automating measurements and extracting
semantic information (radiological findings) [24-27]. Rouzrokh
et al. utilized computer vision techniques to measure femoral
component subsidence between 2 serial anteroposterior radio-
graphs; the median difference between the independent ortho-
paedic surgeon reviewer and automated measurements was 0.3
mm [28]. Another study by the same group presented an algorithm
that calculates acetabular inclination and version with similarly
high performance [27]. Evaluation of these algorithms is crucial;
investigators must show that the performance of their algorithm
meets or exceeds the performance of a human annotator.
AI techniques can also automate the extraction of semantic in-
formation from the image itself. Stotter et al. demonstrated that an
AI algorithm ranked better than at least one manual reader for the
majority of outcome measures when measuring radiological pa-
rameters that identify femoroacetabular impingement and hip
dysplasia [29]. A particularly exciting use for DL/ML models is to
extract information that would be difficult for an expert to ascer-
tain. For example, while an experienced surgeon may be able to
identify several models of hip arthroplasty implants, several recent
published studies have trained models to identify a wide variety of
implants with near-perfect accuracy [30].

Automated radiographic measurements can greatly increase the
efficiency and generalizability of treatment planning for arthro-
plasty. Lambrechts et al. demonstrated a 39.7% reduction in the
number of corrections the surgeon had to make from an AI-
generated preoperative plan compared to the manufacturer’s
default plan [31]. Following the current process, THA surgeons
often template based on personal experience resulting in different
outcomes based on experience level [32]. A universally accepted
algorithm for templatingmay eliminate some of this variability, and
the ability to create preoperative plans within seconds would save
surgeons time [29,33]. Generative AI may also help with visuali-
zation of postoperative hips [34].

Of course, employing AI in the analysis of radiographs presents
several potential challenges. One primary concern lies in the di-
versity of image collection methodologies across various hospitals
or even between different imaging personnel based in the same
hospital. It is conceivable that differences in positioning can
significantly impact measurements on planar images. However,
uniform imaging methodologies are necessary even without the
application of AI to radiograph analysis. Human readers will suffer
from the same errors as AI when faced with radiographs taken
using different techniques or of patients in different positions.
Developers of AI algorithms can combat this variability with
diverse data sources, best practices to avoid data leakage during
training, and robust external validation. An algorithm is only as
good as its training data, so proper oversight and training of the
annotators curating the training data is also important. Finally,
these AI algorithms allow for the extraction of radiographic infor-
mation for further research on a volume of images not previously
possible. In datasets of that size, it is not possible to validate each
measurement or data point extracted by the algorithm. Again,
robust validation can help improve the trustworthiness of these
algorithms.

Moving on, we will now discuss the development of large reg-
istries, an extremely important task required for robust orthopae-
dic research, which can be expedited by automated annotation of
radiographic images and other applications of AI.

Arthroplasty registry construction

Large-scale clinical registries have long been an important
source of data for orthopaedic research, where clinical trials are
especially expensive and difficult. Institutional and national regis-
tries provide an invaluable resource for researchers. Registries that
rely on manual abstraction of data points are expensive, while
registries that only use data coded into electronic health record
(EHR) fields are usually shallow or incomplete. In the most recent
American Joint Replacement Registry update, only 10% of proced-
ures had a surgical approach reported. Automated methods of data
curation from images and medical records could help bridge the
gap from depth to completeness.

Most data in the EHR is unstructured text data, which requires
specific analytic techniques in a field called NLP. NLP is a broad field
that uses a wide range of techniques, from traditional statistical
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models adapted to analyze unstructured text to highly advanced DL
models. When applied to medical research, NLP techniques can
analyze text found in EHRs and subsequently use that for registry
input [35-39]. Wyles et al. published a proof-of-concept of the NLP
technology and utilized it to identify common elements described
by surgeons in operative THA. The NLP algorithm extracted the
operative approach, fixation technique, and bearing surface with
accuracies of 99.2%, 90.7%, and 95.8%, respectively, mimicking the
performance of human annotators with much higher efficiency
[35]. NLP decreases the necessity of specialized, highly trained
medical professionals to extract the data. By removing the labor-
intensive part of the project, NLP allows the information to be
collected expeditiously and cost-effectively.

Quite recently, the field of NLP has experienced a renaissance
with the advent of increasingly sophisticated large language
models (LLMs). LLMs are gigantic DL models (most have billions of
parameters) that generate text after receiving some input text (or
images) as a prompt. ChatGPT, GPT-4, LLaMa, and Gemini are all
recent examples of LLMs and offer unique promise for the efficient
extraction of free text data and also for the novel generation of data
summaries [40]. While well-known for their human-like response
capabilities, LLMs have shown remarkable success in completing
medical exams [41], summarizing radiology reports [42], and
plenty of other tasks that had previously employed NLP techniques.
Their main function is to understand and generate natural language
that can be applied to tasks such as summarization, translation, and
question-answering [43]. LLMs may soon supplant NLP algorithms
in automating registry curation.

