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Abstract
Commonly used methods for inferring phylogenies were designed before the emergence of high-throughput sequen-
cing and can generally not accommodate the challenges associated with noisy, diploid sequencing data. In many ap-
plications, diploid genomes are still treated as haploid through the use of ambiguity characters; while the uncertainty
in genotype calling—arising as a consequence of the sequencing technology—is ignored. In order to address this
problem, we describe two new probabilistic approaches for estimating genetic distances: distAngsd-geno and
distAngsd-nuc, both implemented in a software suite named distAngsd. These methods are specifically designed
for next-generation sequencing data, utilize the full information from the data, and take uncertainty in genotype
calling into account. Through extensive simulations, we show that these new methods are markedly more accurate
and have more stable statistical behaviors than other currently available methods for estimating genetic distances—
even for very low depth data with high error rates.

Key words: phylogeny reconstruction, genotype likelihood, genetic distance, high-throughput sequencing, next-
generation sequencing, molecular evolution, maximum likelihood, expectation maximization.

Introduction
While much of biology has been revolutionized by the
availability of high-throughput next-generation sequen-
cing, the state-of-art methods for calculating genetic dis-
tances used in phylogeny estimation have not changed
much for the past several decades, and are still not prop-
erly modeling the uncertainty and idiosyncrasies asso-
ciated with next-generation sequencing data. Modern
sequencing technologies produce millions or billions of
small DNA fragments through a massively parallel sequen-
cing process. In re-sequencing studies, these fragments are
then aligned to a (typically) haploid representation of the
target genome. As the DNA sequences in these fragments
have non-negligible error-rates, genotype likelihoods are
calculated in order to model the uncertainty of genotypes
arising from sequencing errors and from varying sequen-
cing depth. These genotype likelihoods are defined as
the probability of the observed sequencing data—at a par-
ticular position of the genome—as a function of the true
(but unknown) genotype, which often is assumed to be
diploid. Genotype likelihoods, therefore, capture all the
uncertainty in the data regarding the true genotype.

In phylogenetics, the estimation of genetic distances is
based on continuous timeMarkov chain models of nucleo-
tide substitution. The core concept is to model nucleotide

substitution as a Markov process, while allowing for dif-
ferences in substitution rates among the four different
nucleotides and, possibly, variation in the substitution
rate among sites. The simplest model is the Jukes and
Cantor model, also called the JC69 model (Jukes and
Cantor 1969), which assumes equal rates of substitutions
between all base pairs. A series of other models devel-
oped in the 1980s and 1990s including the K80 (Kimura
1980), F81 (Felsenstein 1981), HKY85 (Hasegawa et al.
1985), F84 (Felsenstein and Churchill 1996), TN93
(Tamura and Nei 1993) relaxes this assumption by in-
corporating additional parameters, such as differences
in the rate of transitions and transversions, and unequal
equilibrium nucleotide frequencies. The most general
commonly used model is the Generalized Time
Reversible (GTR) model (Tavaré 1986), which is the
most parameter-rich model that is still time-reversible.
Relaxing the requirement of time-reversibility of the
Markov chain allows for more parameter-rich models,
in particular the unrestricted UNREST model of Yang
(1994) which is a fully parameterized model with 12 para-
meters—one for each of the 12 possible substitution
types. However, because of computational simplicity
and tractability, most work in phylogenetics focuses on
the GTR model. In this work we will also assume the
GTR model as the basic model of nucleotide
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substitution—however, the results and methodology we
develop can in principle be generalized to non-reversible
models.

The previously discussed substitution models were de-
veloped for haploid sequences of nucleotides. However,
much data currently generated arise from the nuclear
DNA of diploid organisms. Applying these models de-
signed for haploid sequences to diploid data has been a
challenge in many studies, especially due to the consider-
able genotyping uncertainty in much of the published se-
quencing data. Different approaches exist for handling
heterozygous sites and uncertainty in genotype calling
for phylogenetic analyses of diploid data. One approach
is to construct haploid data by phasing the diploid data
using computational approaches—e.g., using various ex-
tensions of PHASE (Stephens et al. 2001; Stephens and
Donnelly 2003) or BEAGLE (Browning and Browning
2007). This is an approach that may work well for species
where many individuals (.100) have been re-sequenced
or where large reference panels of individuals from the
same species are already available. Unfortunately, for
most phylogenetic analyses, such data will often not be
available. Other approaches include: (1) ignoring all pos-
sible heterozygous sites, i.e. treating them as missing
data (Nilsson et al. 2017; Árnason et al. 2018; Maldonado
et al. 2019)—in this work, we call this approach
NoAmbiguityGT; (2) representing possible heterozygous
sites as IUPAC (The International Union of Pure and
Applied Chemistry, Cornish-Bowden 1985) ambiguity
codes (Klicka et al. 2014; Martin et al. 2014; Uckele et al.
2021)—termed AmbiguityGT in this work; (3) choosing
a random nucleotide from the sequenced reads at each
position (Skoglund et al. 2016; Yang et al. 2020)—
RandomSEQ in this work; (4) making a consensus call of
a single nucleotide based on the raw sequencing data,
i.e., converting the diploid sequencing data into a haploid
sequence by, for each site, selecting (one of) the most fre-
quent nucleotides in the sequencing data (Manthey et al.
2016; Sass et al. 2016; Yuan et al. 2016)—ConsensusSEQ in
this work; or (5) incorporating uncertainty using genotype
likelihoods or other measurements of uncertainty, e.g.,
ngsDist (Vieira et al. 2015), which was applied in Choi
and Purugganan (2018), Gaunitz et al. (2018), and Hu
et al. (2018). ngsDist does not perform genotype calling,
but instead uses the diploid diallelic genotype likelihood
to compute the average per site allelic differences by aver-
aging over the joint posterior genotype probabilities.
ngsDist was not devised for phylogenetic analyses and
does not use an explicit model of nucleotide substitution.

