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INTRODUCTION

The advancement of endoscopic techniques in the past decade has improved the surgical 
management of cerebellopontine angle (CPA) tumors.[2,11,23,45] Endoscope-assisted microsurgery 
improves the ability to evaluate the extent of resection, achieve safe tumor resection, and 
reduces the risk of surgery-related morbidity.[2] Endoscope-assisted microsurgery has been well 
studied and applied for CPA tumors, microvascular decompression (MVD), and aneurysm 
surgery.[2,7,18,21,26,33,36,45,47] The endoscope, used as a tool for better surgical visualization.[2,10,44,45]

The growing experience with neuro-endoscope and improvement of the optical technology has 
facilitated the ability to achieve gross total resection (GTR) of CPA tumors.[46] The endoscope 
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permits neurosurgeons to look into spaces outside the 
microscopic corridor, to look around the surgical corners, 
and improves illumination and magnification in deep 
cavities.[13,41]

In this study, we used a cadaveric model to demonstrate a step 
by step endoscope-assisted microsurgery of the retrosigmoid 
approach to the lateral posterior fossa.

MATERIALS AND METHODS

Eight retrosigmoid craniotomies were performed on four 
colored latex-injected cadaveric head specimens. The head 
was fixed on a Mayfield head holder and rotated no more than 
30° toward the floor, slightly flexed forward, and translated 
posteriorly. Microsurgical dissection was performed under 
×3–×24 magnification (Global Surgical®, St. Louis, MO, 
USA). Endoscopic visualization was obtained with 4 mm 0° 
and 30° rigid Hopkins® lens systems (Karl Storz, Tuttlingen, 
Germany).

RESULTS

Positioning

Patient should be positioned in a lateral decubitus with the 
contralateral arm is positioned below the surgical table with 
a slight flexion. The head is positioned neutral, parallel to 
the ground, fixed on a Mayfield head holder. The ipsilateral 
shoulder is slightly displaced inferiorly, with cushions under 
contralateral armpit and between the knees. The ipsilateral 
thigh is flexed and prepared for possible fat and fascia 
harvest.

Skin incision

Linear incision starts 2 cm behind the external ear at the level 
of the pinna, running inferiorly in a straight line and ends 
1 cm inferior to the mastoid tip.

Craniotomy

The burr hole is placed on the asterion and performed with a 
regular cranial perforator or a high-speed drill. Craniotomy 
runs about 3  cm posterior to the burr hole and 4  cm 
inferiorly, then turning anteriorly just parallel to the burr 
hole. Anteriorly, the remaining anterior cut is performed 
with the drill. The sigmoid and transverse sinuses must be 
exposed using the drill.

Superior neurovascular complex

The superior compartment of the posterior fossa is 
contiguous with the undersurface of the tentorium cerebelli 
and extends inferiorly to the level of the mid-pons where 

the cisternal segment of the trigeminal nerve exits the 
brainstem.

Using the microscope, and on inferomedial retraction of 
the cerebellum, the superior petrosal vein (SPV) is visible, 
obscuring part of the trigeminal nerve along its course from 
the pons (origin) to Meckel’s cave (entry). The superior 
cerebellar artery (SCA) was seen within the ambient cistern 
lateral to the brainstem. Moving downwards, the SCA was 
lost to the microscopic view as it coursed along the dorsal 
aspect of the midbrain toward the tentorial surface. The 
trochlear nerve was seen superior to the SCA, running along 
the cerebellomesencephalic fissure [Figure  1a and b]. The 
SCA bifurcated at the level of the cerebellomesencephalic 
fissure with the trochlear nerve weaving among the two 
branches. The trigeminal nerve was not properly visualized 
microscopically due to the presence of the SCA superiorly 
and the anterior inferior cerebellar artery (AICA) inferiorly.

Using the endoscope (0° lens), the SPV was perfectly seen in 
conjunction with the dorsal surface of the trigeminal nerve 
[Figure 1c]. Laterally, the trochlear nerve curved around the 
side of the brainstem under the tentorial edge. The proximal 

