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Hepatocellular Carcinoma (HCC) is a highly aggressive cancer with mortality running
parallel to its incidence and has limited therapeutic options. Chronic liver inflammation and
injury contribute significantly to the development and progression of HCC. Several factors
such as gender, age, ethnicity, and demographic regions increase the HCC incidence
rates and the major risk factors are chronic infection with hepatitis B virus (HBV) or
hepatitis C virus (HCV), carcinogens (food contaminants, tobacco smoking, and
environmental toxins), and inherited diseases. In recent years evidence highlights the
association of metabolic syndrome (diabetes and obesity), excessive alcohol
consumption (alcoholic fatty liver disease), and high-calorie intake (nonalcoholic fatty
liver disease) to be the prime causes for HCC in countries with a westernized sedentary
lifestyle. HCC predominantly occurs in the setting of chronic liver disease and cirrhosis
(80%), however, 20% of the cases have been known in patients with non-cirrhotic liver. It
is widely believed that there exist possible interactions between different etiological agents
leading to the involvement of diverse mechanisms in the pathogenesis of HCC.
Understanding the molecular mechanisms of HCC development and progression is
imperative in developing effective targeted therapies to combat this deadly disease.
Noteworthy, a detailed understanding of the risk factors is also critical to improve the
screening, early detection, prevention, and management of HCC. Thus, this review
recapitulates the etiology of HCC focusing especially on the nonalcoholic fatty liver
disease (NAFLD)- and alcoholic fatty liver disease (AFLD)-associated HCC.

Keywords: hepatocellular carcinoma, alcoholic fatty liver disease, non-alcoholic fatty liver disease, etiology,
metabolic syndrome, hepatitis viruses
INTRODUCTION

Hepatocellular Carcinoma (HCC) is a serious public health issue and the fourth leading cause of
cancer mortality worldwide (1, 2). HCC accounts for about 80% of the primary liver cancer while
the other types include cholangiocarcinoma (10–20%) and angiosarcoma (1%) (3). There is a
striking variation in HCC incidence rates across geographic regions and at the global level, each year
over 800,000 people are diagnosed with liver cancer (4, 5). HCC cases are highest in Eastern Asia
and sub-Saharan Africa, followed by intermediate rates in Southern and Western European
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countries, North and Central America, and the lowest incidence
rates are observed in and Northern Europe and South Central
Asia (6, 7). HCC predominantly affects men more than women
(two to four times higher in men) with its highest incidence in
the age group of 45–65 years (8, 9). According to Globocan 2018,
HCC is the fifth most common cancer in men and the ninth most
commonly occurring cancer in women (10). The overall ratio of
mortality to incidence is 0.95 and reflects the poor prognosis of
HCC (11).

HCC is an extremely complex condition and there are multiple
factors involved in the etiology of HCC. The major risk factors for
HCC include hepatitis B virus (HBV) and hepatitis C virus (HCV),
diabetes, obesity, alcoholic fatty liver disease (AFLD), and non-
alcoholic fatty liver disease (NAFLD). Additional risk factors that
are also known to increase the incidence of HCC are tobacco
smoking, food contaminants such as aflatoxins, familial or genetic
factors, and various environmental toxins that act as carcinogens
(12–14) (Figure 1). The development of HCC is initiated by
hepatic injury involving inflammation leading to necrosis of
hepatocytes and regeneration. This chronic liver disease
sequentially transitions to fibrosis, cirrhosis, and hepatocellular
carcinoma (15, 16). HCC that often occurs in the setting of
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chronic liver disease and cirrhosis is diagnosed late in its course
and liver transplantation is the best option for patients at this
stage (12, 17). Multiple treatment options are available to
treat HCC including surgical resection, local ablation with
radiofrequency, transcatheter arterial chemoembolization
(TACE), radioembolization, and systemic targeted agents like
sorafenib depending on the tumor extent or underlying liver
dysfunction (12, 14, 18). Furthermore, the viable treatment
options offered to the patients also depend on the causative
agent of HCC as they define the disease course and patient
characteristics. However, with the improved treatment for HCC,
the demographic landscape has changed (6, 19). In this mini-
review, we aim to describe the traditional risk factors in brief and
highlight on fatty liver disease, which is the emerging etiological
risk factor contributing to the increasing incidences of HCC.
VIRUS AND HCC

