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The risk of osteoporosis in breast cancer patients is higher than that in healthy

populations. The fracture and death rates increase after patients are diagnosed

with osteoporosis. We aimed to develop machine learning-based models to

predict the risk of osteoporosis as well as the relative fracture occurrence and

prognosis. We selected 749 breast cancer patients from two independent Chinese

centers and applied six different methods of machine learning to develop

osteoporosis, fracture and survival risk assessment models. The performance of

the models was compared with that of current models, such as FRAX, OSTA and

TNM, by applying ROC, DCA curve analysis, and the calculation of accuracy and

sensitivity in both internal and independent external cohorts. Three models were

developed. The XGB model demonstrated the best discriminatory performance

among the models. Internal and external validation revealed that the AUCs of the

osteoporosis model were 0.86 and 0.87, compared with the FRAX model (0.84

and 0.72)/OSTA model (0.77 and 0.66), respectively. The fracture model had high

AUCs in the internal and external cohorts of 0.93 and 0.92, whichwere higher than

those of the FRAXmodel (0.89 and 0.86). The survivalmodel was also assessed and

showed high reliability via internal and external validation (AUC of 0.96 and 0.95),

whichwas better than that of the TNMmodel (AUCs of 0.87 and 0.87). Ourmodels

offer a solid approach to help improve decision making.
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Introduction

Breast cancer is one of the most common malignancies in

women worldwide and the leading cause of cancer-related death

(1, 2). More than 2.3 million new cases and nearly 700,000

deaths from breast cancer are reported every year worldwide (3,

4). More than 250,000 people develop breast cancer in the

United States each year, accounting for 30% of all cancers in

women, and more than 40,000 people die from breast cancer,

accounting for 14% of all cancer deaths (5). The survival rate of

breast cancer patients is closely related to the economic status

and economic conditions of the country and region (4), which

impacts access to chemotherapeutic drugs, anti-estrogen

treatment regimens and targeted drugs (6, 7).

Standard breast cancer treatment with chemotherapy,

hormone therapy, or radiation therapy is associated with a

good prognosis in breast cancer patients but may adversely

affect bone tissue or lead to premature menopause and may

increase the risk of osteoporosis (8, 9). Factors such as premature

ovarian failure and premature menopause are associated with

accelerated bone loss in premenopausal women who receive

standard chemotherapy (10, 11). Headley et al. and Bruning et al.

reported that, according to data provided by the National Cancer

Database, an earlier age of menopause is observed in breast

cancer patients treated with doxorubicin, cyclophosphamide,

fluorouracil, and methotrexate in the previous 2 years, and this

population has been found to have an increased risk of fracture

at an earlier age than healthy populations (12–14). Not only is

the treatment of breast cancer closely related to a decrease in

bone mineral density, but the progression of breast cancer itself

also aggravates bone mass loss. Breast cancer spreads easily to

the bone. In fact, approximately 70% of advanced breast cancer

patients develop bone metastases (15, 16). Notably, skeletal

invasion by breast cancer cells is often associated with

osteolytic lesions (17, 18), which leads to the formation of

pathological osteoporosis. The migration of primary cancer to

bone and subsequent metastatic behavior is regulated through

the RANKL/RANK/OPG system (19–21). Patients with breast

cancer who do not develop bone metastasis have been shown to

have increased bone resorption. A study by Kanis et al.

confirmed that the annual incidence of conical bone fractures

in women who were followed up from their first breast cancer

diagnosis was almost five times higher than that in the general

population (22).

