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Abstract

Motivation: Quantification estimates of gene expression from single-cell RNA-seq (scRNA-seq) data have inherent
uncertainty due to reads that map to multiple genes. Many existing scRNA-seq quantification pipelines ignore multi-
mapping reads and therefore underestimate expected read counts for many genes. alevin accounts for multi-
mapping reads and allows for the generation of ‘inferential replicates’, which reflect quantification uncertainty.
Previous methods have shown improved performance when incorporating these replicates into statistical analyses,
but storage and use of these replicates increases computation time and memory requirements.

Results: We demonstrate that storing only the mean and variance from a set of inferential replicates (‘compression’)
is sufficient to capture gene-level quantification uncertainty, while reducing disk storage to as low as 9% of original
storage, and memory usage when loading data to as low as 6%. Using these values, we generate ‘pseudo-inferen-
tial’ replicates from a negative binomial distribution and propose a general procedure for incorporating these repli-
cates into a proposed statistical testing framework. When applying this procedure to trajectory-based differential ex-
pression analyses, we show false positives are reduced by more than a third for genes with high levels of
quantification uncertainty. We additionally extend the Swish method to incorporate pseudo-inferential replicates
and demonstrate improvements in computation time and memory usage without any loss in performance. Lastly,
we show that discarding multi-mapping reads can result in significant underestimation of counts for functionally im-
portant genes in a real dataset.

Availability and implementation: makeInfReps and splitSwish are implemented in the R/Bioconductor fishpond
package available at https://bioconductor.org/packages/fishpond. Analyses and simulated datasets can be found in
the paper’s GitHub repo at https://github.com/skvanburen/scUncertaintyPaperCode.

Contact: michaelisaiahlove@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) allows for analysis of gene
expression data at the level of individual cells. This cell-level expres-
sion is often summarized in terms of expected read counts for each
gene. Many scientific questions that were previously difficult to ad-
dress using bulk RNA-seq can now be directly studied with scRNA-
seq, including direct identification of complex and rare cell

populations as well as the analysis of cellular development trajecto-
ries (Hwang et al., 2018). However, common pipelines for obtaining
gene-level expression estimates for scRNA-seq either discard multi-
mapping reads entirely, which may lead to biased quantification
estimates, or have no means to evaluate the quantification uncer-
tainty in expression estimates that is imparted by such reads
(Srivastava et al., 2019). A recent publication listing eleven grand
challenges in single-cell data science described estimation and
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propagation of measurement uncertainty as an ‘urgent elementary
theme’ recurring across many specific single-cell data analysis tasks
(Lähnemann et al., 2020).

alevin (Srivastava et al., 2019) is a droplet-based scRNA-seq
(dscRNA-seq) quantification pipeline that builds upon Salmon
(Patro et al., 2017) and improves upon prior pipelines for scRNA-
seq in several important ways. First, alevin is able to quantify reads
that map to multiple genes by first resolving multi-mapping reads
using a parsimony criterion, and then resolving equally parsimoni-
ous solutions by use of the EM algorithm. This reduces systematic
biases in quantified gene-level counts (Srivastava et al., 2019).
Compared to paired-end bulk RNA-seq, dscRNA-seq exhibits a 3’
coverage bias and generates one read per transcript sequence, which
worsens the impact of multi-mapping reads relative to typical bulk
experiments. Combined, these effects may result in as many as 23%
of reads mapping to multiple genes, which are discarded by default
by alternate quantification methods that do not employ the EM al-
gorithm, such as dropEst (Petukhov et al., 2018), Cell Ranger
(Zheng et al., 2017), STARsolo (Dobin et al., 2013) or bustools
(Melsted et al., 2019). When compared to existing scRNA-seq quan-
tification pipelines, alevin improved the accuracy of quantification
results when comparing pseudo-bulk samples of mouse retina data
generated with scRNA-seq to bulk RNA-seq of the same tissue type
(Srivastava et al., 2019). Improvement was greatest for genes with
lower levels of sequence uniqueness (higher potential for multi-
mapping reads), and lower for genes with 100% uniqueness (lowest
potential for multi-mapping reads). We demonstrate later that dis-
carding multi-mapping reads can result in significant underestima-
tion of counts for functionally important genes using recently
published scRNA-seq data of developing mice embryos (Pijuan-Sala
et al., 2019).

Second, alevin can additionally assess the inherent quantification
uncertainty in cell-level expected read counts caused by multi-
mapping reads by examining the distribution of quantification esti-
mates derived from bootstrap replicates from the original set of
reads. Specifically, each bootstrap replicate is obtained by using a
bootstrap sampling procedure to sample reads from cell-specific
equivalence classes. The quantification procedure is then repeated
on each set of sampled reads to obtain separate quantification esti-
mates for each set. Bayesian models for expression estimates alterna-
tively may draw replicates directly from a corresponding posterior
distribution, often using MCMC methods such as Gibbs sampling.
These two types of replicates can be collectively referred to as ‘infer-
ential replicates,’ and either type provides a relative measure of the
level of quantification uncertainty. Inferential replicates have been
previously used in bulk RNA-seq to capture inferential uncertainty
of gene or transcript-level quantification estimates (Al Seesi et al.,
2014; Bray et al., 2016; Froussios et al., 2019; Li and Dewey, 2011;
Mandric et al., 2017; Patro et al., 2017; Pimentel et al., 2017; Tiberi
and Robinson, 2020; Turro et al., 2011; Van Buren and Rashid,
2020; Zhu et al., 2019). By default, alevin stores only the sample
mean and variance of the bootstrap replicates for each gene and cell
instead of the full set of replicates. This ‘compression’ procedure
greatly reduces the amount of disk space and memory required for
storage and downstream analysis. However, it has not been eval-
uated whether this procedure sufficiently captures the quantification
uncertainty reflected in a full set of inferential replicates, thereby jus-
tifying the avoidance of their storage and direct use in downstream
analyses.