The chronic infection by hepatitis B virus (HBV) and hepatitis C
virus (HCV) are the traditional risk factors that are associated
with HCC for 33,600 years and 1,000 years, respectively (20, 21).
FIGURE 1 | The etiology of hepatocellular carcinoma. A variety of risk factors have been associated with the development of HCC, including hepatitis viruses,
carcinogens, heredity diseases, metabolic syndrome, and fatty liver disease. The mechanisms by which these etiological factors may induce hepatocarcinogenesis
mainly include p53 inactivation, inflammation, oxidative stress, and telomere shortening leading to genomic instability and activation of multiple oncogenic signaling
pathways.
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The virus-associated mechanisms driving hepatocarcinogenesis
are complex and cause liver cirrhosis, which progresses to HCC
in about 80–90% of the cases (15, 22).

HBV is partially a double-stranded circular DNA virus, which
belongs to the genus Avihepadnavirus of the Hepadnaviridae
family. HBV infection accounts for 75–80% of virus-associated
HCC and infects over 240 million people around the world (23).
The incorporation of the genetic material of this virus into the
human genome causes p53 inactivation, inflammation, or
oxidative stress, which causes hepatocarcinogenesis (24, 25).
HBV-induced HCC can be both cirrhotic and non-cirrhotic
and involves an array of processes such as proliferation and
loss of growth control (caused by p53 inactivation), sustained
cycles of necrosis and regeneration (resultant of inflammation),
and activation of various oncogenic pathways such PI3K/Akt/
STAT3 pathway and Wnt/b-catenin (induction of oxidative
stress), all of which leads to genomic instability (26, 27).

Contrary to HBV, the Hepatitis C virus (HCV) is a non-
integrating, single-stranded RNA virus belonging to the genus
Hepacivirus of the Flaviviridae family. HCV infects over 57
million people worldwide and accounts for 10–20% of virus-
associated HCC (28, 29). Unlike HBV infection, there is no
integration of genetic material into the host’s genome by the
HCV virus. It is the HCV proteins (structural and non-structural
proteins) that play a critical role in the development of HCC
(30). HCV-induced hepatocarcinogenesis is highly complex
involving the activation of multiple cellular pathways and gets
initiated by the establishment of HCV infection leading to
chronic hepatic inflammation, which further progresses to liver
cirrhosis and HCC development (31). HCV proteins either
directly or indirectly modulate a wide range of host cellular
activities, including transcriptional regulation, cytokine
modulation, hepatocyte growth regulation, and lipid
metabolism that lead to chronic liver injury. In addition to
inducing oxidative stress and endoplasmic reticulum (ER)
stress, HCV proteins are also known to cause epigenetic
alterations by modulating micro RNA (miRNA) and long
noncoding RNA (lncRNA) in the host cells (32). Thus, HCV
shows a high propensity (60–80%) to induce chronic infection
and promotes liver cirrhosis 10–20 fold higher than HBV. The
angiogenic and metastatic pathways activated by HCV further
promote hepatocytes’ malignant transformation and accelerate
HCC development (33). Hepatitis D virus (HDV) and human
immunodeficiency virus (HIV) are also considered as modulators
of HCC (14).
CARCINOGENS AND HCC

In addition to hepatitis viruses, chemical carcinogens also play
important roles in the etiology of HCC (34). Exposure to
carcinogens including aflatoxins, tobacco smoking, vinyl
chloride, arsenic, and various other chemicals act either
independently or in combination with viruses to cause DNA
damage, induce liver cirrhosis, and contribute to HCC (35).