The Osteoporosis Self-Assessment Tool for Asians (OSTA) and

Fracture Risk Assessment Tool (FRAX) are popular tools used in

clinics to predict the risk of osteoporosis and fracture (23). We

found that these assessment tools for osteoporosis and fractures

often ignore some important factors, such as cancer treatment and

laboratory indicators, and they lack sufficient specificity (24).
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The purpose of this study was to establish a prediction model for

osteoporosis in breast cancer patients as well as prediction

models for fracture risk and survival rate incorporating

osteoporosis. These models will provide clinicians with

quantitative assessment of the risk of osteoporosis, fractures,

and death in breast cancer patients during treatment.
Materials and methods

Patients

Patient data from 2012 to 2021 were obtained from the case

record system of Zhejiang Provincial People’s Hospital and

Second Affiliated Hospital of Soochow University, with an

average follow-up of 52.19 months (Std=26.90)

The inclusion criteria included primary breast cancer

diagnosed by pathological examination. The exclusion

criteria included the following: 1. the presence of underlying

diseases causing secondary osteoporosis, such as Cushing’s

syndrome, hyperprolactinemia, malabsorption syndrome and

various gastrointestinal diseases (Crohn’s disease, chronic

pancreatitis) 2. underlying diseases that affect bone

metabolism, such as hyperparathyroidism or hypothyroidism,

hyperthyroidism or hypothyroidism, osteogenesis imperfecta,

osteomalacia, Paget’s disease of bone, or active urolithiasis; 3.

patients who received osteoporosis prevention treatment

before osteoporosis was evaluated, such as calcium and

Vitamin D etc.; 4. the presence of bone metastases were

found. 5. lack of information of accurate statistical variables

(age, height, weight, smoking history, drinking history, family

history, Karnofsky score), available imaging and laboratory

tests (pathological examination of primary lesions, E-CT/PET-

CT examination, blood biochemistry, reproductive hormones),

available bone mineral density information from examination

and whether received medication or special treatment

(glucocorticoid use, chemotherapy drug use, targeted therapy

drug use, radiation therapy, anti-estrogen drug use). We also

performed a random phone survey of the patients to ensure

data accuracy. The flow diagram of patient screening was

mentioned in Figure 1.

The FRAX scores in this study were calculated by the

FRAX official web version tool (25). The web address is

https://www.sheffield.ac.uk/FRAX/. The FRAX score can be

used to not only predict the risk of osteoporosis, but also

assess the risk of fracture. Generally, the FRAX score used to

predict hip fracture is labeled as FRAX-HF score.

Osteoporosis was diagnosed according to the 2022 AACE

osteoporosis treatment guidelines (diagnostic criteria included 1.

fragility fracture had occurred, whether or not less than -2.5; 2.
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the T value of osteopenia was >-2.5 and<=-1, and FRAX-HF

score was > 3 or FRAX score was > 20; 3. the T value was less

than -2.5) (26). The OSTA score was calculated by the following

formula: OSTA= (body weight (kg) – age (years)) *0.2.
Data collection

The variables selected for inclusion for osteoporosis

predicting were as follows: age, BMI, smoking history, history

of alcohol intake, M stage, molecular type of primary tumor,

surgical treatment, anti-estrogen therapy, chemotherapy,

targeted therapy, glucocorticoid medication, radiation therapy,

family history of osteoporosis, fracture history, Karnofsky score

less than 40, blood BALP level, blood calcium level, and blood

phosphorus level. In the fracture prediction model, we added

osteoporosis as a risk factor. In addition, we tested age, smoking

history, history of alcohol intake, T and N stages, molecular type

of primary tumor, surgical treatment, anti-estrogen therapy,

chemotherapy, targeted therapy, glucocorticoid medication,
Frontiers in Oncology 03
radiation therapy, osteoporosis, brain metastasis, liver

metastasis and lung metastasis as risk factors in the survival

prediction model.
Statistical analysis

All statistical analyses were performed using IBM SPSS

Statistics (version 22), R software (version 4.1.0), and Python

(version 3.8), and a P value<0.05 (two-sided) was considered

statistically significant. All breast cancer patients were randomly

divided into a training set and validation set. An independent t

test was used to compare continuous data, and the chi-square

test or Fisher’s exact test was used to compare categorical data.