As previously mentioned, AI has the potential to aid in radio-
graphic annotation and measurements, which in turn can be
leveraged for imaging data extraction for registry establishment.
Rouzrokh et al. trained a DL model to efficiently annotate and
categorize the view, laterality, and operative status of THA patient
radiographs. The algorithm demonstrated impressive results,
achieving 99.9% accuracy, 99.6% precision, 99.5% recall, and a 99.6%
F1 score in assessing radiographic characteristics [44]. A fully
automated registry could rely on NLP to extract valuable data from
clinical text and computer vision to automate data extraction from
medical images, collectively improving registry accuracy and
efficiency.

What is next?

Over the next decade, the field of AI in arthroplasty will
continue to expand and change. We believe the next wave of AI
research will focus on 3 themes: 1) clinical implementation of al-
gorithms; 2) AI trustworthiness; and 3) increased utilization of
generative AI including LLMs [45-47].

Of the thousands of AI algorithms published in biomedical
research each year, it is likely that very few will be integrated into
the clinic and impact patient care. This is a complicated issue, but
we see a few obvious reasons. The first, as we have discussed above,
is that AI algorithms rarely generalize well outside of the data used
to train it. This means each algorithm, unless trained and validated
on a broad swath of data, only performs well at the institution that
trained it. The second reason is that there is a lot of infrastructure
necessary to transform a model on a researcher’s computer into
something that can be integrated into a clinical system and then
monitored and updated. This process is the focus of a field called
MLOps, well known to technology companies but still somewhat
new to healthcare organizations. Any MLOps processes need to be
closely paired with implementation studies. Successful imple-
mentation of the model is not the final step; it is essential to vali-
date and intermittently improve the model by adding new training
data [48]. A third reason that makes implementation difficult is the
complex legal and regulatory issues related to the clinical use of an
algorithm [49]. Ultimately, the final responsibility for the patient’s
health rests with the attending physician; for clinicians to regularly
use AI algorithms, they need to trust them.

One of the current problems with AI approaches is the lack of
explanation for the output of the models, commonly called the
“black-box” phenomenon [50]. Without using the techniques of
explainable AI, it is difficult to comprehend how AI arrives at its
outputs or predictions, raising concerns about accountability and
potential biases embedded within its operations [51]. One way to
help providers appropriately use the output of models is to know
how certain the model is about its prediction (uncertainty quanti-
fication) or to include information on what factors helped the al-
gorithm reach its prediction (feature importance).

Explainable involves assessing i) the variability in scientific
models and ii) the way the algorithm uses input features to make a
prediction. There are a variety of techniques for adding explain-
ability to an algorithm that analyze input parameters, model as-
sumptions, and measurement errors (56-58). For example,
Rouzrokh et al. added conformal prediction to an AI model trained
to identify THA implants, thus providing the ability to quantify
prediction uncertainty and flag outlier test datadboth essential for
clinical trustworthiness [30,34]. By comprehensively characterizing
model uncertainties, researchers can enhance the accuracy and
reliability of their models, ultimately leading to improved AI
trustworthiness. Furthermore, quantifying uncertainty can identify
areas that necessitate further research to reduce uncertainties and
enhance our understanding of arthroplasty approaches.

Another rapidly evolving field in AI is generative AI. This branch
of AI focuses on the novel synthesis of content rather than
analyzing existing data. The newly created data can come in the
form of images, text, audio, and other mediums. This area of
computer science is rapidly advancing in medicine; Epic recently
announced a collaboration with Microsoft Corp. to “develop and
integrate generative AI into healthcare” [52]. LLMs, a type of DL
previously discussed in this manuscript, are a type of generative AI.
In the field of arthroplasty, generative AI could potentially be used
for data augmentation and synthesis, custom implant design, and
surgical simulation. LLMs hold promise to accurately summarize
extensive patient data and research publications to aid physicians
in informed decisions [53]. The translation function could be
applied to not just language barriers but also the jargon-dense
medical text within EHRs that sometimes challenges patients
[54]. The question-answering function could relieve providers of
the often tedious task of answering simple questions patients send
via the online messaging function within most EHR systems.
Additionally, a chatbox-like function could also be implemented in
other areas of AI to attempt to add transparency to existing algo-
rithms [50].

Conclusions

An increase in the volume of arthroplasty procedures and the
data produced have opened the door to new research opportu-
nities. AI techniques are a powerful way to analyze these new data
streams. This article has surveyed several major research areas of AI
within arthroplasty: risk modeling, automated radiographic anal-
ysis, and automated registry curation. These themes are both
mechanistic and infrastructural. In the coming years, we expect
some of the major themes of future AI research in medicine to
include 1) implementation science, 2) explainable AI, and 3)
generative AI. Despite already having a profound effect on the
research landscape, we expect that the largest changes to the
arthroplasty community will occur with the migration of AI tech-
nologies to the clinic.
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