Aswewill show in the results section, all existingmethods
have serious drawbacks in simulated scenarios. All simulated
scenarios presented in themanuscript are based on the top-
ology shown in figure 1. The first two approaches,
AmbiguityGT and NoAmbituityGT, which perhaps are the
most commonly used approaches, have previously been
shown to cause strong biases in phylogenetic estimation
(Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016).
The bias is not unidirectional: at low read depth (≤1) these

twomethods will overestimate the genetic distance; where-
as higher read depths (≥5) will cause underestimation (see
fig. 2 and supplementary fig. S8, and Section S5.1,
Supplementary Material online for further discussion).

The methods RandomSEQ and ConsensusSEQ do not
perform genotype calling, but instead choose a representa-
tive nucleotide among all the available data for every site.
RandomSEQ samples a random allele per site and the result-
ing data is equivalent to a sequencing studywith a determin-
istic read depth of 1. ConsensusSEQ is based on constructing
a haploid sequence by choosing the most frequently ob-
served nucleotide in each site. As we will later show
(figs. 3, 4 and supplementary fig. S9, Supplementary
Material online), both methods will be strongly affected by
sequencing errors at low depths, although ConsensusSEQ
can perform well at high sequencing depths.

The Bayesian approach in ngsDist assumes an infinite
sites model that does not take recurrent mutations into ac-
count but more importantly it averages over the posterior
probability distribution of genotypes when calculating dis-
tances. We will in the Results section show that this ap-
proach can result in highly biased estimates of genetic
distances.

Motivated by the statistical limitations of previous meth-
ods, we develop two new methods, distAngsd-geno and
distAngsd-nuc, which are both maximum-likelihood (ML)
estimators of the genetic distance. They differ from previous
methods as they do not attempt genotype or haploid call-
ing, but instead model the sequencing uncertainty while
also using an explicit nucleotide substitution model.
Through extensive simulations, and by applying our meth-
ods to real sequencing data, we show that the two novel
methods outperform previous methods by having signifi-
cantly less biases and smaller variances—especially in the
context of low read depth, or small genome sizes. When
using the methods for estimating phylogenetic trees on a

FIG. 1. Simulated divergence tree: Tree structure used for simula-
tions. Two diploid individuals are of the genotypes ij and kl, respect-
ively. The most recent common ancestor of i and j is A, and that of k
and l is B. The divergence time of A and B is denoted as t0, while the
time from A to i or j is t1, and the time from B to k or l is t2. The di-
vergence time between the two diploid individuals, t, is thus defined
as t = t0 + t1 + t2.
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real data set, we show that the phylogenetic trees estimated
using the new methods have higher phylogenetic concord-
ance with existing taxonomic categories than trees esti-
mated using previous methods.

Materials and Methods
Both distAngsd-geno and distAngsd-nuc share similar
characteristics. They both pre-compute a genome-wide es-
timate of the joint distribution of either genotypes
(distAngsd-geno) or nucleotides (distAngsd-nuc) in two
individuals. This is accomplished by using genotype likeli-
hoods or by directly using the quality scores associated
with each nucleotide across all reads. The estimation of
these joint distributions is free of assumptions regarding
evolutionary models. Inference of genetic distance, d, using
maximum likelihood based on models of molecular evolu-
tion, e.g., the JC69 model or the more realistic GTR model,
then proceeds by treating the inferred joint distributions
as pseudo-data (i.e., M̂ and N̂ below). The inference proced-
ure, therefore, has two steps: (1) Maximum-likelihood infer-
ence of genome-wide joint distribution of alleles or
genotypes, and (2) maximum-likelihood inference of genetic
distances based on the results of step (1). This two-step ap-
proach ignores the statistical uncertainty introduced in step
(1) and merely uses point estimates of joint distributions.
However, for genome-wide data, the variances in the esti-
mates of genotype or allele frequencies should be negligible,
and as we will show, this procedure does in fact have good
statistical properties for realistic parameters’ values.

Estimation of Joint Distributions Using EM
As accurate genotype calling is not possible with low read
depth sequencing data, e.g., Nielsen et al. (2011), we em-
ploy a likelihood approach to estimate the joint global dis-
tribution using the expectation maximization algorithm
(EM) (Dempster et al. 1977).