In the training cohort, univariate logistic analysis was performed

to identify risk factors associated with osteoporosis. Variables

with P< 0.05 in univariate analysis were incorporated into

multivariate logistic regression to identify independent risk

factors for osteoporosis in breast cancer patients. Correlation

analysis was performed on the selected variables, and whether
FIGURE 1

Flow diagram of the study population selected from Zhejiang Provincial People’s Hospital and the Second Affiliated Hospital of Soochou
University. According to the inclusion and exclusion criteria, a total of 599 patient were included in this study,and they were randomly cut into
the training and internal test sets in a 7:3 ratio. Data from the Second Affiliated Hospital of Soochou University as an external test set.
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the variables affected each other was tested. Then, six different

machine learning algorithms in Python, namely, decision tree

(DT), random forest (RF), multilayer perceptron (MLP), logistic

regression (LR), naive Bayes BS classifier (NBC) and eXtreme

gradient boosting (XGB) were used to establish their own risk

prediction models. In addition, the area under the receiver

operating characteristic curve (AUC), accuracy score,

sensitivity and specificity, correlation analysis heatmap,

receiver operating characteristic (ROC) curve, and clinical

decision curve analysis (DCA) were carried out to evaluate the

performance of the models (27). Feature importance analysis

was performed on the variables in the best machine learning

model and was shown in the SHAP graph.

We calculated a number of different performance metrics in

our analysis: accuracy, precision, sensitivity (recall), and F1-

score. They are calculated to evaluate predictive capability with

the number of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN) by the following

equations: Accuracy indicates the overall correctness of the

prediction:

Accuracy =
TP+TN

TP+FN+TN+FN

Precision indicates the proportion of examples classified as

positive that are actually positive:

Precision  ¼ TP
TP+FP

Sensitivity indicates the proportion of all positive examples

that are paired, which measures the ability of the classifier to

identify positive factors:

Sensitivity =
TP

TP+FN
= recall

The P and R indicators sometimes appear contradictory, so

they need to be considered comprehensively. The most

common method is the F-Measure (also known as the F-

Score). The F-measure is the precision and recall weighted

harmonic mean:

F =
(a2 + 1)P*R
a2 P + Rð Þ

When a=1, that is, F1 (28): F1 =
2*P*R
P+R
Model visualization

We used web pages to establish risk assessment tools for

osteoporosis, fractures, and survival in breast cancer patients.

These tools can be used to visualize the machine learning models
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that achieve the best performance, and clinicians can directly log

into the website to utilize the risk assessment tools.
Results

By searching the case system of Zhejiang Provincial People’s

Hospital, we found 9012 patients who were diagnosed with

breast cancer from 2012 to 2021. According to rigorous

screening, a total of 599 breast cancer patients were included

as the target population to develop and internally validate the

models. Of these patients, 114 (19%) patients developed

osteoporosis, 41 (6.8%) patients experienced fractures during

the tumor-bearing period, and 151 (25.2%) patients died during

an average of 49.08 months (Std=26.93) of follow-up. Patients

were randomly divided into training and validation groups (420

and 179 patients, respectively) to develop and validate the

models. The randomness of the grouping was verified by the

chi-square test and t-test, as shown in Tables S1, S4 and S7.

The external validation cohort comprised 150 breast cancer

patients from another independent center, of whom 28 patients

(18.6%) developed osteoporosis, 12 patients (8%) experienced

fractures during the tumor-bearing period, and 29 patients

(19.3%) died during an average of 64.60 months (Std=22.98)

of follow-up.

The distribution and characteristics of the osteoporosis,

fracture, and survival variables are listed in Tables S1, S3, and

S5. The age distribution of breast cancer patients with or without

osteoporosis was as follows: median age: 63 years, range: 36-87

years (osteoporosis group); median age: 54 years, range: 30-92

years (nonosteoporosis group). The most common molecular

type was HER+/HR+ (41.1%). Regarding treatment, almost all

the patients underwent surgery (98%), nearly half of the training

cohort did not receive anti-estrogen therapy (46.6%), 74 patients

(17.6%) accepted targeted therapy, 218 patients (51.9%) received

glucocorticoid therapy, and 106 patients (25.2%) were treated

with radiotherapy. Moreover, the most common T and N stage

were T1 (52.3%) and N0 (65.0%). In terms of distant metastasis

of breast cancer to other organs, 7.8% of the patients had lung

metastasis, 6.6% had liver metastasis, and 4.7% had

brain metastasis.