In this article, we demonstrate that storage of only the mean and
variance of the bootstrap replicates is sufficient to capture the gene-
level inferential uncertainty. This greatly reduces the amount of disk
space, memory and load time required for downstream analyses. We
additionally extend the Swish method to operate on ‘pseudo-inferen-
tial’ replicates drawn from a negative binomial distribution using
stored compression parameters. We show that the use of pseudo-
inferential replicates has comparable performance to results that in-
stead utilized bootstrap replicates. Lastly, we evaluate the impact of
accounting for quantification uncertainty into trajectory-based
scRNA-seq differential expression analysis using tradeSeq (Van den
Berge et al., 2020), and demonstrate that improvements in the false

discovery rate (FDR) can be obtained by incorporating pseudo-
inferential replicates.

2 Materials and methods

2.1 Uncertainty aware scRNA-seq workflow with

compression
A summary of the uncertainty-aware scRNA-seq workflow with
compression is given inFigure 1. A list of FASTQ files originating
from a dscRNA-seq experiment are utilized as input, where alevin is
run with the flag –numCellBootstraps 20 to conduct the quantifica-
tion and store the mean and variance of 20 bootstrap replicates
from each gene and cell. Under this setting, the bootstrap replicates
are not retained. We additionally evaluated the use of 100 bootstrap
replicates instead of 20. Parameters for a negative binomial distribu-
tion are then derived from these compressed estimates (see Section
2.3 for more detail) and are used to sample pseudo-inferential repli-
cates for use in various downstream tasks in lieu of the original
bootstrap replicates. Pseudo-inferential replicates can be generated
separately for each gene, allowing tasks such as differential expres-
sion analysis to be easily distributed across separate CPUs or jobs.

2.2 Simulation procedure
Using statistical simulation, we evaluated the performance benefit of
using compression to incorporate quantification uncertainty into
standard group-based scRNA-seq differential expression analysis.
We also evaluated the performance benefit for trajectory-based dif-
ferential expression analysis. Trajectory analysis for scRNA-seq is
an important development that enables study of the collection of
paths, or lineages, in which a cell of one type differentiates into a
new cell type (Cannoodt et al., 2016; Saelens et al., 2019). A collec-
tion of lineages is often referred to as a ‘trajectory,’ and many meth-
ods are available to conduct trajectory-based differential expression
analysis, including tradeSeq (Van den Berge et al., 2020). tradeSeq
fits a separate modified generalized additive model (GAM) (Hastie
and Tibshirani, 1986) to expression values for each gene to model
how values change across lineages and ‘pseudotimes,’ temporal vari-
ables that are not measured in exact units but index movement from
the beginning of a lineage toward the end. Here, tradeSeq was used
in combination with pseudo-inferential replicates such that the ana-
lysis would be sensitive to quantification uncertainty. See Section
2.4 for implementation specifics.

To simulate data under simple two-group differences for the for-
mer scenario, we utilized the Splat method from the splatter package
(Zappia et al., 2017). Similar to Zhu et al. (2019), we set the DE fac-
tor location parameter to be 3 on the log2 scale, the DE factor scale
parameter to be 1 on the log2 scale, 10% of genes to be differential-
ly expressed, and simulated data for 100 cells in each of two groups.
The factor location parameter and factor scale parameters were
modified from their default values to produce large fold changes be-
tween groups of cells, although in this work the focus is on uncer-
tainty in estimation of per-cell count values. To simulate data under
the latter trajectory-based scenario, we used the dynverse frame-
work that was previously used to benchmark trajectory inference
methods (Saelens et al., 2019), and was also used in benchmarking
tradeSeq (Van den Berge et al., 2020). In particular, we considered
‘bifurcating’ and ‘trifurcating’ trajectories, similarly to Van den
Berge et al. (2020), for both 100 and 250 cells. We set the level of
differential expression to be 20%, as in the tradeSeq paper. Both
simulations used 60 179 genes, corresponding to the number of
genes from the GENCODE version 32 annotation from the refer-
ence chromosomes only (Frankish et al., 2019; Harrow et al., 2012)
that were able to be quantified by alevin. Simulated counts were
assigned to actual genes based on the rank of the gene’s average ex-
pression from quantification of a dataset of peripheral blood mono-
nuclear cells (PBMC), specifically the publicly available PBMC 4k
dataset (Zheng et al., 2017). The PBMC 4K data can be downloaded
from 10X Genomics website. This procedure preserved the rank of
the genes by expression across simulated and real data.
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Following the generation of gene-level counts, we utilized the
minnow framework (Sarkar et al., 2019) to simulate realistic
scRNA-seq reads corresponding to the simulated counts from splat-
ter or dynverse. minnow is able to simulate dscRNA-seq reads
accounting for important characteristics of real dscRNA-seq data,
including polymerase chain reaction amplification, cellular barcodes
(CBs) and CB errors, unique molecular identifiers (UMI) for each
read, and sequence fragmentation. minnow importantly is able to
account for realistic patterns of uncertainty and multi-mapping of
reads by its use of a (colored compacted) De Bruijn graph instead of
sampling reads directly from transcript sequences. The rates of
multi-mapping used in sampling sequences from the De Bruijn graph
were estimated from the aforementioned PBMC 4K dataset. The
resulting dscRNA-seq reads were then quantified with alevin, and
20 bootstrap replicates of gene expression values were generated for
each cell. We additionally evaluated the use of 100 bootstrap repli-
cates instead of 20. All results utilized annotation files correspond-
ing to the previously discussed annotation corresponding to the
reference chromosomes only from GENCODE version 32.
Quantified data for the trajectory analysis simulations were
imported into R using the tximport package (Soneson et al., 2016)
to obtain simple list output. Data from the simple two group differ-
ence simulation were imported using the tximeta package (Love
et al., 2020) to obtain SummarizedExperiment objects to simplify
use with the Swish method (Zhu et al., 2019).

