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Immunotherapy has revolutionized the standard of care for a range of malignancies.

Accumulating evidence suggests that the success of immunotherapy is likely attributable

to neoantigen-specific T cells. Thus, adoptive cell therapy with these neoantigen-specific

T cells is highly promising. This strategy has proven to successfully elicit tumor regression

or even complete remission in metastatic cancer patients. However, a fundamental

challenge is to effectively identify and isolate neoantigen-specific T cells or their T

cell receptors (TCRs), from either tumor-infiltrating lymphocytes (TILs) or peripheral

blood lymphocytes (PBLs), and many methods have been developed to this end. In

this review, we focus on the current proposed strategies for identifying and isolating

neoantigen-specific T cells.
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INTRODUCTION

Several immunotherapeutic strategies that harness the exquisite specificity of the immune system
to eliminate tumors have emerged during the past decade; these include cancer vaccines, immune
checkpoint blockade, and adoptive cell therapy (ACT) (1) with the potential to revolutionize the
standard of care for a range of malignancies.

To a large extent, the specificity of immunotherapy is dependent on the recognition of specific
tumor antigens, especially neoantigens. Neoantigens are a kind of tumor antigen derived from
tumor-specific somatic mutations and are highly restricted to tumor cells with minimal established
immune tolerance (1). Neoantigen-based cancer vaccines have shown promising therapeutic effects
in the clinic (2–8). In addition, a growing body of evidence indicates that neoantigen-specific T
cells underlie the success of the recently emergent immune checkpoint inhibitor therapy (9–13).
Adoptive transfer of autologous, in vitro expanded, tumor-infiltrating lymphocytes (TILs) was
reported to achieve dramatic clinical responses in some metastatic cancer patients, especially in
those with melanoma and cervical cancer (14–19). In-depth studies have revealed the critical
roles of neoantigen-specific T cells in maintaining durable responses following ACT (20–26).
In support of these findings, the adoptive transfer of selected TILs targeting neoantigens led to
significant tumor regression (27–29). Increasing research attention has been shifted to identifying
and selecting neoantigen-specific T cells (30–34). However, such a “precise targeting” strategy poses
a great challenge in terms of the identification and isolation of neoantigen-specific T cells. Methods
have been proposed and developed for this purpose. Here, we attempt to summarize the known
strategies for isolating neoantigen-specific T cells.
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IDENTIFICATION AND ISOLATION OF
NEOANTIGEN-SPECIFIC T CELLS FROM
TILs

Researchers have long attempted to isolate neoantigen-specific
subpopulations from the background of transferred TILs. In early
studies, an autologous tumor cell cDNA library was constructed
and used as a pool to screen for neoantigen-specific T cells
(20, 21). In a study of a melanoma patient who experienced a
complete response going beyond 7 years following adoptive TIL
transfer, one T cell clone specific for a mutated antigen PPP1R3B
was identified and shown to be responsible for the antitumor
effects (22).

However, the time-consuming and laborious process required
to identify neoepitope-responsive T cells has hindered their
extensive functional assessment (32). Advances in next-
generation sequencing have enabled the rapid assessment of the
mutational landscape of human cancers and made it possible
to identify immunogenic mutated tumor antigens through
in silico analysis. Rosenberg’s group first employed predicted
neo-peptides, obtained by whole-exome sequencing and human
leucocyte antigen (HLA) class I–binding algorithms, for TIL
screening. Using this approach, they identified 7 neoantigens
recognized by 3 therapeutic bulk TIL cultures that mediated
objective tumor regressions in three individuals with melanoma
(23). Using a similar method, neoantigen-specific CD8+ TILs
could also be identified in hematological malignancies, such as
acute lymphoblastic leukemia (ALL) (35). Prickett et al. (25)
and Stevanovic et al. (26) also demonstrated that neoantigen-
specific T cells could be identified from therapeutic TILs by
screening tandem minigene (TMG) libraries encoding cancer
mutations identified from patients’ tumors by whole-exome
sequencing. This finding might further facilitate the recognition
of neoantigen-specific T cells because it circumvents the need
for prediction of HLA–peptide binding and synthesis of a large
number of peptides.