Figure  1: (a) Microscopic view of the superior lateral posterior 
fossa. The trochlear nerve is superior to the SCA. (b) Microscopic 
view of the superior lateral posterior fossa, showing the contents 
of the ambient cistern. The trochlear nerve can be seen between 
the PCA superiorly and the SCA inferiorly. The oculomotor nerve 
(III) can be also seen traveling in the interpeduncular cistern while 
coursing medially in relation to the Un. A small segment of the 
trigeminal nerve (V) is also visualized. (c) Endoscopic view (0° 
lens) of the superior lateral posterior fossa above. The trigeminal 
nerve lies posterior to the SPV. (d) Endoscopic view (30° lens) of 
the superior lateral posterior fossa, aiming laterally in order to show 
the trigeminal nerve traveling into Mc. AICA: Anterior inferior 
cerebellar artery, SPV: Superior petrosal vein, SCA: Superior 
cerebellar artery, Mc: Meckel’s cave, Un: uncus, PCA: Posterior 
cerebral artery.
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SCA and the posterior cerebral artery (PCA) were seen where 
they emerge from the ambient cistern. Medially, the trochlear 
nerve and the SCA were seen in the cerebellomesencephalic 
fissure, all the way proximal to the origin of the trochlear 
nerve on the dorsal aspect of the brainstem, close to midline.

Using the endoscope (30° lens), the porus trigeminus, 
which was mostly obscured under microscopic view due to 
the presence of the suprameatal tubercle, was nicely seen 
[Figure  1d]. Medially, the endoscope also provided a clear 
view of the trigeminal root entry zone at the level of the mid-
pons. Anteriorly, the trochlear nerve was seen as it courses 
toward the tentorium. Moving forward across the ambient 
cistern, the origin of the ipsilateral oculomotor nerve arising 
within the interpeduncular fossa could be visualized, in 
addition to the bifurcation of the basilar artery.

Middle neurovascular complex

Using the microscope, the AICA was seen on the lateral surface 
of the pons, superior to the inferior olive. It is contiguous 
with the facial-vestibulocochlear nerve complex before 
its course along the lateral cerebellar surface [Figure  2a]. 
The labyrinthine artery and other branches off the AICA 
were seen accompanying the facial-vestibulocochlear nerve 
complex as it enters the internal auditory canal (IAC). The 
junction of the facial-vestibulocochlear nerve complex with 
the brainstem was obscured under the microscopic vision 
by the flocculus. Gentle medial retraction of the flocculus 
revealed the foramen of Luschka, over the lateral recess of the 
fourth ventricle. The proximal cisternal segment of the facial 
nerve was hidden anterior to the vestibulocochlear nerve at 
its origin, although its junction with the brainstem is slightly 
more superior to that of the vestibulocochlear nerve. Only a 
small portion of the internal acoustic meatus was seen due 
to presence of the bony ridge overlying the porus acusticus. 
The abducens nerve was partially seen as it emerges from the 
brainstem anteromedial to the vestibulocochlear nerve.

Using the endoscope (0° lens), superomedial retraction of 
the flocculus was required to visualize the junction of the 
facial-vestibulocochlear nerve complex with the brainstem. 
The meatal opening was more clearly visualized, in addition 
to the labyrinthine and subarcuate arteries [Figure 2b]. The 
AICA and its relationship with the facial-vestibulocochlear 
nerve complex were perfectly seen and inspected [Figure 2b]. 
Advancing the endoscope beyond the plane of the facial-
vestibulocochlear nerve complex brought the abducens 
nerve into vision. However, this particular trajectory over the 
vestibulocochlear nerve did not permit lateral visualization of 
the abducens nerve as it exits the posterior fossa by piercing 
the dura into the Dorello’s canal.

Using the endoscope (30° lens) allowed a proper inspection 
of the internal acoustic meatus and the distal portions of 

the facial-vestibulocochlear nerve complex. It also allowed 
better visualization of the origin of the facial nerve as it 
courses anterior and parallel to the vestibulocochlear nerve. 
Medially, the inferior olive could be inspected, as well as the 
terminal branches of the AICA. The entry of the abducens 
nerve into Dorello’s canal could be visualized anterior to 
the plane of the facial-vestibulocochlear nerve complex 
at the level of the pontomedullary junction [Figure  2c]. 
Advancing the endoscope inferior to the plane of the facial-
vestibulocochlear nerve complex, allowed good visualization 
of the V, VII, VIII, IX, and X as they entered their respective 
skull base foramina [Figure 2d].

Inferior neurovascular complex

Using the microscope, the dorsal surface of the 
glossopharyngeal and vagus nerves was seen posterior to the 
inferior olive. The junction of the IX and X cranial nerves 
with the brainstem was visualized with a slight superomedial 
retraction of the cerebellum. The glossopharyngeal nerve 