Aflatoxin is a potent liver carcinogen produced by the
Aspergillus fungus, which is found to contaminate foodstuffs
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such as peanuts, corn, soya beans stored in damp conditions.
This mycotoxin induces mutation in the p53 tumor suppressor
gene and causes uninhibited growth of liver cells leading to the
development of HCC (36, 37). It is reported that the chemicals in
tobacco smoke (4-aminobiphenyl and polycyclic aromatic
hydrocarbons), areca nut (nitrosamines), and betel leaves
(safrole) cause hepatotoxicity (13, 35). Besides, studies have
demonstrated that the human exposure to groundwater
contaminants (chemicals such as cadmium, lead, nickel,
arsenic), organic solvents (toluene, dioxin, xylene), and chemicals
such as vinyl chloride and dichlorodiphenyltrichloroethane (DDT)
have shown to increase the risk of HCC as they exert
hepatocarcinogenic effect via induction of oxidative stress and
telomere shortening (34, 38).
INHERITED DISEASES AND HCC

Certain metabolic disorders such as hereditary hemochromatosis,
a1-antitrypsin deficiency, Wilson’s disease, and hepatic porphyria
are associated with high risk for the development of HCC. These
hereditary diseases are known to promote hepatocarcinogenesis as
a result of increased inflammation and hepatocellular damage
(39–41).
METABOLIC SYNDROME AND HCC

Diabetes mellitus, a component of the metabolic syndrome has been
shown to attribute about 7% of the HCC cases worldwide (5, 42).
Meta-analyses have shown that diabetes is associated with HCC
independent of viral hepatitis in which diabetic patients show 2-3
fold greater risks in developing HCC compared with non-diabetic
controls (43). The pathophysiological conditions such as
hyperglycemia, hyperinsulinemia, insulin resistance, and
activation of insulin-like growth factor signaling pathways provide
a strong association for diabetes to be the risk factor in the
pathogenesis of HCC (5, 44). Obesity, a pathological state
characterized by insulin resistance, hyperinsulinemia, and
inflammation is also closely associated with HCC (45). It is
demonstrated that increased reactive oxygen species, dysregulated
adipokines, and adipose tissue remodeling, alteration of gut
microbiota, and dysregulated microRNA increases the relative risk
of HCC in obese patients (46–48). Accordingly, obesity is one of the
common causes of NAFLD, which is also an underlying risk factor
of HCC (46).
FATTY LIVER DISEASE AND HCC

Over the last decade, fatty liver disease is emerging as the
leading etiologies for chronic liver disease progressing to
HCC (49). The changing scenario is attributed to improved
antiviral therapy for virus-related HCC (50). With the growing
inclination towards western dietary pattern, sociocultural
changes and the lifestyle with limited or no physical activity
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has sharply increased the incidence rates of NAFLD- and
AFLD-associated HCC across the continents (51, 52). The
pathological spectra of liver injury in promoting HCC
development are similar in these two fatty liver diseases
despite having divergent pathogenic origin with yet some key
distinct features (Figure 2). Furthermore, a high-calorie diet
and ethanol act synergistically at multiple levels potentiating
hepatocarcinogenesis (53).

Non-Alcoholic Fatty Liver Disease
(NAFLD)-Associated HCC
NAFLD is characterized by excessive hepatic lipid accumulation
(steatosis), which further transitions to steatohepatitis upon the
inflammatory insult, to cirrhosis and HCC (54, 55). It’s a
pathophysiological condition that is not associated with excess
alcohol consumption or other secondary causes such as viral
infection and heredity liver diseases (56). NAFLD is classically
associated with metabolic disorders such as obesity,
hypertension, dyslipidemia, insulin resistance, and type 2
diabetes (57, 58).