With the advent of these techniques, the field of ACT took a
great leap from bulk TILs to neoantigen-specific T cells. A concise
flowchart showing the steps involved in identifying and isolating
neoantigen-specific T cells for ACT is summarized in Figure 1.
Tran et al. (27) successfully performed neoantigen-specific T cell
therapy in a 43-year-old woman with extensively metastatic and
intensively treated cholangiocarcinoma. After administration of
a bulk lymphocyte population containing a high percentage of
neoantigen ERBB2IP-specific CD4+T cells, the patient showed a
long-lasting objective clinical response without obvious toxicity.
Subsequently, neoantigen-specific T cells were identified in one
colon cancer patient and another breast cancer patient, and
reinfusion of these specific T cells led to a partial response in
one patient and a durable complete response in another (28,
29). Currently, ACT with neoantigen-specific T cells is being
tested in clinical trials in both solid and hematological tumors
(Supplementary Table 1).

However, the extensive expansion of neoantigen-specific
T cells during preparation compromises their proliferation
potential (36). In addition, the method involved requires
sophisticated equipment and a time period of several months.

For most metastatic patients, this time frame is unacceptable. To
address these issues, additional attempts have been made, using
either surface markers or T cell receptor (TCR) redundancy.

APPROACHES BASED ON SURFACE
MARKERS

CD137 belongs to the tumor necrosis factor receptor superfamily
(37, 38). It functions as a costimulatory molecule to promote the
proliferation and survival of activated T cells (39, 40). CD137
expression is highly restricted to transiently activated CD8+ T
cells but almost undetectable in resting cells. Upregulated CD137
can be detected on stimulated CD8+ T cells of all phenotypes
(e.g., naïve T cells as well as early and late memory effector T
cells) (41). Naturally occurring tumor-reactive T cells stimulated
by tumor antigens also express CD137 as proven by Ye et al. (42).
In a clinical trial (Trial registration ID: NCT02111863) among 6
patients with melanoma who underwent adoptive transfer with
CD137-selected TILs, only 1 patient achieved partial response,
and the remaining 5 progressed. The study was terminated.

This approach has its pitfalls: Because CD137 is an activation
marker, CD137+ T cells obtained by large-scale production
are generally overactivated and highly differentiated with
limited proliferative potential. A potential solution is to obtain
TCRs from these CD137+T cells instead. This strategy was
reported by Parkhurst et al. (43). Briefly, CD8+ T cells were
stimulated overnight with immunogenic mutated TMG RNAs.
Subsequently, the CD8+ T cell population with the highest
CD137 expression was sorted by fluorescent-activated cell sorting
(FACS), and expanded in vitro. Then, dominant TCR α and
β chains were sequenced in the enriched populations. Twenty-
seven TCRs from 6 patients that recognized 14 neoantigens
expressed by autologous tumor cells were identified. However,
this process was time-consuming (2–3 months).

A simplified protocol was proposed by Seliktar-Ofir et al.
(44). Here, TILs, but not CD8+ T cells, were cocultured
with autologous tumor cells; CD137+ T cells were isolated
by magnetic bead separation and expanded. No further TCR
sequencing was performed. The entire process took only 35 days.
T cells stimulated with neoantigens or other tumor-associated
antigens exhibit upregulated CD137 expression (25, 42, 43, 45).
Therefore, a CD137-based selection protocol was advocated for
its broad antigen coverage including both neoantigen and shared
tumor antigens without prior knowledge of epitope specificity.
However, the prerequisite of the establishment of autologous
tumor cell lines poses a challenge.

Direct and indirect evidence shows that the interaction
between PD-1 and PD-L1 inhibits T lymphocyte function,
leading to evasion of persistent inflammatory or autoimmune
reactions (46–48). However, this protective mechanism is
hijacked by tumors to escape immune surveillance, PD-1 has
been characterized as an inhibitory receptor on chronically
stimulated T-cells in the tumor microenvironment (46). At
the tumor site, TILs are exposed to tumor antigens; the
binding of TCR and antigen upregulates either costimulatory or
coinhibitory receptors to promote or inhibit T cell activation and
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FIGURE 1 | The general approach of identifying and isolating neoantigen-specific TILs for ACT. The tumor cells from excised tumor tissue and matched normal cells

underwent whole-exome sequencing (WES) and RNA sequencing to identify non-synonymous mutations. Based on the information, either tandem minigenes (TMGs)

or peptides were then synthesized. These TMGs or peptides were pulsed into autologous antigen presenting cells (APCs), such as dendritic cells (DCs) or B cells, and

they were processed and presented in the context of major histocompatibility complex (MHC). On the other side, the excised tumors were minced into ∼1–2 mm3

fragments and placed in 24-well plates stimulated with IL-2. Then, the TILs were cocultured with these pulsed APCs. The identification of the individual

neoantigen-specific T subpopulation was dependent on the IFN-γ enzyme-linked immunospot (ELISPOT) assay and the activation of the markers such as