In distAngsd-geno, the joint genotype distribution is re-
presented by a 10 by 10 matrix M where 10 is the total

number of possible unphased genotypes in a diploid indi-
vidual, i.e., {AA, AC, AG, AT, CC, CG, CT, GG, GT, TT}. Both
rows and columns of M are indexed by these genotypes,
and every element of M, M(gi, gj), represents the propor-
tion of the informative sites (sites where we have data
for both individuals) where the true genotypes are given
by gi and gj. Similarly in distAngsd-nuc, a 4 by 4 matrix N
representing the joint distribution of nucleotides is esti-
mated. Here, N is indexed by nucleotides, i.e., {A,C,G,T}, ra-
ther than the 10 possible genotypes.

The M matrix used in distAngsd-geno is inferred via
Algorithm 1, while distAngsd-nuc applies Algorithm 2 in
order to estimate N. The input of Algorithm 1 are the
genotype likelihoods, while the input in Algorithm 2 are
the likelihoods of all nucleotides given by the Phred-scaled

FIG. 2. The (scaled) genetic distance estimations (d̂/d) for (a) AmbiguityGT and (b) NoAmbiguityGT based on the simulation results. The average
read depth = 0.5, 0.75, 1, 5, 10, 20. True genetic distance d = 0.008, 0.01, 0.016. JC69 and GTR models were used. t1 = 0.004, t2 = 0.0025, see
figure 1. The default simulation setting was applied.

ALGORITHM 1: EM estimation forM. EM algorithm for estimating the 10×
10 joint genotype distribution matrixM, whereMt is the matrixM in the
tth iteration and the function GLk(s, gi) is the genotype likelihood of
genotype gi at site s in sample k (k [ {1,2}).

Input: Genotype likelihoods of sites;

Output: 10× 10 matrix M;

initialization: M0(gi,gj) � 1
100

, t � 0;

while elements in M do not converge do

Mt+1(gi,gj) � 0;

for s � 1 to #sites do

if s is an informative site then

Mt+1(gi,gj) � Mt+1(gi,gj) + Mt(gi,gj)GL1(s,gi)GL2(s,gj)∑
gi ,gj

Mt(gi,gj)GL1(s,gi)GL2(s,gj);

end

end

Mt+1(gi,gj) � Mt+1(gi,gj)
#informative sites

;

t � t+ 1;

end
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base quality score in the read data. The objective function
(i.e., eq. S3 for M and eq. S4 for N) is essentially the same
as equation (1) in Korneliussen et al. (2014), which is the
two dimensional equivalent of the likelihood function pre-
sented in Keightley and Halligan (2011), Li (2011), and
Nielsen et al. (2012).

Log-likelihood of distAngsd-geno Inference
The log-likelihood function in distAngsd-geno given the
inferred pseudo-observation matrix M̂ is defined as,

l(d|M̂) =
∑
g1,g2

M̂(g1, g2)
∑2
i,j=1

log [pg1,iPg1,i ,g2,j(d)]

{ }
. (1)

Here, the sum is over all possible unphased diallelic genotype
nucleotide configurations and g1,i and g2,j [ {A, C, T, G} are
the ith and jth nucleotides of genotypes g1 and g2, respective-
ly. Pg1,i ,g2,j(d) is the transition probability from nucleotide g1,i
to g2,j given the genetic distance d between the two samples.
pg1,i is the stationary distribution of nucleotide g1,i.

Log-likelihood of distAngsd-nuc Inference
The log-likelihood function of distAngsd-nuc given the in-
ferred pseudo-observation matrix N̂ is,

l(d | N̂) =
∑
n1,n2

N̂(n1, n2) log [pn1Pn1,n2 (d)], (2)

where Pn1,n2 (d) is the transition probability from nucleotide
n1 to n2 given the genetic distance d between the two sam-
ples. pn1 is the stationary distribution of nucleotide n1.

Parameters of the Substitution Model
The forms of P·,·(·), p· and d in both equations (1) and (2)
will be determined by the nucleotide substitution model
(e.g., the JC69 or GTR model, see supplementary Section
S3, Supplementary Material online for details). The genetic
distance between two individuals, d, is a product of the di-
vergence time t = t0 + t1 + t2 (as shown in fig. 1) and the
substitution rate, m, d = tm. Notice that this method, like
other phylogenetic methods, estimate d but cannot inde-
pendently estimate t and m. We then scale the nucleotide
substitution rate matrices of the JC69 model and GTR
model so that themean number of substitutions occurring
per base per scaled time unit is fixed to be 1, and d = t re-
presents the mean number of substitutions per site in the
time interval. In the following, we will not distinguish be-
tween estimating d and estimating t. Also, notice that,
similarly to classical phylogenetic methods, we here ignore
complications from varying coalescence time and incom-
plete lineage sorting (See supplementary Section S6,
Supplementary Material online for some further investiga-
tions on the effects on the estimation method of incom-
plete lineage sorting) between the two individuals. If the
method is applied in settings where the coalescent process
causes significant variation in t, the method is expected to
estimate an average value of t for the two individuals.

The detailed derivation of the EM algorithm for both
proposed methods are given in supplementary Section
S2, Supplementary Material online.