2.3 Evaluation of bootstrap replicates
We compared the bootstrap replicates from alevin to the true simu-
lated counts, evaluating the coverage of various intervals con-
structed from the bootstrap replicates. To correct for differences in
total count per cell due to reads not aligning, we scaled the simu-
lated counts for each cell to have the same total mapped count as
from alevin before evaluating interval coverage. Additionally, min-
now is unable to generate reads for genes whose transcript sequences
are shorter than the simulated read length (101). Our simulation
had 3068 such genes, and we removed these genes from consider-
ation before calculating coverage.

We considered 95% intervals constructed using the full set of
bootstrap replicates and using quantiles from a negative binomial
distribution whose parameters were determined from the mean and
variance of the bootstrap replicates. If the latter interval type pro-
vided similar results to the former type, compression of the boot-
strap replicates could be performed without a loss of relevant
information. Note that negative binomial was used here for the dis-
tribution of counts for one gene and one cell across bootstrap

replicates, not across genes or across cells. As we do not model
counts across cells or genes, a zero-inflation component is not used
or necessary. Specifically, let Vigj be the count for cell i ¼ 1; . . . ; n,
for gene g ¼ 1; . . . ;G, and in bootstrap replicate j ¼ 1; . . . ; 20. If
we let Vig ¼ ðVig1; . . . ;Vigf20gÞ be the entire vector of bootstrap val-

ues for cell i and gene g, we constructed the former interval type for
sample i and gene g as ðq0:025;q0:975Þ, where q0:025 and q0:975 are
0.025 and 0.975 quantile values of Vig, respectively. Since the 0.025
and 0.975 quantiles are not defined exactly with 20 values, standard
interpolation techniques are used to estimate these quantiles
(Hyndman and Fan, 1996). The latter interval type was constructed
using a negative binomial distribution with parameters l and /
chosen such that E(Y) ¼ l and Var(YÞ ¼ lþ 1

/ l2. The parameter /

governs the amount of extra-Poisson dispersion, with large values of
/ indicating a distribution closer to Poisson, and small values of /
associated with higher over-dispersion. Letting l̂ig be the sample

mean of Vig and r̂2
ig be the sample variance of Vig, we constructed

the negative binomial-based interval for sample i and gene g as
ðw0:025;w0:975Þ, where w0:025 and w0:0975 are the quantiles from a

negative binomial distribution with l ¼ l̂ ig and / ¼ l̂2
ig

r̂2
ig�l̂ ig

. In prac-

tice, we set the maximum value of / to be 1000 when r̂2
ig � l̂ig.

The ‘coverage’ for a given gene within a cell was defined as equal
to one if the scaled, simulated count is contained in the interval and
zero otherwise. The overall coverage for a gene was obtained by
averaging the coverage values for the gene across all cells. In general,
if the simulated replicates accurately reflected the true expression
profile they were simulated from, we would expect coverage of the
true count to be close to the nominal value, e.g. 95%. Additionally,
if storage of only the mean and variance of the bootstrap replicates
was sufficient to capture the gene-level inferential uncertainty pre-
sent in the bootstrap replicates, then coverage of the two interval
types should be similar. Both interval types are similar to Bayesian
credible intervals (Gelman et al., 2013; Hoff, 2009), where the par-
ameter of interest in our case would be the scaled, simulated count.
However, note that the use of bootstrap replicates to construct the
intervals means these intervals cannot be thought of as proper cred-
ible intervals since no posterior distribution is used in their construc-
tion. We only considered genes that had counts of at least 10 in at
least 10 cells in our main coverage evaluations. This is because count
values of zero proved substantially easier to cover than positive
counts, as we will demonstrate later, resulting in very lowly
expressed genes overly inflating coverage statistics when included.

To summarize the amount of quantification uncertainty present
per cell and per gene, we utilized the inferential relative variance

Fig. 1. Compression of scRNA-seq quantification uncertainty. This procedure stores solely the mean and variance of the bootstrap replicate count matrices, with this com-

pressed information later used to regenerate marginal (per-gene) pseudo-inferential replicates as needed. CB, cell barcode; UMI, unique molecular identifier; NB, negative

binomial
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(InfRV) statistic proposed by Zhu et al. (2019). This quantity is
defined for each cell and gene combination as:

InfRVig ¼
maxðr̂2

ig � l̂ig; 0Þ
l̂ig þ 5

þ 0:01

where r̂2
ig and l̂ig are the sample variance and sample mean values

of the bootstrap replicates for cell i and gene g, respectively. This
quantity is roughly independent of the range of the counts, and the
quantities 5 and 0.01 are respectively added to stabilize the statistic
and ensure the final quantity is strictly positive for log transform-
ation. The final InfRV value for a gene can then be taken as the aver-
age of each cell-specific value for the gene. The InfRV statistic is not
directly incorporated into any testing procedure. Instead, it is used
to categorize genes based on quantification uncertainty for plotting
and to evaluate how methods perform across differing levels of
quantification uncertainty.

2.4 Incorporation of uncertainty into scRNA-seq trajec-

tory analysis
Pseudo-inferential replicates were generated from a negative bino-
mial distribution using distributional parameter values derived from
the compressed uncertainty estimates, as detailed in Section 2.3.
Lineages and pseudotimes were fit using the slingshot method
(Street et al., 2018), and tradeSeq was used to fit the GAMs to ex-
pression counts utilizing these lineages and pseudotimes. The pro-
cedure was repeated on each replicate, and results were combined
across replicates using two different approaches described in more
detail below. We utilized the pre-defined associationTest and
patternTest within the tradeSeq method to test for general differen-
ces in expression within a single lineage and between several distinct
lineages, respectively. We additionally utilized the startVsEndTest to
test for differences in expression between the start and end of line-
ages and the diffEndTest to test for differences in expression be-
tween separate lineages near the end of the lineages. The fitting and
testing procedure was repeated on 20 pseudo-inferential replicates
simulated from a negative binomial distribution with parameters
calculated according to the procedure discussed in Section 2.3. We
considered several methods to combine results for a gene across the
simulated datasets.