Figure 2: (a) Microscopic view of the middle lateral posterior fossa. 
The facial-vestibulocochlear nerve complex is seen in relation to the 
caudal loop of the AICA. (b) Endoscopic view (0° lens) of the middle 
posterior fossa. The meatal opening was more clearly visualized, in 
addition to the labyrinthine artery. The facial-vestibulocochlear 
nerve complex is seen in relation to the caudal loop of the AICA. 
The trigeminal nerve (V) was partially obscured by the superior 
petrosal vein. (c) Microscopic view (30° lens) angled endoscopic 
view of the middle lateral posterior fossa. The exit of the abducens 
nerve (6) into DC is well visualized. (d) Microscopic view (30° lens) 
angled endoscopic view of the middle lateral posterior fossa allowed 
good visualization of the V, VII, VIII, and X as they entered their 
respective skull base foramina. AICA: Anterior inferior cerebellar 
artery, PICA: Posterior inferior cerebellar artery, DC: Dorello’s 
canal, VA: Vertebral artery, SPV: Superior petrosal vein, SCA: 
Superior cerebellar artery, Mc: Meckel’s cave, Un: uncus.
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was seen arising below the pontomedullary junction, on the 
dorsal aspect of the olivary body. The proximal vagus nerve 
was partially obscured by the presence of the lateral recess of 
the fourth ventricle and part of the choroid plexus through 
the foramen of Luschka [Figure 3a]. The vagal nerve rootlets 
coalesced in the cerebellomedullary cistern inferior to the 
glossopharyngeal nerve. The jugular foramen could not be 
entirely visualized with the microscope alone. The posterior 
inferior cerebellar artery (PICA) was identified at its origin 
from the vertebral artery [Figure  3b]. The PICA weaves 
around the hypoglossal rootlets before curling around onto 
the cerebellar tonsils through a series of craniocaudally-
oriented loops. The hypoglossal nerve travels anteriorly at 
the olivo medullary junction, inferior to the origin of the IX 
and X cranial nerves in the pre olivary sulcus [Figure  3b]. 
The hypoglossal canal (HC) was not visualized under the 
microscope. The accessory nerve was also seen at the level of 
the lower half of the inferior olive.

Using the endoscope (0° lens) provided better views of the 
dorsal surfaces of the glossopharyngeal and the vagal nerves. 
Advancing the endoscope beyond the plate of IX and X 
cranial nerves, the rootlets of the hypoglossal nerve could be 
inspected [Figure  3c]. However, the foramina for the lower 
cranial nerves were unable to be visualized.

Using the endoscope (30° lens) allowed excellent visualization 
the PICA, rootlets of the lower cranial nerves, and the bony 
exits of cranial nerves IX, X, and XII. Medial exploration 
allowed for inspection of the rhomboid lip and the origins 
of the glossopharyngeal, vagal, and hypoglossal nerves, as 
well as the foramen of Luschka. Peering laterally, the jugular 
foramen could be visualized along with the intervening 
dural septum lying between the exits of the two nerves. The 
accessory nerve was also seen entering the jugular foramen 
after coalescence of its various rootlets and ascension along 
the lateral border of the medulla, inferior to the olive. The 
HC was perfectly visualized as well [Figure 3d].

DISCUSSION

In this study, we showed the endoscope-assisted microsurgical 
surgical anatomy of the retrosigmoid approach. In the 
superior neurovascular complex, the endoscope allowed us to 
nicely visualize the SPV, the trochlear, the proximal SCA and 
the PCA, the porus trigeminus, the trigeminal root entry zone 
at the level of the mid-pons and the origin of the ipsilateral 
oculomotor nerve arising within the interpeduncular fossa, 
in addition to the bifurcation of the basilar artery. Also in 
the middle neurovascular complex, the endoscope allowed 
us to visualize the junction of the facial-vestibulocochlear 
nerve complex with the brainstem, the meatal opening, 
the labyrinthine and subarcuate arteries, the AICA and its 
relationship with the facial-vestibulocochlear nerve complex, 
the abducens nerve, the origin of the facial nerve as it 
courses anterior and parallel to the vestibulocochlear nerve, 
the inferior olive and the terminal branches of the AICA in 
addition to the V, VII, VIII, IX, and X as they entered their 
respective skull base foramina. Meanwhile, in the inferior 
neurovascular complex, the endoscope was an asset to 
visualize the dorsal surfaces of the glossopharyngeal and the 
vagal nerves, the rootlets of the hypoglossal nerve, the PICA, 
rootlets of the lower cranial nerves, and the bony exits of 
cranial nerves IX, X, and XII.