In the external validation cohort, HER+/HR+ was the most

common molecular type, accounting for 47.3% of the patients. A

total of 141 (94%) patients received surgical treatment. More

than half of the patients (57.4%) received different types of anti-

estrogen therapy while 123 of them (82%) underwent

chemotherapy. For other treatment, 32 patients (21.3%)

received targeted therapy, 114 patients (76.6%) accepted

glucocorticoid therapy, and 34 patients (22.6%) were treated

with radiotherapy. In addition, we observed that lung metastasis
frontiersin.org
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account for the highest proportion among the three distant

organ metastases (13 patients, 8.6%).
Osteoporosis risk assessment model in
breast cancer patients

Correlation tests were first performed among the different

variables and the heatmap showed that almost of the variables

were independent (Figure S1). The correlation coefficient

between age and menopause was as high as 0.64. To ensure

the rigor of the included variables, we retained the age variable

and deleted menopause. Univariate logistic regression analysis

identified multiple predisposing factors, including age, BMI,

smoking history, alcohol drinking history, molecular type of

primary tumor, M stage, anti-estrogen therapy, chemotherapy,

targeted therapy, glucose corticosteroid medication, radiation

therapy, family history of osteoporosis, fracture history,

Karnofsky score below 40, BALP level, blood calcium level,

and blood phosphorus level (P<0.05). These variables were

selected for further multivariate logistic regression, which

showed that age, BMI, molecular type of primary tumor, anti-

estrogen therapy, chemotherapy, glucocorticoid medication,

family history of osteoporosis, history of fracture, and blood

BALP level were significantly correlated with the risk of

osteoporosis in breast cancer patients (Tables S3).

We applied six different machine learning algorithms,

namely, DT, RF, MLP, LR, NBC, and XGB, to establish

osteoporosis risk prediction models, and compared the

performance of the different models through ROC curve

analysis of the training set as well as 5-fold cross-validation.

As illustrated in Figure 2A, the XGB model exhibited better

performance with an average AUC of 0.85 (Std=0.02) in five-fold

cross-validation; the ROC curve showed an AUC of 0.94 (95%CI:

0.933 - 0.949) (Figures 2A, B). We defined an optimal cut-off

probability of 0.50 for the XGB model so that in the internal

validation set, the XGB model achieved the best AUC of 0.86

(accuracy of 0.85, precision of 0.84, sensitivity of 0.85, f1-score of

0.84), which was higher than that of FRAX and OSTA models

(Figures 2C, D). We next evaluated the clinical utility of the model

through DCA and achieved satisfactory results. We found that the

clinical potency of the XGB model was dramatically higher than

that of the FRAX tool, OSTA tool and other machine learning

models (Figure 2E).

The independent validation cohort was used for external

validation. The XGB model had an outstanding performance,

with an AUC of 0.87, which was higher than the AUCs of the LR

model (0.75), DT model (0.64), RF model (0.79), NBC model

(0.67), MLP model (0.67), FRAX score model (0.72) and OSTA

score model (0.66); the XGB model had an accuracy of 0.87, a

precision of 0.86, a recall of 0.87, and an f1-score of 0.86

(Figures 2F, G). DCA indicated that the net benefit of the

XGB model exceeded that of the FRAX score model, the
Frontiers in Oncology 05
OSTA score model and other models, indicating that it had

better clinical impact at a wide range of threshold probabilities.

(Figure H). Moreover, the prediction results of the models are

presented as a heatmap in Figure S2.

SHAP values revealed the distribution of the impacts that each

feature had on the XGB model for predicting osteoporosis in breast

cancer patients (Figure 2I). Among them, age, anti-estrogen

therapy, molecular type, glucocorticoid therapy and blood BALP

level were the top five most predictive features in the model.

Advanced age, treatment with anti-estrogen therapy and

chemotherapy, the molecular type of cancer, glucocorticoids use,

a higher BALP level, a lower BMI, a history of fracture, and a history

of osteoporosis occurrence were associated with the risk

of osteoporosis.
Fracture risk assessment model in breast
cancer patients

Fracture is the most common bone-related event that occurs in

breast cancer patients. Except for fractures caused by bone

metastasis, fracture evaluation for nonmetastatic causes such as

osteoporosis is currently inadequate (29). Tomore comprehensively

evaluate bone-related events in breast cancer patients, we next

attempted to develop a fracture risk score model for breast cancer

patients without bone metastasis.