The first method was motivated from Swish (Zhu et al., 2019) in
that it uses the mean test statistic over inferential replicates as its
final test statistic. In contrast to Swish, which uses permutation to
determine significance, the mean test statistic is compared to a para-
metric null distribution to determine significance. Specifically,
tradeSeq utilizes Wald test statistics, which follow a chi-squared null
distribution, for each of its significance tests. However, the associ-
ated degrees of freedom (df) of the chi-squared null distributions can
change across genes and replicates for certain tests. To account for
this, we first transformed P-values across replicates to a chi-squared
distribution with df equal to the most commonly observed df value
over the pseudo-inferential replicates. While the mean of chi-
squared random variables does not follow a chi-squared distribu-
tion, we assumed the mean test statistic across replicates corre-
sponds to a single hypothesis test for the gene of interest. We then
were able to compare this mean test statistic to the same chi-squared
distribution used in the inverse P-value transformation above to cal-
culate final P-values for each gene determine significance. Note that
the final P-values will not necessarily follow a uniform distribution
under the null hypothesis with this approach. This method is
referred to in Results as ‘MeanStatAfterInvChiSq.’

The second approach selects a specific percentile of the vector of
raw P-values across replicates to be the final P-value for each gene
and performs FDR correction on these selected P-values to deter-
mine significance. We considered the 50th and 75th percentiles, and
refer to these methods in Results as ‘Pval50Perc’ and ‘Pval75Perc’,
respectively. This procedure is similar to the procedure utilized by
RATs (Froussios et al., 2019), which tests for differential transcript
usage (DTU) in bulk RNA-seq data. RATs incorporates inferential
uncertainty by requiring a certain proportion (default 0.95) of FDR-

adjusted P-values across inferential replicates (either Gibbs or boot-
strap) to show significance at a given nominal FDR level for the
gene to be considered to show significant DTU. However, this ap-
proach requires the full set of FDR-adjusted P-values across inferen-
tial replicates to be retained if significance is to be evaluated at a
different FDR threshold. Depending on the number of significance
tests and inferential replicates used, the disk space and memory
required to store and load all P-values could be prohibitive. In con-
trast, our proposed approach enables evaluation of multiple FDR
cutoffs while only requiring storage of a single P-value for each sig-
nificance test. We will demonstrate later that our proposed ap-
proach provides very similar performance in practice to the one
utilized by RATs.

2.5 Modification of Swish to use pseudo-inferential

replicates
We additionally modified the existing Swish implementation (Zhu
et al., 2019) to enable it to use pseudo-inferential replicates gener-
ated from a negative binomial distribution. This can greatly reduce
the amount of disk space and memory required to incorporate infer-
ential replicate information into existing analyses. Pseudo-
inferential replicates can be simulated using the makeInfReps func-
tion in the fishpond Bioconductor package. The splitSwish function
was also added to the package, and allows most of the Swish com-
putations to be distributed across cores using Snakemake (Köster
and Rahmann, 2012). Results from each core are gathered prior to
calculation of the final q-value, using the qvalue package and func-
tion (Storey, 2002). Only the compressed inferential statistics l̂ig

and r̂2
ig are sent to each core, with pseudo-inferential replicates gen-

erated and used as needed per core. This further reduces total mem-
ory and running time per job.

2.6 Simulation evaluation
To evaluate the performance of the previously discussed simula-
tions, we used the iCOBRA package (Soneson and Robinson, 2016)
to generate plots that compare the true positive rate (TPR) across
different false discovery rates (FDR) at nominal FDR thresholds of
1%, 5% and 10%. We additionally stratified the plots based on
InfRV to compare performance across differing levels of quantifica-
tion uncertainty.

2.7 Mouse embryo data
We evaluated the effect of multi-mapping reads and quantification
uncertainty on trajectory-based differential expression with data
from a recent scRNA-seq study by Pijuan-Sala et al. (2019). This
study sequenced RNA from 116 312 single cells from mouse em-
bryos, collected at nine sequential time points that range from 6.5 to
8.5 days post-fertilization. We considered data at a subset of time
points, specifically 8.00, 8.25 and 8.50 days post-fertilization, to
focus on cells with the global cell-type annotation ‘gut’. These cells
correspond to maturing gut cells that were demonstrated to have
distinct marker genes that can indicate differentiation between dif-
ferent cell types. Gene expression was quantified using alevin run in
its default mode, which incorporates multi-mapping reads via the
EM algorithm, with 20 bootstrap replicates additionally generated
to obtain the means and variances for compressed uncertainty ana-
lysis. We additionally ran alevin without the EM step by using the –
noem flag, which discards multi-mapping reads and thus provides
quantification results more comparable to dropEst or Cell Ranger.
The mouse embryo data can be downloaded using the instructions
found in the DownloadMouseEmbryoData.md file in the GitHub
repository for this paper.

The analysis of cells at 8.00, 8.25 and 8.50 days post-
fertilization involved 20 401 cells, and we randomly chose 500 from
each time point to include in the trajectory analysis. The subsetting
was performed to incorporate cells from each time point that were
distributed along the entire developmental trajectory while ensuring
computational scalability for the results run on the pseudo-
inferential replicates. Trajectory-based differential expression
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analysis was conducted using the procedure discussed in Section 2.4.
Hypothesis testing was conducted using the associationTest from
tradeSeq to test for general differences in expression across lineages.
We ran the procedure on the counts from alevin that incorporate
multi-mapping reads using the EM algorithm, and repeated the ana-
lysis on the counts that do not incorporate multi-mapping reads and
were generated without using the EM algorithm. We additionally
simulated 20 pseudo-inferential replicates from the negative bino-
mial distribution using the procedure described in Section 2.3, and
combined results across replicates using the procedures described in
Section 2.4. Clustering assignment of cells and estimated pseudo-
times and lineages were fixed to be those estimated from the EM
count point estimates in all cases to ensure all results could be com-
pared as directly as possible.