A meta-analysis by Younossi et al. (86 studies from 22
countries carried out between 1989 and 2015) reported that
Frontiers in Oncology | www.frontiersin.org 4
the worldwide prevalence of NAFLD is 25.24% (59). The
prevalence of NAFLD varies across the continent with the
highest in the Middle East (31.79%) followed by South
America (30.45%), Asia (27.37%), North America (24.13%),
Europe (23.71%), and Africa (13.48%) (51, 60). Studies also
indicate that NAFLD is more common in men (42% for white
males vs. 24% for white females) and the prevalence of NAFLD
increases with age (61, 62). However, as obesity increases in
children and adolescents, there is an increasing prevalence of
NAFLD and NAFLD-associated HCC compared to adults (63,
64). While studies have shown that NAFLD accounts for about
13% of HCC cases, Wong et al., have reported that NAFLD is the
fastest-growing etiology, which is indicative of liver
transplantation in HCC patients (65). Studies from long term
follow up of non-alcoholic fatty liver patients have shown the
prevalence of HCC to be 0.5 and 2.8% in NAFLD and NASH
respectively (66, 67). It is interesting to note that 80% of HCC
patients have cirrhosis (68). However, HCC is also reported in
non-cirrhotic NASH (69). Thus, with the rise in the incidence of
NAFLD-associated HCC in recent years, the contribution of
NAFLD is underscored among the risk factors that induce
HCC (70).
FIGURE 2 | Molecular mechanisms involved in nonalcoholic- and alcoholic-associated HCC. High-calorie diet and excessive alcohol consumption is the major risk
factor for the development of NAFLD and AFLD respectively. Despite the divergent pathogenic origin, the pathological spectra of liver injury in promoting HCC
development in NAFLD and AFLD share common molecular pathways.
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Emerging evidence has established multiple risk factors for
NAFLD-associated HCC including obesity, diabetes, iron
deposition, genetic and epigenetic factors, microRNA, and
gut microbiota (49, 71). In the modern era with a sedentary
lifestyle and unhealthy dietary habits, obesity is rapidly
increasing and has been established as a risk factor for HCC
(56). It is been reported to increase the risk by 1.5–4 times
either by contributing to the development of NAFLD or by
directly exerting carcinogenic effect leading to HCC (72).
Albeit most patients with NAFLD are obese in the western
countries, lean NAFLD has also been reported from Asian
countries (73). Furthermore, large population-based cohort
studies have found that diabetes mellitus is associated with
1.8–4 fold increased risk of HCC (74). Along the same line, a
study by Turati et al. reported that the combined effect of
diabetes and obesity among the metabolic syndrome was
positively associated with HCC risk (75). Excessive iron
deposit in the liver is thought to be a risk factor for NAFLD-
HCC (76). Indeed, experimental studies by Paola et al.,
demonstrated that hepatic iron overload might be associated
with HCC development in NASH patients (77). Additionally,
genetic factors are known to increase the risk of HCC in
NAFLD such as the PNPLA3 I148M variant and rs58542926
(E167K) variant in TM6SF2 (78, 79). Studies carried out in
mouse models of NAFLD and also in patients with NAFLD or
HCC have identified epigenetic-mediated gene regulation
involved in the development and progression of the disease
(80, 81). Among the various risk factors, the gut microbiota has
emerged as an important contributor to NAFLD-associated
HCC (82).

The mechanism of NAFLD-associated HCC progression is
complex. Hepatic lipid accumulation as a result of high-calorie
intake (high carbohydrate and high dietary fat) and low physical
activity in the absence of excessive alcohol consumption is
a major contributor to the onset of NAFLD development
(56). Steatosis progresses to necroinflammation leading to
hepatocarcinogenesis as a consequence of multiple parallel
acting conditions such as insulin resistance, hyperinsulinemia,
dyslipidemia, adipose tissue remodeling, oxidative/endoplasmic
reticulum (ER) stress, altered immune system, genetic
alterations, and dysbiosis in the gut microbiome. These
modifications in association with genetic factors and epigenetic
changes activate oncogenic signaling and promote HCC
development (83). Insulin resistance leads to increased release
of free fatty acids (FFA) and release of various inflammatory
cytokines including tumor necrosis factor- a (TNF-a),
interleukin 6 (IL-6), leptin, and resistin. This is also
accompanied by decreased amounts of adiponectin (84).
Insulin resistance along with hyperinsulinemia up-regulates
insulin and insulin-like growth factor (IGF-1), a growth
stimulator aiding hepatocyte proliferation and apoptosis
inhibition (85, 86).