CD137(41BB) or CD134(OX40) on the T cell surfaces when recognizing their cognate target antigen. T cells with these activation surface markers would be purified by

flow cytometry. Then, the sorted T cells were subject to rapid expansion in vitro and reinfusion to the tumor-bearing patient.

function, respectively (49). Therefore, PD-1+ T cell populations
among TILs may contain a large proportion of tumor-specific
T cells. The findings of Inozume et al. (50) and Ahmadzadeh
et al. (51), that tumor-responsive T cells are enriched among
CD8+PD1+ lymphocytes from fresh melanoma specimens,
provide direct support for this notion.

In another study, Gros et al. (49) demonstrated that PD-1
expression on CD8+ TILs in fresh melanoma tumor specimens
enabled identification of a diverse patient-specific repertoire
of clonally expanded tumor-reactive cells, including mutated
neoantigen-specific CD8+ lymphocytes. Although PD-1 is an
inhibitory receptor expressed on T cells, studies have shown
that IL-2 restored the antitumor function of T cells in vitro (49,
50). However, on antigen-experienced terminally differentiated
effector memory (TEMRA) cells, PD-1 is either not expressed or
expressed at very low levels (49, 52). Therefore, a PD-1-based
enrichment strategy may not be suitable for these cells.

Screening strategies based on CD137 or PD-1 expression
are suitable for CD8+ T cells, mainly in melanoma. Epithelial
cancers, which account for more than 80% of all human
malignancies, harbor fewer mutations than melanoma (53). They
exhibit compromised capability to induce mutation-specific T
cell responses, together with a limited number of infiltrating

neoantigen-specific TILs (32). In addition, CD4+T cells have
been shown to play an important role in mediating tumor
regression in animal models and patients (27, 36, 54–56).
However, CD137 or PD-1 is expressed on CD8+ cells as a sole
marker; therefore, it may not be reliably used to enrich activated
CD4+ cells (42, 43, 57). CD134 is transiently expressed on CD4
+ T cells stimulated by antigens and can be used as a marker for
the classification of mutant reactive T cells (58).

Recently, Yossef et al. (36) reported an approach in which the
TILs that expressed CD134 or CD137and/or PD-1 were isolated
by FACS. Thus, both CD4+ T and TEMRA cells were rescued,
which would otherwise be missed if a single marker were used.
Sorted cells underwent limiting-dilution in microwell plates to
avoid the overgrowth of non-specific T cells. Cultures were tested
for the ability to recognize a 25-mer peptide pool encompassing
possible neoantigens. Notably, the highly oligoclonal nature
of these T cells makes possible the convenient application
of single cell sequencing of their TCRs. In 6 patients with
metastatic epithelial cancer, this high-throughput approach led
to the detection of CD4+ and CD8+ T cells targeting 18 and
1 neoantigens, respectively, whereas only 6 and 2 neoantigens
were identified by using the TIL fragment screening approach.
In 2 patients in which no neoantigen was found by traditional
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screening, the novel approach identified 5 distinct neoantigen-
specific TCR clones for one patient and a highly potent MHC
class II–restricted KRASG12V-reactive TCR for the other. In a
metastatic tumor sample from a patient with serous ovarian
cancer, 3 MHC class II–restricted TCRs targeting the TP53G245S

hot-spot mutation were identified.

TCR FREQUENCY

TCR sequence analysis is used as a tool to monitor T cell
responses to specific antigens by measuring the abundance of
T cell clonotypes (49, 59, 60). The advent of next-generation
sequencing has enabled identification of the full TCR repertoire
of TILs (61, 62). This valuable data for TCRs from tumor-
reactive TILs could be used to modify T cells (TCR-T). However,
the lengthy expansion process and excessive stimulation would
result in TCR repertoire switching (63). To avoid this problem,
Pasetto et al. (63) directly performed TCR sequencing of the
fresh enzymatically digested melanoma tissues prior to in vitro
expansion. As described earlier, tumor-reactive clonotypes were
enriched in CD8+PD-1+ TIL subsets in melanoma (49, 50).
The authors analyzed the TCR repertoire of TILs in CD8+,
CD8–, CD8+PD-1–, or CD8+PD-1+ subsets, respectively,
and found that many of the most frequently occurring TCR
clonotypes present in the CD8+PD-1+ TIL subset recognized
the autologous tumor and tumor antigens, included neoantigens.
This report provided a much more convenient approach to
efficiently identify tumor-reactive T cells based solely on the
frequency of TCR and PD-1 expression, without prior knowledge
of the specific neoantigen. However, this strategy must be applied
with caution because the isolated TCR clones may be self-reactive
and result in deleterious on-target, off-tumor toxicities (43).