3 Results

3.1 Disk space and memory comparison
We first compared the total disk space (in GB) required to store the
full object output by tximport for the trajectory simulations in a
gzip compressed binary format as well as the total memory required
(in GB) to load the object in R with and without including 20 boot-
strap replicates across 100 and 250 cells in Supplementary Table S1.
Matrices within the object are stored in a sparse format, greatly
reducing disk space and memory required to load the object into R.
However, both disk space and memory required to load the object
into R increased approximately linearly with the number of cells,
and storage and memory requirements for results without bootstrap
replicates are approximately 18% and 14% of the amounts required
for results including all 20 bootstrap replicates. Additional results
shown in Supplementary Table S2 demonstrate that the computa-
tional improvements from the compression procedure became more
pronounced as the number of cells increased. Specifically, the disk
space and memory required for data from 1000 cells without boot-
strap replicates were approximately 9% and 6% of the amounts
required for results including bootstrap replicates. Especially given
recent advances in scRNA-seq technology that have made it possible
that a single experiment could comprise many thousands or even
millions of cells (Lähnemann et al., 2020), the disk space and mem-
ory required to store results that include all bootstrap replicates can
quickly become intractable as the number of cells or replicates
increases.

3.2 Coverage
Coverage of each interval type was evaluated using the data from
the two group difference simulation, stratifying by InfRV and ex-
pression level. The InfRV measure is discussed in Section 2.3, but
briefly, it is a numeric measure that quantifies inferential uncer-
tainty that is roughly stabilized across the range of the counts
(Zhu et al., 2019). Results show nearly identical coverage values
between the two interval types. This indicated storage of the
sample mean and sample variance of the bootstrap replicates is
sufficient to capture the gene-level inferential uncertainty present
across the replicates (Fig. 2). Coverage tended to be lower for
some genes in the upper 10% of InfRV level that are not in the
upper 10% of expression level. Interval width tended to be larger
for genes in the upper 10% of expression and for genes in the
top 10% of InfRV (Supplementary Fig. S1). The distributions of
interval widths were nearly identical between the two interval
construction methods.

Coverage of each interval type was also evaluated across the
level of uniqueness in the reads contributing to the gene’s expres-
sion, as recorded in the gene-by-cell ‘tier’ information output by
alevin (Srivastava et al., 2019). A specific gene and cell combin-
ation is assigned a tier value ranging from 0 to 3, with a value
of 0 indicating no reads from a cell mapped to the gene, 1 indi-
cating that the gene had some unique reads (either all, or a mix
of unique and ambiguous), 2 indicating the gene had only am-
biguous reads but appeared in a multi-mapping network in which
other genes had uniquely mapping reads and 3 indicating the

gene itself, and all other genes in its multi-mapping network, had
only ambiguous reads. The overall tier value for a gene was com-
puted as the average of all cell-specific tier values that are greater
than zero to ensure cells with no reads mapping to a particular
gene did not affect the gene’s overall tier rating. Coverage
decreased as the overall tier value increased, corresponding to
lower overall uniqueness in the reads contributing to the gene’s
expression across cells (Fig. 2). Coverage was nearly identical
across the two interval types, again indicating storage of the
mean and variance was sufficient to capture the gene-level infer-
ential uncertainty present in the bootstrap replicates. The median
widths of the intervals decreased as gene tier increased past 2
(fewer unique reads for quantification) but did not differ appre-
ciably between the two interval construction methods
(Supplementary Fig. S2). Similar plots using a gene’s uniqueness
ratio, which is the proportion of k-mers of length 31 present in
any of the gene’s transcripts that are not shared with any other
genes (Srivastava et al., 2019), are given in Supplementary
Figures S3 and S4. Coverage decreased as the sequences contribu-
ting to the gene became less unique but the width of the intervals
did not change appreciably across gene uniqueness. A simple toy
example of gene uniqueness values is shown in Supplementary
Figure S5. Note that a gene can have a gene uniqueness value of
zero, which evaluates uniqueness in the sequence of the gene,
while still having a non-zero quantity of reads mapping to the
gene. We additionally examined the difference in coverage be-
tween the two interval types on a per-gene basis (Supplementary
Fig. S6). Coverage was identical between the two intervals for
90% of genes. Additionally, the coverage was more than 5% dif-
ferent between the two interval types for only 3.5% of genes,
and the negative binomial intervals provided higher coverage
than the bootstrap intervals in almost all of these cases.

We additionally evaluated gene-specific coverage performance
across cells in Supplementary Figures S7–S10. Coverage of the simu-
lated count varied greatly across genes and cells, with
Supplementary Figure S7 demonstrating low coverage across cells,
Supplementary Figures S8 and S9 demonstrating very high coverage
across cells, and Supplementary Figure S10 demonstrating more
variation in coverage across cells. Note that the gene uniqueness
ratio is zero in Supplementary Figure S10, corresponding to the gene
sequence having no unique k-mers, while there are still many counts
mapping to this gene. Note that, overall, coverage results were again
very similar between the two interval types.

To evaluate the impact of gene filtering on coverage, we repli-
cated the gene tier coverage plots using all 57 111 genes that were
able to be used across the simulation pipeline (Supplementary Fig.
S11). Coverage tended to be higher than the corresponding results
that filtered genes (Fig. 2), indicating lowly expressed counts tended
to be easier to cover with intervals than more highly expressed ones.
This was further confirmed by removing all counts of 0 from the
coverage evaluation for all 57 111 genes, which resulted in signifi-
cantly lower coverage for genes with high overall tier values
(Supplementary Fig. S12). Additionally, coverage results presented
in Figure 2 did not differ appreciably when using 100 bootstrap rep-
licates instead of 20 (Supplementary Fig. S13).