Simulations and Comparisons to Previous Methods
Simulations
Wewill focus on the JC69model andGTRmodel assuming all
sites are variable. (i.e., no site is invariable). However, we also
explore models where a proportion of sites are invariable in
supplementary Section S3.5, Supplementary Material online.

We simulate data following Algorithm 3 assuming a dip-
loid species. While distAngsd-geno assumes diploidy,
distAngsd-nuc is applicable to species with other ploidies,
but we here only compare the methods for the diploid
case. The simulated phylogeny is described in figure 1.
The genotype likelihood model used in the simulations is
the canonical genotype likelihood model (see also
McKenna et al. 2010 and supplementary Section S1,
Supplementary Material online):

P(rk = l | g = ij) =
1− ek, If l = i = j,
ek
3 , If l = i and l = j,
1
2 − ek

3 , Otherwise.

⎧⎨
⎩

Here i, j, l [ {A, C, T, G}, and ek is the error rate of the kth
read in the focal site. P(rk = l | g = ij) is the probability
that the kth read at the focal site is called as nucleotide l
given the true genotype in the site is ij.

ALGORITHM 2: EM estimation for matrix N. EM algorithm for estimating
the 4× 4 joint nucleotide distribution matrix N, where Nt is the matrix
N in the tth iteration, and the function ql(s, kl , ni) is the likelihood
function of the nucleotide ni in the kl’th read at site s in sample l, l = 1 or
2. ql can be obtained from the read quality scores.

Input: Reads data and their quality scores;

Output: 4× 4 matrix N;

initialization: N0(ni, nj) � 1
16

, t � 0;

While elements in N do not converge do

Nt(ni, nj) � 0;

for s � 1 to #sites do

for k1 � 1 to #readss,1 do

for k2 � 1 to #readss,2 do

Nt+1(ni, nj) � Nt+1(ni, nj)
+ Nt(ni, nj)q1(s, k1, ni)q2(s, k2, nj)∑

ni,nj Nt(ni, nj)q1(s, k1, ni)q2(s, k2, nj) ;

end

end

end

Nt+1(ni, nj) � Nt+1(ni, nj)∑#sites
s=1 #readss,1 × #readss,2

;

t � t+ 1;

end
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In the simulations, it is assumed that the error rates are
identical across different reads and sites (i.e., ek = e for all
k). The read depths are assumed to be i.i.d., Poisson ran-
dom variables in all sites, and only parameter needed to
define this distribution is the average read depth. It would
also be possible to simulate varying error rates by sampling
them from a different distribution, but as long as the base
error rates are calibrated correctly, variation in the error
rate among sites should not affect the behavior of the
new methods qualitatively.

Parameter Settings
Unless otherwise stated, we simulate data with fixed values
of t1 = 0.004, and t2 = 0.0025 (see fig. 1), but vary the to-
tal divergence time t0, such that t = t0 + t1 + t2 = 0.008,
0.01 and 0.016.

In the main text, most of the simulations are conducted
with the genome length and base calling error set to 1 Mb
and 0.2%. And for each scenario, 200 replicates are simulated.
We will refer to these as the default simulation setting.

The parameters of the GTR model are a = 2.0431,
b = 0.0821, c = 0.0000, d = 0.0670, e = 0.0000,
pT = 0.2184, pC = 0.2606, pA = 0.3265, pG = 0.1946.
These values are suggested by the table 1.3 in Yang
(2006) and were originally inferred from the human and
orangutan 12S rRNA genes.

Other parameter values with larger base calling error, long-
er genetic distance, etc., are explored in the Supplementary
Material online but are not presented in the main text.

Comparisons with the Previous Methods
To assess the performance of the new methods, we
compare their performance against the five previous
methods (RandomSEQ, ConsensusSEQ, NoAmbiguityGT,
AmbiguityGT, and ngsDist).

1. RandomSEQ and ConsensusSEQ
The likelihood function for both RandomSEQ and

ConsensusSEQ is given by:

l(d | Ĉ1) =
∑
n1,n2

Ĉ1(n1, n2) log [pn1Pn1,n2 (d)],

where Ĉ1 is the joint nucleotide counts matrix of the size
4× 4 obtained by either sampling the nucleotide
(RandomSEQ) or by using the Consensus (ConsensusSEQ).
The consensus sequence is created by choosing the most
common base in each site, choosing randomly if multiple
bases are equally common, and ignoring the site if no bases
are observed in one or both of the samples. The definitions
of Pn1,n2 (d) and pn1 are the same as those in equation (2).

2. AmbiguityGT and NoAmbiguityGT
AmbiguityGT and NoAmbiguityGT perform geno-

type calling and, thereby, have an implicit assumption
of known ploidy level. We assume diploid genotypes ob-
tained through standard genotype calling where a pos-
terior probability is computed for each of the 10
possible genotypes under the assumption of a uniform
prior. In the NoAmbiguityGT approach, heterozygous
sites are discarded, i.e. the data are treated as haploid
data ignoring heterozygous sites. However, in the
AmbiguityGT method heterozygous sites are repre-
sented as ambiguity characters and the likelihood func-
tion is calculated by assigning equal likelihood to each of
the two nucleotides, i.e., heterozygous sites are treated
as sites that are haploid but with uncertainty regarding
the nucleotide in the site. This is the standard way of
dealing with missing data or uncertainty regarding nu-
cleotide state in phylogenetic inference. We can think
of the AmbiguityGT approach as being based on the

ALGORITHM 3: Simulation of sequencing data. Simulation scheme of two individuals with a shared ancestor. A simulation scheme considers both variable
and invariable sites can be found in supplementary alg. S1, Supplementary Material online.