ISOLATION OF NEOANTIGEN-SPECIFIC T
CELLS FROM PERIPHERAL BLOOD
LYMPHOCYTES (PBLs)

In some situations, neoantigen-specific T cells were undetectable
in the TIL compartment, possibly owing to the following factors:
presentation of neoantigens in a non-inflammatory context (64),
impaired T cell infiltration because of the sparse distribution
of adhesion molecules on these cells (65, 66), and presence of
immunosuppressive cytokines and cells (e.g., regulatory T cells)
in the tumor microenvironment (67). Furthermore, the tissue
from which TILs may be obtained poses a challenge. In this
regard, peripheral blood is an alternative and reliable source for
neoantigen-specific T cells.

The first attempt is considered to have been made by a
group led by Lennerz et al. (68). In this study, a system
of “mixed lymphocyte-tumor cells” (MLTC) was established,
wherein peripheral blood mononuclear cells (PBMCs) from
a patient with metastatic melanoma were cocultured with
autologous tumor cells. The MTLC system could be viewed as
a simplified in vitro simulation of the tumor microenvironment.
Furthermore, cytotoxic T lymphocyte (CTLs) clone derived by
limiting dilution from the MLTC system or MLTC were subject

to autologous tumor cell cDNA library screening. T cell clones
reactive to 5 mutated epitopes were obtained.

The use of MHC-peptide tetramers is a canonical method
to identify and study a certain antigen-specific T cell subset
(69–71). For ACT, tetramers were used to isolate and expand
tumor antigen-specific T cells (72). Moreover, in immune
checkpoint inhibitor (ICI)-treated cancer patients, MHC-peptide
tetramers have been successfully used to monitor neoantigen-
specific T cells (9, 12). Cohen et al. (73) used this method to
sort neoantigen-specific T cells from the PBLs of patients with
metastatic melanoma. In brief, a panel ofMHC-peptide tetramers
consisting of predicted neo-epitopes was synthesized and used
to screen PBLs. Neoantigen-specific T cells targeting 8 of the 9
mutated epitopes identified from TILs could be isolated from
autologous peripheral blood with frequencies ranging between
0.4 and 0.002%. In cancers with intermediate mutational loads,
such as multiple myeloma, the use of MHC-peptide tetramers
could also isolate neoantigen-specific T cells from the PBLs
(74). However, this method was only applied to CD8+ T cells
and required HLA-binding prediction algorithms to guide the
synthesis of HLA-peptide tetramers.

A previous study has shown that PD-1 expression could
guide the identification of neoantigen-specific CD8+ T cells
from the tumor microenvironment (49). The same strategy
could be adopted for isolation from PBLs (75). In one study,
4 patients with metastatic melanoma were enrolled. CD8+
PBLs were expanded in vitro and cocultured with autologous
DCs, which were electroporated with in vitro transcribed TMG
RNA for mutant epitopes. In 3 out of 4 patients, neoantigen-
specific lymphocytes could be isolated from the CD8+PD-
1+ lymphocyte subset, but not the CD8+PD-1– lymphocyte
subset (75).

The isolation of neoantigen-specific cells from the PBLs
of patients with epithelial cancer is even more challenging.
Preexisting antigen-specific memory T cells may represent a
potential solution. Memory T cells, including central memory
T cells (TCM), effector memory T cells (TEM), and TEMRA

from PBLs were cocultured with DCs loaded with candidate
neoantigens in the TMG or peptide form (76). After coculturing,
memory cells were restimulated with DCs loaded with all TMGs
and then sorted by the expression of CD134 and CD137 to enrich
for neoantigen-reactive T cells. The resulting cells were then
expanded and screened against all TMGs to test for neoantigen
recognition. With this highly sensitive “in vitro stimulation
(IVS)” method, T cells targeting KRASG12D and KRASG12V

were successfully isolated from 3 out of 6 epithelial cancer
patients. This new method enabled identification and isolation
of neoantigen-reactive T cells from the blood circulation at very
low frequencies.