Lastly, we evaluated coverage using the simulated trajectory
counts from the dynverse framework. Results from the trifurcating
trajectory simulation with 100 cells are presented in Supplementary
Figures S14 and S15. Coverage from this simulation tended to be
significantly lower than the coverage for the two group difference
simulation presented in Figure 2 for genes in the upper 10% of
quantification uncertainty. This was likely because the expression
levels across genes are significantly higher than is typically present in
real datasets, with nearly 50 000 genes being highly expressed
enough to pass filtering for this simulation.

3.3 Trajectory-based differential expression analysis
We used tradeSeq to evaluate the effect of incorporating quantifica-
tion uncertainty into trajectory-based differential expression ana-
lysis using pseudo-inferential replicates. Using only the alevin point
estimates of abundance generally resulted in high sensitivity and
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often conserved the desired FDR threshold. However, incorporation
of quantification uncertainty resulted in reduced FDR, particularly
for genes in the upper 20% of InfRV. This was especially true for
the startVsEndTest and patternTest results for the 100 cell trifurcat-
ing trajectory simulation. Results for these two tests are shown in
Supplementary Figures S16 and S17, respectively, while results for
the associationTest and diffEndTest are shown in Supplementary
Figures S18 and S19, respectively. Sensitivity when using the mean
statistic and Pval50Perc approaches was comparable to use of the
point estimates.

An example of how the incorporation of quantification uncer-
tainty can benefit analysis can be seen in the startVsEndTest
results. Specifically, use of the point estimates of counts for genes
within the highest InfRV category resulted in 8% observed FDR
at a nominal 5% FDR, while the three uncertainty-incorporating
methods all had observed FDR less than nominal 5%, and there-
fore reducing the false positives by more than a third for this
simulation. We note that the sensitivity initially appears to be
higher when using only the point estimates in this case.
However, this increase is offset by increased FDR levels, and we
thus caution against interpreting the increased TPR shown as an
indication of better performance. Additionally, results analogous
to Supplementary Figures S16 and S17 run on the actual boot-
strap replicates from alevin are shown in Supplementary Figures
S20 and S21. These significance results are nearly identical to
results discussed above, indicating that use of pseudo-inferential
replicates generated from a negative binomial distribution in
place of the actual bootstrap replicates results does not signifi-
cantly impact downstream results. Results analogous to
Supplementary Figures S16 and S17 run using 100 simulated
pseudo-inferential replicates did not differ substantially from
results with only 20 (Supplementary Figs S22 and S23). This indi-
cated 20 pseudo-inferential replicates were sufficient to incorpor-
ate quantification uncertainty into the analysis. Lastly, our
proposed Pval50Perc and Pval75Perc approaches showed very
similar performance to the similar procedure motivated from
RATs (Froussios et al., 2019). The procedure from RATs

conducts FDR correction before selecting the 50th or 75th per-
centile of adjusted P-values as the final value instead of perform-
ing the FDR correction after selecting the final raw P-values
(Supplementary Figs S24 and S25).

To illustrate the advantages of quantification uncertainty on
particular genes, we focused on 15 null genes that had a mean
count > 5 across cells and had high inferential uncertainty (average
InfRV > 0.5). P-values for these genes from the startVsEndTest for
results calculated using the alevin point estimates as well as for
Pval50Perc and Pval75Perc are respectively plotted in
Supplementary Figures S26 and S27. Use of the inferential repli-
cates eliminated false positives at the 0.01 FDR level: use of
Pval50Perc eliminated 7 of 15 false positives, while use of
Pval75Perc eliminated 10 of 15 false positives. Pval75Perc correctly
shifted the P-value toward 1 for all cases, while Pval50Perc shifted
the P-value toward 1 in every case except one.

The 250 cell trifurcating trajectory simulation also showed
reduced FDR levels but the FDR from the alevin point estimates was
lower in this simulation than for the 100 cell simulation, meaning
less improvement in the FDR from incorporation of quantification
uncertainty was possible. We interpret this to be indicative of
increased accuracy in the pseudotime and lineage estimation relative
to the 100 cell case, resulting in quantification uncertainty having
less impact on final significance results across all genes. Results for
the 250 cell trifurcating lineage simulation are given in
Supplementary Figures S28–S31. Significance results for the bifur-
cating lineage simulation showed similar patterns to results from the
trifurcating trajectory simulation, with the FDR always being
reduced by incorporating quantification uncertainty via inferential
replicates (data not shown). However, the improvements were
smaller than those present in the trifurcating trajectory, indicating
quantification uncertainty had a smaller effect on the final signifi-
cance results than for the trifurcating trajectory case. Two-dimen-
sional principal component plots of each cell across known
pseudotimes for the 100 cell and 250 cell trifurcating simulations
are given in Supplementary Figures S32 and S33, respectively, with
the fit lineages from slingshot being plotted using the black lines.

A B

C D

Fig. 2. Per-gene coverage comparisons for the 95% intervals calculated using negative binomial distribution quantiles (A and B) and quantiles from the bootstrap empirical dis-

tribution (C and D), for the two group difference simulation. Panels A and C are stratified by inferential uncertainty (InfRV) and expression level, while panels B and D are

stratified by the average gene tier value across samples. ‘High’ InfRV and expression correspond to the top 10% of InfRV and gene-level counts, respectively
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3.4 Swish with pseudo-inferential replicates
We additionally evaluated and compared Swish with the proposed
splitSwish function. Load time, compute time and memory compari-
sons are given in Table 1. Usage of splitSwish instead of Swish was
able to greatly reduce the size of the quantification object and mem-
ory required to complete the analysis. Compute time summing
across all eight jobs was increased with splitSwish compared to
Swish, but per job the compute time was reduced about four-fold.
Sensitivity and false discovery rates were comparable between
splitSwish and Swish (Supplementary Fig. S34).