Input: Substitution rate matrix R (the stationary distribution of p· is known), divergence time t, t1 and t2, error rate e, mean read depth RD,
genome length l;

Output: Read data and Genotype likelihoods across sites;

Ancestral sequences construction:

The ancestral nucleotide for sample A and B, denoted by a1 and a2, are simulated given R, p·, divergence time t− t1 − t2, and l. Sites are
assumed to evolve independently;

Sequence construction and calling:

initialization: GL1(s, g) � GL2(s, g) � 0;

for j � 1 to 2 do
Two sequences q j1 and q j2 are simulated from aj given R, l, and time tj;

for every site s in sample j do

Generate read depth n � Poisson(RD).
Sample n reads from the true genotype at the site s of q j1 and q j2 with symmetric errors at rate e, to generate data r1, . . ., rn.

Define genotype likelihoods as GLj(s, g) =
∑n

k=1 log[ Prob(rk|g)].

end

end
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following likelihood function:

l(d | Ĉ2) =
∑
g1,g2

Ĉ2(g1, g2){ log [Pg1,g2 (d)]}, (3)

where log [Pg1=ij,g2=kl(d)] equals log [
∑

n1[M1
pn1∑

n2[M2
Pn1,n2 (d)], Ĉ2 is a count matrix of the called

genotype pairs, and M1 and M2 are the sets of nucleo-
tides observed in the two sites. Mi will contain two nu-
cleotides if sample i is heterozygous in that site, and
one nucleotide if homozygous. We elaborate more
on the details of these likelihood functions in
supplementary Section S5.1, Supplementary Material
online.

3. ngsDist
All methods mentioned above including RandomSEQ,

ConsensusSEQ, AmbiguityGT, and NoAmbiguityGT were
implemented in distAngsd, and we used this implementa-
tion for the inferences for the simulated data.

We also compare the new methods with ngsDist (Vieira
et al. 2015), which is the only pre-existing method that
models the uncertainty of the data to estimate genetic dis-
tances. However, this method assumes a di-allelic model.
We, therefore, convert the 10-genotype likelihoods simu-
lated by Algorithm 3 to 3-genotype likelihoods, by first in-
ferring the major and minor alleles as the most frequently,
and second most frequently observed nucleotides,

FIG. 3. The (scaled) genetic distance estimations (d̂/d) for distAngsd-nuc, distAngsd-geno, RandomSEQ, and ConsensusSEQ based on the simu-
lation results under JC69 model. Average read depth= 20, 10, 5, 1, 0.75, 0.5 for (a)–(f), respectively. True genetic distance d = 0.008, 0.01, 0.016.
t1 = 0.004, t2 = 0.0025, see figure 1. The default simulation setting was applied.
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respectively. The resulting 3-genotype likelihoods are then
used as input to ngsDist to calculate the pairwise distances
(see supplementary Section S5.2, Supplementary Material
online for details).

Experimental Data Analyses
We apply the new distAngsd-geno method in a phylogen-
etic analysis of a previously published dataset of RADseq
reads from oak trees (Fitz-Gibbon et al. 2017). This data
set is comprised of 83 oak samples representing 16 taxa lo-
cated around the USA. We obtained the raw fastq se-
quences and followed the reference mapping approach
described in detail in Fitz-Gibbon et al. (2017). The sites re-
tained for downstream analyses are based on the callable-

locus BED files shared by the authors. For each site, we use
the raw genotype likelihood (bcftools genotype likelihood
model). The data processing pipeline differs from that of
the original authors by allowing heterozygote sites, which
had been masked in the original analyses. These sites are ei-
ther encoded as IUPAC ambiguity codes for the
AmbiguityGTmethod, or used in the form of raw genotype
likelihoods for our new methods. We obtained nucleotide
consensus sequences for the ConsensusSEQ method by
using the bcftools consensus command.

The fastq files for the 83 samples were aligned to the refer-
ence genome (Reference of the genome v0.5, Sork et al. 2016;
available from https://valleyoak.ucla.edu/genomicresources/)
to obtain per sample BAM files. For the distAngsd-geno

FIG. 4. The (scaled) genetic distance estimations (d̂/d) for distAngsd-nuc, distAngsd-geno, RandomSEQ, and ConsensusSEQ based on the simu-
lation results under GTRmodel. Average read depth= 20, 10, 5, 1, 0.75, 0.5 for (a) to (f), respectively. True genetic distance d = 0.008, 0.01, 0.016.
t1 = 0.004, t2 = 0.0025, see figure 1. The default simulation setting was applied.
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inference, VCF files were generated by applying bcftools mpi-
leup to all pairs of samples. Similarly, bcftools mpileup com-
mands were applied to obtain per sample information for
use in the AmbiguityGT and ConsensusSEQ analyses.
Genotype calling was performed with “bcftools call” followed
by “bcftools consensus -I” to obtain the putative genotype
calls with IUPAC ambiguity codes for the AmbiguityGT ana-
lyses whereas we did not apply “bcftools call” but solely used
the “bcftools consensus” for the ConsensusSEQ analyses (see
supplementary Section S10, Supplementary Material online
for details).