In 1917, Doyen and Spencer-Browne was the first to describe 
a unique endoscopic sectioning of the trigeminal nerve as a 
cure for trigeminal neuralgia.[12,30] In 1970s, several reports 
have shown the growing utilization of endoscopy in the CPA 
surgery.[3,17,35,38] In 1990s, endoscope-assisted microsurgery 
has been utilized for the management of tumors of the 
IAC, hemifacial spasm, and trigeminal neuralgia.[29,30,32,34] 
The endoscope has conferred the ability to look around the 
corners with least risk of brain retraction.[4,9,22,24]

Figure 3: (a) Microscopic view of the inferior lateral posterior fossa 
showing the IX, X and XI cranial nerves (9, 10, 11) running over 
the dorsal surface of the VA. The proximal vagus nerve was partially 
obscured by the presence of the lateral recess of the fourth ventricle. 
A caudal loop of the AICA is seen in close relation to the IX cranial 
nerve. (b) Microscopic view of the inferior lateral posterior fossa, 
showing the origin of the hypoglossal nerve (12) from the olivary 
groove on the brainstem. The origin of PICA from the dorsal 
surface of the VA and its course through several hypoglossal rootlets 
to finally to reach the cerebellar tonsils. (c) Endoscopic view (0° 
lens) of the inferior lateral posterior fossa, showing the distal XII 
cranial nerve (12). The HC is obscured by the XI cranial nerve (11). 
(d) Endoscopic view (30° lens) of the inferior lateral posterior fossa, 
showing aimed laterally showing the exit of the XII cranial nerve 
(12) through the HC. VA: Vertebral artery, AICA: Anterior inferior 
cerebellar artery, PICA: Posterior inferior cerebellar artery, HC: 
Hypoglossal canal.
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In 1977, Jannetta et al. described the principles of MVD. 
However, this procedure was associated with a risk of 
failure, recurrence, and neurological deficits.[5,8,16,19,20,25,27,39,42] 
The desire for safe minimally invasive approaches to the 
posterior fossa has led to the application of endoscopic 
techniques for nerve decompression from compressing 
vasculature.[6] Visualization of the entire cisternal facial 
nerve segment, often obstructed by both the flocculus and 
choroid plexus emanating from the foramen of Luschka, is 
possible with the use of endoscopes.[14,43] The key factors for 
a successful MVD surgery include a precise visualization of 
all the nerve-vessel conflicts and a confirmation of a proper 
nerve decompression by the end of the procedure.[39] Given 
the anatomy of the posterior fossa and the limited size of 
the craniotomy, adequate visualization of the full course 
of the facial nerve and the porus portion, is difficult and 
challenging by the utilization of the surgical microscope 
only.[19,20,25,39] To overcome such limitations, endoscope-
assisted microscopic surgery was introduced to properly 
identify the site of the neurovascular compression and 
reduce the risk of complications.[1,4,15,24,28,30,34,39] Endoscope-
assisted MVD of the facial nerve demonstrated an additional 
72 % accuracy rate in identifying the nerve-vessel conflicts 
without dislocation of the acoustic-facial bundle and 
significant cerebellar retraction, resulting in a lower risk of 
neurological deficits.[4,15,24,28,30]

Corrivetti et al. reported that after microsurgical resection 
of vestibular schwannoma in 32  patients, the endoscopic 
inspection showed residual tumor in the lateral portion of 
the IAC in all cases. Therefore, they were able to accomplish 
GTR in the majority of cases and near total resection in 
those cases in which a thin layer of tumor capsule was 
left around the facial nerve because of firm adherences of 
the tumor capsule.[11] Hearing preservation also implies 
anatomical respect of the inner ear structures when 
exposing the fundus of the IAC. The most lateral part of the 
IAC is not sufficiently visualized under microscopic view 
only. Mazzoni et al. described the microsurgical technique 
of retrolabyrinthine meatotomy that allows a safe exposure 
of the fund of the IAC by a careful drilling of the IAC all 
the way to the fundus.[31] Pillai et al. described a unique 
endoscope-assisted microsurgical technique on a cadaveric 
model, achieving an excellent exposure of the fallopian 
portion of the fundus of the ICA.[37] Endoscopic assistance 
may confer the surgeon to decrease the amount of bone 
drilled in the posterior wall of the IAC, reducing the risk 
of labyrinth injuries.[2,40] Abolfotoh et al. described, in a 
surgical series of 50 CPA tumors, the presence of additional 
tumor in 64% of the cases in which the sole microscopic 
resection was believed to be GTR, demonstrating that 
endoscopic assistance had a relevant role in obtaining a 
GTR.[2]

CONCLUSION

Endoscope-assisted microsurgery could allow better 
visualization of superior the various regions of the posterior 
fossa. The use of straight and angled endoscope lenses 
allows for excellent visualization of areas obscured from 
the microscopic vision, including but not limited to the 
trigeminal porus, internal acoustic meatus, cranial nerve root 
entry zones, as well as important neurovascular anatomic 
relationships. Surgical planning for posterior fossa lesions 
should include consideration of this combined approach.
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