3.5 Mouse embryo data
We lastly evaluated the impact of multi-mapping reads and quantifi-
cation uncertainty on a trajectory-based differential expression ana-
lysis of mouse embryo data collected at 8.00, 8.25 and 8.50 days
post-fertilization. We found that counts incorporating multi-
mapping reads can differ greatly from those that do not for certain
genes while being virtually unchanged for other genes. This was
even true for genes within a common gene family, where counts for
certain genes within the family were significantly underestimated
without incorporating multi-mapping reads. Previous work in bulk
RNA-seq has shown that discarding multi-mapping reads can lead
to underestimation of counts for genes relevant to human disease,
recommending collapsing across multi-mapping groups (Robert and
Watson, 2015; Turro et al., 2014). For example, the Nme1 and
Nme2 genes are known to be part of the Nm23 gene family, and
have been shown to be responsible for the majority of NDP kinase
activity in mammals (Postel et al., 2009) along with other cellular
processes (Boissan et al., 2018). Nme1 and Nme2 can be co-
transcribed, forming a fusion protein (Akiva et al., 2005; Prakash
et al., 2010). Mice that had both genes deleted have been previously
found to suffer stunted growth and die perinatally (Postel et al.,
2009), demonstrating the clear importance of the gene family in
mammalian development. The gene family has additionally been
shown to play a vital role in non-mammal vertebrate species
(Desvignes et al., 2009), and low expression of Nm23 has long been
identified to play crucial role in cancer mestasis in humans
(Hartsough and Steeg, 2000; Jarrett et al., 2013; MacDonald et al.,
1995).

In the mouse embryo dataset, a comparison of Nme1 and Nme2
counts estimated with and without the EM algorithm (henceforth
referred to as ‘EM’ and ‘no EM’, respectively) are presented in
Figure 3. Counts for Nme1 were nearly identical whether incorporat-
ing multi-mapping reads or not, resulting in the predicted counts
across pseudotime for each lineage having similar shapes with and
without incorporating multi-mapping reads (Supplementary Fig.
S35). In contrast, counts for Nme2 were found to be much lower and
near zero without incorporating multi-mapping reads. This resulted
in the predicted counts across pseudotime for each lineage being
much lower when ignoring multi-mapping reads (Supplementary Fig.
S35) despite the clear presence of uniquely aligned counts for many
cells across the samples analyzed (Supplementary Fig. S36).

Pseudo-inferential replicates and the proposed Pval50Perc
method were used to conduct significance testing for the

uncertainty-aware trajectory analysis (‘EM with uncertainty’).
Adjusted P-values from the associationTest were highly significant
(< 10�12) for all three scenarios (‘EM’, ‘EM with uncertainty’, ‘no
EM’) for Nme1 and Nme2. However, a manual inspection of the fit
GAMs in Supplementary Figure S35 for the ‘no EM’ results revealed
the predicted counts nevertheless do not differ to a large extent
across pseudotime. This would lead to the incorrect conclusion that
Nme2 was always very lowly expressed across pseudotime, despite a
statistically significant association with pseudotime. Very similar
results were found when the fit lineages and resulting GAMs for the
‘no EM’ results were allowed to differ from those fit for the ‘EM’
results (Supplementary Fig. S37).

Additional examples of genes with much lower estimated counts
when ignoring multi-mapping reads include Hmgb1 and Rpl36a
(Supplementary Figs S38 and S39). There were large differences in
the fit GAMs for both genes for the ‘EM’ and ‘no EM’ results
(Supplementary Fig. S40), though P-values from the associationTest
were all highly significant (< 10�12) for both genes for all three
scenarios. Similar differences in estimated counts when not incorpo-
rating multi-mapping reads were also present for 358 genes when
subsetting based on the total gene count across cells being more than
50% higher or lower across quantification method (Supplementary
Fig. S41).

4 Discussion

Previous work had demonstrated the necessity of incorporating
multi-mapping reads into scRNA-seq analysis, as discarding them
could result in up to a 23% decrease in the number of reads used for
quantification (Srivastava et al., 2019) and induce systematic bias
for certain groups of genes based on coverage and sequence hom-
ology. alevin incorporates these multi-mapping reads and addition-
ally allows drawing bootstrap replicates to estimate quantification
uncertainty that is present due to these multi-mapping reads. Here,
we demonstrate that storage of the sample mean and sample vari-
ance estimates of these bootstrap replicates from alevin is sufficient
to capture the gene-level inferential uncertainty present in sampled
replicates. Pseudo-inferential replicates can be generated from a
negative binomial distribution as needed, enabling easier incorpor-
ation of quantification uncertainty into downstream analyses. While
coverage of the true count does not generally differ with and with-
out compression of quantification uncertainty, certain genes showed
very low coverage. Some of these genes showed high levels of quan-
tification uncertainty, but ideally even high quantification uncer-
tainty should not directly result in decreased coverage but instead
only larger interval widths. We plan to extend alevin to produce
posterior Gibbs samples for the underlying Bayesian model. Since
Gibbs sampling explores the entire parametric space by fixing other
estimates but one, we believe the resulting distribution will represent
the uncertainty more accurately than bootstrap sampling. Use of
Gibbs sampling would additionally allow constructed coverage
intervals to be interpreted as Bayesian credible intervals since a valid
posterior distribution would be used in their construction.