Since the fracture risk factors are similar to those for

osteoporosis, the variables mostly remained the same as those

in the osteoporosis model. However, we added osteoporosis as a

risk factor, which is missing in the current popular tool — the

FRAX tool. Correlation test was performed first between the

determined variables, as shown in Figure S3. The correlation

coefficients of the included factors were all lower than 0.6 except

age and menopause, confirming that there was no significant

correlation between each factor after deleting menopause. None

of the correlation scores between osteoporosis and other

variables were above 0.26 (Figure S3).

After univariate and multivariate analyses, we found that

age, BMI, chemotherapy, history of fracture, blood BALP level,

and osteoporosis were independent risk factors for fracture in

breast cancer patients. Details are shown in Table S6. In contrast

to the FRAX tool, laboratory examination of the blood BALP

level and history of osteoporosis played an important role in our

model. Furthermore, we demonstrated that some variables such

as smoking history, alcohol drinking history, and glucocorticoid

medication use, which are included in the FRAX tool, did not

meet the criteria for independent risk factors.

In the fracture risk assessment model, the LR, NBC, RF,

XGB, MLP, and DT models had average AUCs of 0.86

(Std=0.08), 0.81 (Std=0.10), 0.90 (Std=0.04), 0.91 (Std=0.05),

0.90 (Std=0.07), and 0.81 (Std=0.09), respectively. The XGB

model performed better than any other model in ROC curve

analysis and had an AUC of 0.93 (95%CI: 0.933-0.949)
frontiersin.org
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FIGURE 2

(A) Five-fold cross-validation results of different machine models in training set. Abbreviations: DT: Decision tree; LR: Logistic regression; MLP:
Multilayer Pecepreon; NBC: Naive Bayes classification; RF: Random Forest; XGB: eXtreme gradient boosting. (B) The ROC curve of different
machine learning models,FRAX score and OSTA score in training test set. (C) The ROC curve of different machine learning models, FRAX score
and OSTA score in internal test set. (D) Prediction performance of different models, FRAX score and OSTA score in internal test set. (E) The DCA
curve of different machine learning models, FRAX score and OSTA score in internal test set. (F) The ROC curve of different machine learning
models, FRAX score and OSTA score in external test set. (G) Prediction performance of different models, FRAX score and OSTA score in external
test set. (H) The DCA curve of different machine learning models, FRAX score and OSTA score in external test set. (I) Summary plots for SHAP
values. For each feature, one point corresponds to a single patient. A point’s position along the x axis (i.e., the actual SHAP value) represents the
impact that feature had on the model’s output for that specific patient. (osteoporosis predicting model).
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(Figures 3A, B). The optimal cut-off probability was set as 0.50

for the XGB model. In the internal test set, the XGB model

achieved the best score, with an AUC of 0.93, an accuracy of

0.93, a precision of 0.93, a sensitivity of 0.93, and an f1-score of

0.90, while the FRAX score fracture model had an AUC of 0.89,

an accuracy of 0.93, a precision of 0.92, a sensitivity of 0.93, and

an f1-score of 0.92 (Figures 3C, D). We evaluated the clinical

utility of the model through DCA. The curve representing the

XGB model was considerably higher than the curves of the other

models, which showed that the clinical potency of the XGB

model was reliable (Figure 3E).

In the external validation set, although the DCA curve showed

that the net benefit of the XGB model was similar to that of the

FRAX model (Figure 3H), the superior performance of the XGB

model in other estimate methods still existed, with an AUC of

0.92, an accuracy of 0.93, a precision of 0.91, a recall of 0.93, and

an f1-score of 0.92 compared with that of the FRAX score model

(AUC of 0.86, accuracy of 0.91, precision of 0.90, recall of 0.91,

and f1-score of 0.91) (Figures 3F, G). The prediction results of the

models are illustrated as a heatmap in Figure S4.