The distAngsd-geno, ConsensusSEQ, and AmbiguityGT
methods were applied on each pair of oak samples using
the JC69 substitution model. Based on the resulting 83×
83 pairwise distance matrices, we performed neighbor join-
ing estimation for each method using the program PhyD
(Criscuolo and Gascuel 2008) with the BioNJ (Gascuel
1997) algorithm. The trees were then plotted with FigTree
v1.4.4. (http://tree.bio.ed.ac.uk/software/figtree/).

To compare the methods in low-coverage scenarios, we
down-sampled each of the 83 samples to lower coverage.
The original 83 samples have an average read depth of
20.32 and lowest depth of 10.34. Each sample is down-
sampled to read depths of 10, 5, 1, 0.75, 0.5, and 0.25.
Phylogenetic trees were then estimated using the same
methods as previously described.

Results
We implemented the new methods in a program:
distAngsd (https://github.com/lz398/distAngsd). This
program is threaded, scales linearly in the number of cores
allocated, and is supplied as an open source c/c++ pro-
gram under the GPL license hosted on Github.
Importantly, it is user friendly and allows for various stand-
ard formats that will enable researchers to integrate these
methods in standard data-analysis pipelines. In the follow-
ing, we compare the performance of the new methods to
previous methods using extensive simulations and an ap-
plication to a real data set.

Simulation-based Inference
The quantities we compared across different methods in
this section are mainly the scaled genetic distances, d̂/d
and the scaled mean squared error, MSE(d̂)/d2. The distri-
butions of the genetic distance estimates, d̂, are presented
as boxplots illustrating the variability among simulation re-
plicates. The deviations of the mean of d̂/d from 1 reflects
the estimation biases, and the magnitudes of the boxes il-
lustrate the variances of the estimates. MSE(d̂)/d2 is an
overall measure of the accuracy of the estimates combin-
ing both bias and variance. Given the same true genetic
distance d, the lowerMSE(d̂)/d2 is, the better the inference
of the method is.

1. AmbiguityGT and NoAmbiguityGT
As shown in figure 2a and b, the AmbiguityGT and

NoAmbiguityGT approaches, which mimic the currently
most commonly used methods, are generally found to be
highly biased, and are affected by two oppositely directed
biases: For example, for d = 0.01 under the JC69 model
with average read depth is 0.5, AmbiguityGT and
NoAmbiguityGT overestimate the true distance 1.234 and
1.228 times, respectively. However, if the average read depth
is large, e.g., 20, both methods underestimate the true dis-
tance (d̂/d = 0.353 for AmbiguityGT and d̂/d = 0.351 for
NoAmbiguityGT). Similar patterns of overestimation for low
read depth and underestimation for high read depth are

FIG. 5. The (scaled) mean squared errors for six different methods
(distAngsd-geno, distAngsd-nuc, RandomSEQ, ConsensusSEQ,
AmbiguityGT, and NoAmbiguityGT) in the simulation results.
True genetic distance d: (a) d = 0.008. (b) d = 0.010. (c)
d = 0.016. t1 = 0.004, t2 = 0.0025, see figure 1. The default simula-
tion setting was applied. Solid lines correspond to the results of pre-
vious methods, while the dashed ones represent those of the two
proposed methods.
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observed across simulation settings (see also supplementary
figs. S8 and S12, and table S4, SupplementaryMaterial online).

The reasons that AmbiguityGT and NoAmbiguityGT are
biased upwards for low depth and downwards for high depth
are as follows: When the average read depth is low, most het-
erozygous sites appear as homozygous, however, sequencing
errors will appear as additional fixed differences that cause
overestimation of the divergence time. As the sequencing
depth increases, the genotype calling becomesmore accurate
and less affected by sequencing errors. However, for the
NoAmbiguityGT methods, the removal of heterozygous sites
leads to underestimation of the genetic distance. Instead of
estimating t = t0 + t1 + t2 in figure 1, effectively only t0 is
being estimated. There will be a similar effect for the
AmbiguityGT method, which also ends up effectively just es-
timating t0. This effect is explored in more detail in
supplementary S5.1, Supplementary Material online.

Since the biases of AmbiguityGT and NoAmbiguityGT
are quite large, we do not include these methods in future
comparisons.

2. RandomSEQ and ConsensusSEQ
Simulation results using the same parameter settings as

in the previous section, for distAngsd-geno, distAngsd-
nuc, RandomSEQ, and ConsensusSEQ are plotted in
figures 3 (JC69) and 4 (GTR) with different read depths in
different panels.