The identification of neoantigen-specific T cells from naïve
T cells is also of interest. A previous report showed that both
naïve and activated neoantigen-specific T cells could be expanded
from the peripheral blood of follicular lymphoma patients by
priming with peptide-pulsed DCs (77). Using the same method,
neoantigen-specific T cells were successfully expanded from
the peripheral blood of HLA-matched healthy donors (30, 78).
These preliminary results support the use of naïve T cells as
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FIGURE 2 | (A) Strategies of identifying neoantigen-specific T cells. The limitations of current methods of identifying neoantigen-specific T cells and strategies to

improve neoantigen-specific T cells identification. TILs, tumor infiltrating lymphocytes; PBLs, peripheral blood lymphocytes; PD-1, programmed cell death-1; TEMRA

cells, terminally differentiated effector memory cells; TCR, T cell receptor; TMG, tandem minigene; MHC, major histocompatibility complex. (B) The “blueprint” of

isolating neoantigen-specific T cells from peripheral blood after neoantigen-targeting vaccine. After several rounds of immunization with neoantigen vaccines, T cells

are collected from the patient’s peripheral blood and neoantigen-specific T cells are identified and isolated from these T cells. Then, the neoantigen-specific T cells

undergo rapid expansion (REP), or their TCRs are exploited to modify autologous lymphocytes. The expanded neoantigen-specific T cells or modified TCR-T cells are

reinfused to the patient.

an alternative source for ACT; however, their exceptionally low
frequencies in peripheral blood and requirement for repeated
stimulation pose hurdles (79).

Recently, a large, library-based “mini-lines” screening
approach was proposed, which aimed to identify naïve antigen-
reactive T cells from small volumes of blood (80–82). This system
began with a small-scale culture in 96-well plates with 2,000
initial T cells in each well. The small-scale culture underwent a
rapid 1,000- to 5,000-fold expansion (mini-line). Thousands of
such well-scaled cultures were conducted simultaneously. Each
T cell clone was maintained at a frequency of 1 in 2,000 but
amplified to an absolute number of 1,000–5,000 cells, which is
a sufficient number for routine detection. Applying this high-
throughput parallel T cell culture system, neoantigen-specific
T cells were identified and expanded 3–9 months prior to the

first tumor recurrence in a patient with high-grade serous
ovarian cancer. However, the long duration of culture possibly
rendered this method more suitable as a preemptive therapeutic
strategy (83).

DISCUSSION

After decades of efforts, the adoptive transfer of neoantigen-
specific T cells is finally close to readiness for clinical application.
High efficacy of this immunotherapeutic strategy has been
achieved in a number of cancer patients and the prospects are
promising. However, these approaches are also quite costly and
hard to apply to large numbers of patients. The current methods
of identifying neoantigen-specific T cells are summarized in
Figure 2A and Supplementary Table 2. More convenient and
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effective screening methods for neoantigen-specific T cells
remain necessary, some strategies to improve neoantigen-specific
T cells identification are shown in Figure 2A.

It is feasible to obtain neoantigen-targeting T cells from
PBLs although their frequencies are generally much lower than
TILs (73, 75, 76). However, increasing the frequencies of these
valuable neoantigen-specific T cells in peripheral blood remains
a challenge.

Vaccination with neo-peptides has been shown to prime
CD4+ and CD8+ T-cell responses in mouse models (54, 84).
Patients treated with vaccines generated neoantigen-specific T
cells (2–8). It could be reasonably inferred that the isolation
of neoantigen-reactive T cells from the peripheral blood
would be more easily achieved following neoantigen-specific
vaccination. This neoantigen-based combo immunotherapy has
its advantages: first, isolation and expansion of TILs in vitro is
not necessary. Second, cancer vaccines not only elicit neoantigen-
specific T cell responses and amplify existing tumor-specific T
cells responses, but they also increase the breadth and diversity
of the tumor-specific T cell response (1, 7). Multiclonal T cells
may, thus, be obtained. Third, the relatively easy preparation of
cancer vaccines would buy time for the isolation of neoantigen-
specific T cells in maintaining the performance of patients. The
“blueprint” is shown in Figure 2B.

CONCLUSION

The previous decade has witnessed the emergence of
immunotherapy for cancer. Accumulating evidence suggests that

neoantigen-specific T cells underlie successful immunotherapy.
Therefore, the isolation of neoantigen-specific T lymphocytes
represents the “holy grail” for cancer immunotherapy. However,
a fundamental challenge is to effectively identify and isolate
neoantigen-specific T cells. The developments summarized
in this review and future breakthroughs are anticipated to
translate the adoptive transfer of neoantigen-specific T cells into
a powerful weapon in our armamentarium against cancer.
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