Furthermore, hepatic lipotoxicity due to insulin resistance
leads to imbalanced energy metabolism. Elevated FFAs b-
oxidation induces oxidative stress through the release of reactive
oxygen species (ROS) eventually leading to mitochondrial
Frontiers in Oncology | www.frontiersin.org 5
dysfunction accompanied by ER stress (87, 88). There exists a
potent cross talk between oxidative/endoplasmic reticulum (ER)
stress, and apoptotic pathways along with inflammatory
cytokines, innate and adaptive immune responses that
significantly contribute to NASH progression to HCC (83).
Further, the oxidative stress promotes tumorigenesis by
activation of c-Jun amino-terminal kinase 1 (JNK1), a mitogen-
activated protein kinase, and by suppressing the action of p53
tumor suppressor gene and nuclear respiratory factor 1 (Nrf1)
(89). Interestingly, studies have confirmed the potential role
of immune cells such as CD8+, CD4+ T lymphocytes, and
Kupffer cells in NASH progression with altered intestinal gut
microbiome being one of the contributors (90, 91). Thus, the
molecular connection between regulations of hepatocyte cell cycle
and energy balance is the key driving force of NAFLD-
associated HCC.

Unfortunately, there is yet no FDA-approved drug for the
effective treatment of NAFLD and NAFLD-HCC. A better
understanding of the cellular and molecular mechanisms will
open up treatment options for HCC subjects with NAFLD
etiology. Dietary and lifestyle modifications being the mainstay
of disease management need to be tailored to meet individual
patients’ needs. Furthermore, knowing the co-morbidities of
NAFLD-HCC will aid in designing effective treatment
strategies that can be employed in clinical practice.

Alcoholic Fatty Liver Disease (AFLD)-
Associated HCC
As the name suggests, AFLD is attributed to excessive alcohol
consumption that causes hepatic injury by the build-up of fats,
inflammation, and scarring leading to HCC, which could be
fatal (92). Globally, the prevalence of AFLD is increasing and
has become a significant contributor to the liver disease
burden accounting for 30% of HCC related deaths (93). The
“safe” levels of drinking as defined in the dietary guidelines in
the United States is two drinks for men and one drink for
women per day as one alcoholic drink (12 ounces of beer,
5 ounces of wine, or 1 ounce of hard liquor) accounts for
about 14 g of alcohol (defined as standard drink by WHO)
(53). By contrast, excessive alcohol consumption (more than
14 drinks/week and 7 drinks/week for men and women
respectively) is considered to cause AFLD (51). The threshold
level of alcohol intake causing hepatotoxic effect varies and it
depends on a variety of factors such as gender, ethnicity, and
genetics (94).

A large population-based prospective study conducted by
Becker et al., for 12 years have provided evidence that females
are more susceptible to the toxic effects of alcohol than male for
any given level of alcohol intake (95). The possible mechanisms
include lower gastric alcohol dehydrogenase (ADH) activity in
females and estrogen levels that activate Kupffer cells due to
increased gut permeability and portal endotoxin levels leading to
alcohol-induced liver injury (96, 97). Furthermore, studies have
demonstrated that in the United States, compared to Whites,
Blacks, and Hispanics drinkers have a two-fold increase in liver
enzymes (98). Since there is no significant difference among
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other ethnic groups, factors such as polymorphism of genes
associated with alcohol metabolism (ADH, CYP2E1) and
antioxidant enzymes and genes coding for cytokines are also
investigated in association with alcoholic liver disease (99).
However, it remains critical to consider factors such as amount
and type of alcohol consumption and socioeconomic status with
the development of AFLD.