Figure 3I shows the top six variables with the highest SHAP

values of the XGB model for predicting fracture. The most

important factors associated with the predictive power of the

model were osteoporosis, age, blood BALP level, chemotherapy,

history of fracture, and BMI. Advanced age, a higher BALP

value, a lower BMI, a diagnosis of osteoporosis, treatment with

chemotherapy and a history of fracture were thought to increase

the risk of bone metastasis free fracture.
Survival risk assessment model in breast
cancer patients

Osteoporosis is linked to increased mortality in breast cancer

patients (30, 31). Thus, we further developed a survival model.

The correlation test was used to assess the determined variables,

as clarified in Figure S7. Among them, lung metastases, liver

metastases, and brain metastases all had certain correlations with

the N stage, with correlation scores of 0.382, 0.487 and 0.445,

while the other variables had lower correlations after excluding

menopause which had a high correlation coefficient with age,

indicating that they were mutually independent. Univariate and

multivariate Cox analyses showed that age, N stage, molecular

type, chemotherapy, radiotherapy, osteoporosis, brain

metastasis, liver metastasis, and lung metastasis were

independent risk factors for survival in breast cancer patients.

Details are shown in Table S9.

The XGB model had an excellent performance at the 3-year,

5-year and 8-year time points (average AUC of 0.93 at 3 years,

std=0.03; 0.95 at 5 years, std=0.03; and 0.97 at 8 years, std=0.01).
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In ROC curve analysis, the XGB model had AUCs of 0.97 (95%

CI: 0.9649-0.976) at 3 years, 0.99 (95%CI: 0.9868-0.9913) at 5

years, and 0.98 (95%CI: 0.9798-0.9858) at 8 years (Figures 4A,

B). For the internal validation cohort, the XGB model had the

best scores, with AUCs of 0.93 at 3 years, 0.93 at 5 years, and 0.96

at 8 years (Figure 4C). For the internal validation cohort, the

XGB model had the best scores, with AUCs of 0.93 at 3 years,

0.93 at 5 years, and 0.96. The model performance evaluation

indicators are shown in Figures S9 and 4D. DCA also verified

that the XGB model achieved a higher titer in clinical treatment

than any other model including the TNM stage model

(Figures 4E and S11)

In the independent validation cohort of 150 patients, the

ROC curve of the XGB model (AUC=0.96 at the 8-year time

point) was superior to that of the current AJCC/TNM staging

system (Figure 4F). In addition, the other parameters of the XGB

model were an accuracy of 0.92, a precision of 0.92, a recall of

0.92, and an f1-score of 0.92, compared with those of the TNM

staging system (accuracy of 0.87, precision of 0.86, recall of 0.87,

f1-score of 0.85) (Figure 4G). Furthermore, the clinical benefit

clarified by DCA of the XGB model was roughly as stable as that

of the internal validation cohort and performed better than the

TNM staging system (Figure 4H).

The SHAP summary plot of the predictive model ordered

eight features based on their impact on the 8-year survival status.

A lower SHAP value of a feature manifested a greater possibility

of an 8-year survival. We found that a lower N stage, a lower age,

and the application of chemotherapy were associated with

higher possibility of 8-year survival, while the occurrence of

osteoporosis, lung metastasis, liver metastasis and brain

metastasis was associated with a lower possibility of 8-year

survival (Figure 4I).
Web predictor

A network predictor based on the best predictive

performance of machine learning models was developed to

predict osteoporosis, fracture occurrence and prognosis in

breast cancer patients. The corresponding risk coefficient can

be obtained by entering the variable through the sidebar of the

webpage. (Figure 5)

Osteoporosis model: https://share.streamlit.io/lry4000/

osteoporosis/main

Fracture model: https://share.streamlit.io/lry4000/

fracture/main

Survival model:

3 Year https://share.streamlit.io/lry4000/survival_3/main

5 Year https://share.streamlit.io/lry4000/survival_5/main

8 Year https://share.streamlit.io/lry4000/survival_8/main
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FIGURE 3

(A) Five-fold cross-validation results of different machine models in training set. (B) The ROC curve of different machine learning models, FRAX
score in training test set. (C) The ROC curve of different machine learning models, FRAX score in internal test set. (D) Prediction performance of
different models, FRAX score in internal test set. (E) The DCA curve of different machine learning models, FRAX score in internal test set. (F) The
ROC curve of different machine learning models, FRAX score in external test set. (G) Prediction performance of different models, FRAX score in
external test set. (H) The DCA curve of different machine learning models, FRAX score in external test set. (I) Feature importance plot for the
XGB osteoporosis prediction model. All the features are shown in this figure. The blue and red points in each row represent nodules having low
to high values of the specific feature, while the x-axis shows the SHAP value, indicating the impact on the model. (fracture predicting model).
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FIGURE 4

(A) Five-fold cross-validation results of different machine models in training set. (B) The ROC curve of different machine learning models, TNM
stage model in training test set. (C) The ROC curve of different machine learning models and TNM stage model in internal test set. (D)
Prediction performance of different models and TNM stage model in internal test set. (E) The DCA curve of different machine learning models
and TNM stage model in internal test set. (F) The ROC curve of different machine learning models and TNM stage model in external test set. (G)
Prediction performance of different models and TNM stage model in external test set. (H) The DCA curve of different machine learning models
and TNM stage model in external test set. (I) Feature importance plot for the XGB osteoporosis prediction model. All the features are shown in
this figure. The blue and red points in each row represent nodules having low to high values of the specific feature, while the x-axis shows the
SHAP value, indicating the impact on the model. (survival predicting model for 8 years).
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Discussion

Osteoporosis is diagnosed in more than 7% of women with

breast cancer each year, which is notably higher than the rate of

1-2% that is reported in postmenopausal women (24).

Osteoporosis in breast cancer patients often leads to an

increased risk of fracture (32, 33).

Chemotherapy is often used as adjuvant therapy for breast

cancer patients (especially triple-negative breast cancer patients)

to reduce the risk of recurrence after surgical resection (30, 34,

35). However, it often leads to premature menopause in women

(36). Some studies have also shown that 97.4% of patients with

locally advanced breast cancer who receive anthracycline-taxane

neoadjuvant chemotherapy have vitamin D insufficiency or

deficiency, which could increase the risk of osteoporosis

through estrogen-independent mechanisms (24). In addition,

anti-estrogen therapy is closely related to the occurrence of

osteoporosis (37). Although the selective estrogen receptor

modulator (SERM) tamoxifen has certain protective effects on

bone, it is often less effective at preventing breast cancer

recurrence. A study including 108 postmenopausal women

showed that taking anastrozole (an aromatase inhibitor) for 5

years reduced lumbar spine and hip BMD by 6.08% and 7.24%,

respectively, while taking tamoxifen for 5 years increased lumbar

spine and hip BMD by 2.77 and 0.74%, respectively (38).

Therefore, the use of aromatase inhibitors in the clinical

treatment of osteoporosis deserves attention. In addition,

glucocorticoids are widely used clinically to counteract the

adverse reactions of chemical drugs, but large doses and long-

term use of glucocorticoids often lead to osteoporosis. It is

currently believed that glucocorticoids can lead to osteoporosis

by promoting the differentiation and maturation of osteoclasts,
Frontiers in Oncology 10
inhibiting the generation of osteoblasts, and decreasing the

production of insulin-like growth factor 1, growth hormones,

etc. (39–41).

Surgery is the primary treatment for breast cancer. We

searched the clinical information of breast cancer patients in

the SEER database and found that the surgery rate is as high as

94.4%. This is roughly in line with the proportion of surgeries in

our collected cases (98%). Such a predominantly high surgical

rate reflects a general situation in breast cancer patients and the

application scopes of our models in majority of the patients.

More data is needed to assess whether our models perform

similarly in patients with and without prior surgeries.