The results are qualitatively similar for both the GTR and
JC69 models across all methods (including distAngsd-geno,
distAngsd-nuc, RandomSEQ, and ConsensusSEQ, and the
previously mentioned AmbiguityGT and NoAmbiguityGT
methods see fig. 2). However, the biases tend to be larger
under the GTR model due to the asymmetric nature of

the GTR model. We summarize the common features
of the results of distAngsd-geno, distAngsd-nuc,
RandomSEQ, and ConsensusSEQ under both nucleotide
substitution models as follows:

Both distAngsd-geno and distAngsd-nuc have higher ac-
curacy and precision (smaller biases and variances) than
RandomSEQ and ConsensusSEQ. This is especially clear
for low depth scenarios (figs. 3e,f and 4e,f) and shorter gen-
ome length scenarios (see also supplementary figs. S13 and
S14, Supplementary Material online). RandomSEQ and
ConsensusSEQ are strongly affected by errors at lower se-
quencing depths. This sensitivity to errors also affects
RandomSEQ at higher sequencing depths, while the per-
formance of ConsensusSEQ improves strongly with increas-
ing depth. It should be noted that when the mean read
depth is small and the base calling error is relatively large
(relative to the true genetic divergence), both of the new
methods can still be biased. However, these biases are
much smaller than those observed for the previous meth-
ods (e.g., see fig. 4). We refer readers to supplementary
Section S4, Supplementary Material online for a general dis-
cussion on bias analyses.

As expected, since the new methods take advantage of
the full information of the sequencing data (see discussion
in supplementary Section S5.1, Supplementary Material on-
line), they also have the smallest variance and the smallest
mean squared error (MSE, see fig. 5, and supplementary fig.
S15, Supplementary Material online for shorter genome
scenarios). Furthermore since distAngsd-geno also uses
prior knowledge of ploidy level, it always has the least vari-
ance in our diploid simulations.

Supplementary figures S13 and S14, Supplementary
Material online correspond to figures 3 and 4, with the
only difference being the number of variable sites used
in the actual simulation (1 MB in the main text, 0.1 MB
in Supplementary Material online).

3. ngsDist
ngsDist is based on a model which measures pairwise dif-

ferences and does not distinguish between different types of
nucleotide substitutions, we therefore compare the results
of ngsDist with disAngsd-geno only under the symmetric
JC69 model. ngsDist is also the only previous method that
makes use of genotype likelihoods. We should also empha-
size that ngsDist was not developed for phylogenetic ana-
lysis and the results presented is therefore not the
recommended scenarios for ngsDist. We therefore present
the result separately (fig. 6). With an average read depth
of 1, ngsDist overestimates genetic distance d when a rela-
tively small true d is simulated (35-fold difference when true
d = 0.01). This is due to ngsDist averaging over the poster-
ior genotype distribution when calculating genetic distances
(eq. 2 in Vieira et al. 2015). Averaging over the posterior
leads to overestimation of genetic distances when the
true distances are small, because uncertainty regarding
the genotype is effectively interpreted as a high probability
of nucleotide differences. For example, for a uniform prior
on diallelic genotypes and with no data, so that only the
prior contributes to the posterior, the expected number

FIG. 6. Comparison of estimated genetic distances by
distAngsd-geno and ngsDist for different true distances ranging
from 0.01 to 1. The JC69 model was used. t1 = 0.004, t2 = 0.0025,
see figure 1. At each true d value, 200 replicates were simulated
and estimated. The default simulation setting was applied and the
average read depth is set to 1. Blue points: distAngsd-geno. Red
points: ngsDist.
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of nucleotide differences per site is 0.5. If the sequencing
depth is low, the genetic distance will therefore be biased
towards large values especially when the true genetic dis-
tance is small. Incorporating statistical uncertainty by aver-
aging over a posterior can, in general, lead to highly biased
estimates and will be very sensitive to the choice of prior.
DistAngsd-geno remains approximately unbiased but has
increasing variance as depth decreases. In contrast,
ngsDist has an obvious depth-dependent bias in the tested
scenarios. As the depth becomes smaller, the genotype
prior increasingly influences the estimated genetic distance
(see fig. 7 for the genome length 1Mb case and
supplementary fig. S6, Supplementary Material online for
the genome length 0.1Mb scenario).

Inference based on Experimental Data
To compare the methods on real data, we used a previous-
ly published data set of RADseq data from oak trees
(Fitz-Gibbon et al. 2017). We estimate neighbor joining
trees using genetic distances based on distAngsd-geno
and two more popular previous methods, ConsensusSEQ
and AmbiguityGT under the JC69 model (fig. 8). We
used the JC69 model to facilitate a more fair comparison
among methods.

We only compare distAngsd-geno to the ConsensusSEQ
and AmbiguityGT methods since (1) they perform equally
as well or better than RandomSEQ and NoAmbiguity in si-
mulations. (2) ngsDist overestimates the pairwise genetic
distances and is not appropriate for phylogenetic inference
(figs. 6 and 7).

Distances estimated using distAngsd-geno results in
trees that are more concordant with existing taxonomic
assignments, as they are closer at identifying Quercus ber-
beridifolia, Quercus durata var. gabrielensis and Quercus
durata var. durata (fig. 8) as monophyletic groups.