As per the global status report on alcohol and health, 2018,
there are 2.3 billion active drinkers worldwide (100). In America,
Europe, and Western Pacific more than half of the population
account for active alcoholics. Though the percentage of drinkers
has decreased in Africa and America, there is an increase
observed in the Western Pacific region and has remained
stable in the regions of Southeast Asia (101). Alcohol is one of
the commonest causes of chronic liver disease with nearly 75
million diagnosed for the risk of AFLD and contributes to 50% of
mortality related to cirrhosis (102). According to the global
health report on alcohol and health, 2018 by World
Health Organization (WHO), the alcohol-attributable deaths
(AAD) from liver cirrhosis varies across the countries. The top
five in the list includes India (Safe limits: ≤16 g/day for men and
≤8 g/day for women, Comparison of international alcohol
drinking guidelines, 2019), China (Safe limits: ≤25 g/day for
men and ≤15 g/day for women, Chinese Dietary Guidelines,
2016), Nigeria (Safe limits: no written national policy,
WHO, 2018), United States (Safe limits: ≤24 g/day for men
and ≤14 g/day for women, Dietary Guidelines for Americans
2015–2020), and Russia (Safe limits: ≤30 g/day for men and ≤20
g/day for women, Prevention of alcohol and drug use, National
Medicine Research Center for Therapy and Preventive
Medicine). It is also reported that liver cancer (22.5%) is the
largest contributor to the burden of alcohol-attributable cancer
DALY (disability-adjusted life year), followed by colorectal
(20.6%) and esophageal (18.5%) cancers (100). The global
HCC BRIDGE study by Park et al. reported that AFLD
contributes to HCC development to a large portion in Europe
(37%) and North America (21%) compared to East Asia (4–13%)
(103). Furthermore, progression to cirrhosis and mortality is
higher in patients with AFLD (36%) compared to NAFLD (7%)
(104) and studies have reported that AFLD accounts for 10.3% of
HCC in liver transplantation candidates (105). It is noteworthy
that there is a synergy between excessive alcohol consumption
with other risk factors including diabetes mellitus and viral
hepatitis (106).

Despite the differences in the epidemiological and clinical
characteristics, AFLD-associated HCC shares a similar
mechanism of HCC pathogenesis with that of NAFLD.
Acetaldehyde, an oxidation product of ethanol is a potent
carcinogen driving the tumorigenesis by the formation of DNA
adducts (106). Although the major pathway of metabolizing
ethanol involves CYP2E1 in microsomes, acetaldehyde, and
reactive oxygen species (ROS) are formed nevertheless (107).
Interestingly, ethanol also induces steatosis by elevating the
enzyme levels of de novo lipogenesis (DNL) and by
suppressing the oxidation of fatty acid by downregulating
PPARa (108, 109). In addition, progressive alterations in
Frontiers in Oncology | www.frontiersin.org 6
PNPLA3 and TM6SF2 genes, and micro RNA are known to
promote steatosis, fibrosis, and cirrhosis in AFLD (110, 111).
Thus similar to NAFLD-associated HCC, alcohol induces
cirrhosis and promotes HCC development via the production
of ROS, induction of chronic inflammation, activation of the
immune response, leaky gut, and alteration of gene expression.
However, the infiltration of inflammatory cells is found to be
higher in AFLD (105, 112).
CONCLUSION AND FUTURE
PERSPECTIVES

HCC is a highly fatal cancer driven by multiple etiological
factors, among which, fatty liver disease is emerging as a major
cause worldwide. Based on the pathogenic origin, NAFLD has
been strongly associated with glucose and lipid metabolism,
whereas AFLD has been associated with a strong inflammatory
response. NAFLD and AFLD share common molecular
mechanisms in promoting HCC development, which involves
vicious interplay between various pathways including
immunological pathways, endocrine pathways, and metabolic
pathways. However, there still exists a gap in the knowledge in
understanding the molecular mechanisms of inflammation,
genetic and epigenetic regulations, and genomic instability
leading to hepatocarcinogenesis. Indeed, a comprehensive
understanding of these diseases would aid in the identification
of biomarkers and therapeutic targets leading to early detection
and management.

Albeit, NAFLD- and AFLD-associated HCC are major
challenging public health issues, it is preventable. The widely
implemented curative approach is lifestyle alteration involving
modifications in dietary habits and improving physical activity
in case of NAFLD and alcohol abstinence in AFLD. Further
personalized treatment strategies could improve healthcare
and quality of patient care, thereby reducing the mortality
rate. Alternatively, strategies like pharmacological treatment
and bariatric surgery are also considered in patients
unresponsive to lifestyle changes. Conclusively, it is
important to develop diagnostic tests for the detection of
early stages of HCC.
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