Patient mobility and exercise frequency often affect the

occurrence of osteoporosis, but there is often a lack of

quantitative standards. This model quantifies the patient’s

exercise ability as the Karnofsky score to characterize the

patient’s mobility, with 40 as the node, less than 40 as low

mobility, and higher than 40 as high mobility, in line with the

report that patients with low mobility are prone to osteoporosis

(42, 43). Unfortunately, the Karnofsky score was not included in

the osteoporosis model after regression analysis. Laboratory

indicators such as blood calcium, blood phosphorus, and

bone-specific alkaline phosphatase often reflect abnormal bone

metabolism to a certain extent (44, 45). Through this analysis,

we found that blood calcium and blood phosphorus did not meet

the inclusion criteria, but the BALP level was absorbed in

our model.

At present, according to clinical observations, neither the

FRAX tool nor the OSTA tool can accurately predict the risk of

osteoporosis and fractures in cancer patients. Breast cancer is

currently the most common malignant tumor in the world.

Clinicians lack reliable tools for predicting the risk of
FIGURE 5

Screenshot of the web-based model. Screenshot of the XGB osteoporosis predicting model, which is available at https://share.streamlit.io/
lry4000/osteoporosis/main.
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osteoporosis in breast cancer patients (29). In the process of

breast cancer diagnosis and treatment, anti-osteoporosis

interventions for people with a high risk of osteoporosis and

fractures are ignored, so the opportunity to reduce the mortality

rate and improve the quality of life of breast cancer patients prior

to the osteoporosis stage is missed. Thus, it is difficult to prevent

osteoporosis and fracture incidents in this population, which can

lead to a substantial waste of social resources.

Machine learning has been increasingly applied in

biomedicine in recent years to develop predictive models

based on statistical associations between features in a given

dataset. The learned model can then be used to predict any

range of outputs, such as binary responses, categorical labels, or

continuous values (46). In this study, we developed and validated

the most commonly used machine learning algorithms to

establish osteoporosis, fracture and survival models in breast

cancer patients to predict the risk of related events. Through a

comparison of different algorithms in multiple dimensions, we

concluded that among these models, the model established by

the XGB algorithm showed superior performance. The XGB

algorithm uses a variety of methods to avoid overfitting, utilizes

the second derivative of the loss function, supports and rowizes,

and has faster processing speed (47). The osteoporosis and

fracture model of breast cancer patients established by the

XGB algorithm can provide doctors and patients with more

accurate osteoporosis and fracture-related risks in clinical

treatment and provide early intervention for high-risk groups.

Through the application of zoledronic acid, denosumab or

teriparatide and other anti-osteoporosis drugs, calcium

supplementation, physical exercise, etc., can delay the

occurrence of osteoporosis (48–50), and by weighing the

treatment effect of breast cancer and the risk of osteoporosis,

individualized treatment can be used to provide patients with a

more appropriate treatment plan. In addition, we applied the

survival assessment model for BC patients with osteoporosis risk

factors to clinical practice, and the effect was better than that of

the TNM staging model.

We constructed three models to predict osteoporosis,

fractures and survival in breast cancer patients based on

machine learning algorithms and dual-center data and

developed a web-based predictor. Our models, both internally

and externally validated, outperformed FRAX and OSTA,

providing a new approach for screening high-risk populations

of breast cancer with osteoporosis. After including the risk

factors for osteoporosis and breast cancer-related factors, the

performance of the fracture risk model was also distinctly better

than that of the FRAX score model, and it provided a risk

numerical reference for high-risk fracture groups. Meanwhile,

the survival model, which included osteoporosis factors, also

performed better than the TNM staging model.

?The model developed by machine learning in this project can

allow clinicians to measure the possibility of osteoporosis in breast
Frontiers in Oncology 11
cancer patients after anti-cancer treatment and to follow up with

anti-osteoporosis treatment (such as bisphosphonates and

denosumab) to achieve the maximum clinical benefit. It is also

possible to presume the incidence of osteoporosis, the possibility of

fractures, and whether the survival rate after treatment can be

improved before the standard treatment of breast cancer. This helps

clinicians to decide whether to carry out related anti-cancer

treatment (such as chemotherapy and anti-estrogen treatment)

and whether to carry out fracture prevention.
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