A limitation of the compressed uncertainty procedure we have
proposed is the fact that it only preserves the marginal gene-level in-
ferential replicate distribution such that it can’t be used with meth-
ods that require covariance between pairs of genes or transcripts,
such as mmcollapse (Turro et al., 2014) or terminus (Sarkar et al.,
2020). The proposed approach that uses P-value quantiles from
results repeated across pseudo-inferential replicates to determine sig-
nificance has the advantage that it can be applied to any statistical
method without directly requiring any additional assumptions. The
proposed approach that uses the mean test statistic across replicates
is similarly flexible but assumes that the mean test statistic follows a
parametric null distribution to determine significance. This assump-
tion may not hold in certain situations.

Future work could investigate additional approaches to incorp-
orate quantification uncertainty into downstream statistical analyses
and to incorporate uncertainty into additional methods and work-
flows. Quantification uncertainty has been previously shown to im-
prove performance when incorporated into matrix factorization for

Table 1. Computation comparisons for Swish and splitSwish for

the two group difference simulation

Method R object

size

(MB)

Max mem-

ory

(GB)

Load

(s)

Compute

(s)

Swish 853 4.90 28.2 78

splitSwish 138 1.08 1.5 20

Note: Results include 60 179 genes across 200 cells, with 20 bootstrap rep-

licates for Swish and 20 pseudo-inferential replicates for splitSwish. R object

size and load time differ across methods, as Swish uses full bootstrap replicate

matrices while splitSwish uses compressed inferential uncertainty. Max mem-

ory and compute time are provided per job (n¼ 8) for splitSwish.

Compression of scRNA-seq quantification uncertainty 1705

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab001#supplementary-data


microarray analysis (Wang et al., 2006) and ordination methods for
microbiome analysis (Nguyen and Holmes, 2017; Ren et al., 2017),

and these and similar methods could be extended to incorporate
compressed uncertainty. Future work incorporating uncertainty into
trajectory analysis specifically could additionally seek to evaluate

the effect of fixing cluster assignments, pseudotimes and lineages
across pseudo-inferential replicates. Keeping these consistent across

pseudo-inferential replicates prevents issues that can complicate
combination of results across replicates, such as different replicates
resulting in a different number of lineages or in different starting

and ending clusters. However, this approach will not incorporate
uncertainty that manifests itself through differences in cluster assign-

ments, pseudotimes and lineages themselves.

Funding

This work was funded by National Institutes of Health R01 HG009937 to

M.I.L. and R.P, and by National Science Foundation CCF-1750472, and

CNS-1763680 to R.P. N.U.R. was supported by National Institutes of Health

P30 CA016086 and P50 CA058223. The funders had no role in study design,

data collection and analysis, decision to publish or preparation of the

manuscript.

Disclosure

R.P. is a co-founder of Ocean Genomics Inc.

Conflict of Interest: none declared.

References

Akiva,P. et al. (2005) Transcription-mediated gene fusion in the human gen-

ome. Genome Res., 16, 30–36.

Al Seesi,S. et al. (2014). Bootstrap-based differential gene expression analysis

for RNA-seq data with and without replicates. BMC Genomics, 15, S2.

Boissan,M. et al. (2018) The ndpk/nme superfamily: state of the art. Lab.

Investig., 98, 164–174.

Bray,N.L. et al. (2016) Near-optimal probabilistic RNA-seq quantification.

Nat. Biotechnol., 34, 525–528.

Cannoodt,R. et al. (2016) Computational methods for trajectory inference

from single-cell transcriptomics. Eur. J. Immunol., 46, 2496–2506.

Desvignes,T. et al. (2009) Nme protein family evolutionary history, a verte-

brate perspective. BMC Evol. Biol., 9, 256.

Dobin,A. et al. (2013) Star: ultrafast universal RNA-seq aligner.

Bioinformatics (Oxford, England), 29, 15–21.

Frankish,A. et al. (2019) GENCODE reference annotation for the human and

mouse genomes. Nucleic Acids Res., 47, D766–D773.

Froussios,K. et al. (2019) Relative abundance of transcripts (rats): Identifying

differential isoform abundance from RNA-seq [version 1; peer review: 1

approved, 2 approved with reservations. F1000Research, 8, 213.

Gelman,A. et al. (2013) Bayesian Data Analysis, 3rd edn. Chapman &

Hall/CRC Texts in Statistical Science. Taylor & Francis, Boca Raton, FL.

Harrow,J. et al. (2012) Gencode: the reference human genome annotation for

the encode project. Genome Res., 22, 1760–1774.

Hartsough,M.T. and Steeg,P.S. (2000) Nm23/nucleoside diphosphate kinase

in human cancers. J. Bioenerg. Biomembranes, 32, 301–308.

Hastie,T. and Tibshirani,R. (1986) Generalized additive models. Statist. Sci.,

1, 297–310.

Hoff,P.D. (2009) A First Course in Bayesian Statistical Methods, 1st edn.

Springer Publishing Company, New York, NY.

Hwang,B. et al. (2018) Single-cell RNA sequencing technologies and bioinfor-

matics pipelines. Exp. Mol. Med., 50, 96.

A B

C D

Fig. 3. Comparison of counts across pseudotime for Nme1 and Nme2 for counts generated incorporating multi-mapping reads using the EM algorithm (A and C) and without

incorporating multi-mapping reads (B and D). Counts are colored according to assignment to one of two lineages. Points represent mean of bootstrap replicates and vertical

bars represent 95% normal-based intervals in A and C, while points in B and D provide estimated counts. Curves plot the fitted GAMs across pseudotime for each lineage

1706 S.Van Buren et al.



Hyndman,R.J. and Fan,Y. (1996) Sample quantiles in statistical packages.

Am. Stat., 50, 361–365.

Jarrett,S.G. et al. (2013) Nm23 deficiency promotes metastasis in a UV

radiation-induced mouse model of human melanoma. Clin. Exp.

Metastasis, 30, 25–36.

Köster,J. and Rahmann,S. (2012) Snakemake-a scalable bioinformatics work-

flow engine. Bioinformatics, 28, 2520–2522.
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