To further examine the relative performance of the
methods on real data, we down-sample to obtain mean
read depths of 10, 5, 1, 0.75, 0.5, and 0.25. The original
mean depth per sample was 20.32 with a lowest mean

depth of any sample of 10.34. We then, again, estimated
neighbor-joining trees using distances inferred using
distAngsd-geno, ConsensusSEQ, and AmbiguityGT. To
compare the compatibility of the results with the existing
taxonomy, we developed a compatibility measurement,m,
that measures the amount of taxonomic compatibility
observed in the trees, i.e., higher values correspond to
better performance (see supplementary Section S8,
Supplementary Material online). Results for all scenarios
and methods can be found in table 1.

Clearly, trees estimated using distAngsd-geno are
more compatible with existing taxonomy than both
ConsensusSEQ and AmbiguityGT, particularly as the read
depth decreases.

Discussion
We have here presented two novel methods for estimating
genetic distances: distAngsd-geno and distAngsd-nuc. Both
of these methods incorporate the uncertainty that is inher-
ently associated with high-throughput sequencing data.
The uncertainty is either modeled through standard diploid
genotype likelihoods or, equivalently, through the application
of the base quality scores in a framework that facilitates infer-
ences in a polyploid or unknown ploidy context. Both meth-
ods can estimate the genetic distance between samples with
high sequencing error rates and low average read depth.

The key characteristic of both methods is to decompose
the likelihood optimization process into two parts: (1) esti-
mation of global pseudo-observations (i.e. joint distributions
of genotypes or nucleotides between each pair of samples);
(2) the maximum-likelihood estimation of genetic distance
(and other related parameters) based on the previously calcu-
lated pseudo-observations. This decomposition reduces the
complexity of the maximum-likelihood estimation.

However, we note that this decomposition can introduce
biases (See supplementary Section S4, Supplementary
Material online), particularly when the sequences compared
are short. The proposed methods are not intended for data
consisting of very short sequences. However, the bias for our

FIG. 7. Comparison of estimated genetic distances by ngsDist and distAngsd-geno for different read depths ranging from 0.5 to 20. (a) Genetic
distance was estimated by ngsDist. (b) Genetic distance was estimated by distAngsd-geno. JC69 model was used. True genetic distance (d) was
assumed to be 0.01, t1 = 0.004, t2 = 0.0025, see figure 1. The default simulation setting was applied.
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FIG. 8. Neighbor-Joining Tree of 83 oak samples inferred using genetic distances estimated by (a) distAngsd-geno (b) ConsensusSEQ , and (c)
AmbiguityGT. All inferences are based on the JC69 model. The colors of the leaf-node labels correspond to the species shown in the legend.
All three trees are estimated as unrooted trees but roots are placed between the known outgroup Quercus kelloggii and other oak species.
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proposed methods is still smaller—by a large margin—
compared to any previous method.

We also simulated and inferred genetic distances based
on tree topologies different from figure 1 (See
supplementary fig. S7, Supplementary Material online).
Such topologies can occur due to incomplete lineage sort-
ing, i.e. when coalescence times are shorter between alleles
from different individuals than from the same individual.
We find that for a realistic range of divergence levels, the
results of the new methods still offer higher accuracy
than the previous methods (See supplementary Section
S6, Supplementary Material online). The biases of the pre-
vious methods for topologies resulting from incomplete
linage sorting are similar to those observed for the stand-
ard topology in figure 1, and the general conclusions from

the standard simulation scenario carries over to the case of
incomplete lineage sorting. One exception is for extremely
large divergence levels (see supplementary fig. S10,
Supplementary Material online), where the new methods
will be increasingly biased.

While the distAngsd-geno results presented here assume
diploidy, it can in principle be extended to any ploidy level.
However, unlike the distAngsd-geno, the distAngsd-nuc
does not require prior knowledge of ploidy level, and
the size of joint distributionmatrix of nucleotides N remains
a 4× 4 regardless of ploidy level. We observe that
distAngsd-geno produces more accurate results for our dip-
loid simulation scenarios but speculate that in the context
of unknown ploidy distAngsd-nuc will yield more robust es-
timates and would therefore be more suitable.

FIG. 8. Continued

Table 1. The Compatibility Measurement m between the Inferred Pairwise Distance Trees and the Prior Species Knowledge.

Downsampling Depth Full 10 5 1 0.75 0.5 0.25

Criterion |V1 >V2| = 0 distAngsd-geno m 17 17 17 16 16 17 13
ConsensusSEQ 17 17 17 16 16 16 13
AmbiguityGT 16 16 16 16 16 16 12

Criterion |V1 >V2| ≤ 1 distAngsd-geno m 75 75 73 74 73 70 57
ConsensusSEQ 74 75 76 72 70 66 58
AmbiguityGT 75 75 74 74 70 67 56

NOTE:—The trees are inferred based on the original samples as well as the downsampled samples. The original 83 samples have mean read depth 20.32 with lowest depth
10.34, and each sample is downsampled to mean read depth 10, 5, 1, 0.75, 0.5, and 0.25.
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Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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