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Abstract

Introduction: Early reports of COVID-19 cases and deaths may not accurately convey community-level concern
about the pandemic during early stages, particularly in the United States where testing capacity was initially limited.
Social media interaction may elucidate public reaction and communication dynamics about COVID-19 in this critical
period, during which communities may have formulated initial conceptions about the perceived severity of the
pandemic.

Methods: Tweets were collected from the Twitter public API stream filtered for keywords related to COVID-19.
Using a pre-existing training set, a support vector machine (SVM) classifier was used to obtain a larger set of
geocoded tweets with characteristics of user self-reporting COVID-19 symptoms, concerns, and experiences. We
then assessed the longitudinal relationship between identified tweets and the number of officially reported COVID-
19 cases using linear and exponential regression at the U.S. county level. Changes in tweets that included
geospatial clustering were also assessed for the top five most populous U.S. cities.

Results: From an initial dataset of 60 million tweets, we analyzed 459,937 tweets that contained COVID-19-related
keywords that were also geolocated to U.S. counties. We observed an increasing number of tweets throughout the
study period, although there was variation between city centers and residential areas. Tweets identified as COVID-
19 symptoms or concerns appeared to be more predictive of active COVID-19 cases as temporal distance increased.

Conclusion: Results from this study suggest that social media communication dynamics during the early stages of
a global pandemic may exhibit a number of geospatial-specific variations among different communities and that
targeted pandemic communication is warranted. User engagement on COVID-19 topics may also be predictive of
future confirmed case counts, though further studies to validate these findings are needed.
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Background
In mid-March 2020, approximately 150,000 cases of cor-
onavirus 2019 (COVID-19) had been confirmed globally,
with only about 2000 of these cases occurring at the
time in the United States [1]. Domestic attention to the
potential threat of the COVID-19 pandemic was likely
widespread [2–4], though current data do not allow for
a highly valid means of estimating the extent of public
concern at this earlier stage of the pandemic. Further-
more, many who became infected did not exhibit
symptoms (i.e., asymptomatic cases) or exhibited very
mild symptoms, complicating the relationship between
reporting of case counts and actual public attention and
concern to what would eventually become a global pub-
lic health crisis, which as of March 2021, has claimed
the lives of more than half a million Americans [5, 6].
In the first half of March 2020, limited availability of

tests for COVID-19 led public health officials to suggest
that only certain individuals need to seek confirmation
of COVID-19 infection with a diagnostic test [7]. As a
result, it was recommended that testing be reserved for
individuals suffering relatively severe symptoms requir-
ing hospitalization [8]. This may have resulted in an
early outbreak period that exhibited inaccurate spatial
variation for pandemic-related concern due to underre-
porting of true case count estimations. Hence, limited
testing capacity and data on actual case estimations
necessitates examination of non-traditional sources of
surveillance data, including forms of syndromic and
infodemiology approaches that use data generated out-
side of clinical settings. One approach to assessing
underreporting of COVID-19 symptomatic individuals
and possible cases is by using “infoveillance” approaches,
including using Internet and social media data to iden-
tify the distribution and determinants of disease-related
concern, such as self-reporting of COVID-19 symptoms
and lack of access to testing [9–11].
A number of studies have used social media data to

identify and characterize user experiences with COVID-
19, including the detection of self-reporting of COVID-
19 symptoms, user sentiment, information spreading,
exposure to misinformation, illegal sale of COVID-19
health products, and other topics [12–16]. In addition to
social media-based infoveillance, analysis of geographic
distributions of online COVID-19 communication
during this period may be helpful in understanding the
variability in how communities interact with the topic of
a novel and emerging infectious disease outbreak [17,
18]. These geographic distributions may also be valuable
to public health practitioners seeking to disseminate
information about preventive behaviors (e.g. mask wear-
ing, social distancing) in the context of pandemic re-
sponse, as well as to public health practitioners seeking
to understand the latent capability of communities to

receive and respond to pandemic-specific public health
communication strategies [19–21].
Building on this prior research, this study aims to ex-

plore the use of geospatial, statistical, and machine
learning methods to better understand how social media
data from the popular microblogging platform Twitter
can be leveraged to estimate geographic distributions of
public attention and concern to the COVID-19 pan-
demic. Specifically, the use of Twitter data has a number
of advantages in achieving the objective of understand-
ing geospatial variability in communication during dis-
ease outbreaks. Practically, it is more feasible to obtain
large volumes of unprompted and self-reported conver-
sations closer to real-time that more immediately convey
the experiences of online users compared to traditional
surveys that may be retrospective and subject to recall
bias [22]. The near real-time data generated by social
media is particularly important when exploring changing
trends in public health emergencies, such as a global
pandemic. Also, the unprompted nature of these mes-
sages may encourage more organic spatiotemporal re-
flection of attention to a given topic, which is further
facilitated by a large number of users (Twitter reports
that it had 187 million active users worldwide as of
January 2021) and methods to opt-in to geolocation [23, 24].
We specifically choose to examine the early out-

break period in the United States as it represents a
critical time frame of formation of public perception,
knowledge dissemination, and initial behavior adapta-
tion towards public health interventions, which can
influence subsequent behaviors and attitudes towards
the pandemic in later stages [25]. Other studies have
similarly examined other social media platforms (e.g.,
Chinese microblogging platform Weibo) at the early
stages of COVID-19 in other countries for public per-
ception and sentiment, such as in Wuhan City, China,
where the outbreak originated [26–28].

Methods
Study methods included interdisciplinary approaches in
data mining, mathematical transformations, regression
analysis, geospatial statistics, and machine learning for
content classification. The distributions predominantly
under scrutiny were spatial, though temporal fluctua-
tions were also assessed. Data collection and mining was
conducted using the computer programming language
Python and data analysis was conducted in ArcGIS ver-
sion 10.6 and R version 3.6.0. Figure 1 provides an over-
view of the data collection, processing, and analysis
phases used in this study.

Data collection
Data access via the Twitter public API stream was
used to prospectively download publicly available posts
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located in the United States between March 3rd and
March 17th, 2020, inclusive. Data collection commenced
in early March and was terminated for the purposes of
this study when data were sufficient to allow for testing
the longitudinal prediction of cases from social media
posts with a two-week time-lag. This timeframe can also
be characterized as occurring towards the end of the
early outbreak period in the United States, as on March
13th, former President Donald Trump declared COVID-
19 a national emergency, an event emphasizing the ser-
iousness of the outbreak and unlocking billions in fed-
eral funds to fight its spread.
Keywords used to obtain tweets from the public API

stream were intended to encompass a broad representa-
tion of conversations regarding COVID-19 at the time.
These were “corona outbreak,” “corona,” “anticorona,”
“coronavirus,” “Wuhan virus,” “COVID,” “Wuhan pneu-
monia,” and “pneumonia of unknown cause.” these key-
words were chosen on the basis of structured manual
searches conducted on twitter that detected content re-
lated to the COVID-19 outbreak as posted by users, and
they have also been validated as being able to identify
tweets pertaining to COVID-19 conversations in prior
studies [29, 30]. Approximately 60 million messages
were collected during this timeframe. Prior studies sug-
gest that collecting data from the twitter public stream-
ing API will generate a random sample of approximately
1% of all public tweets having these keywords, though
selection of keywords, volume of overall tweets, and
other factors may impact this approximation (see

“limitations” section) [31]. Of these tweets, 459,937 had
available geospatial information in the metadata of col-
lected messages.
Geospatial information was in the form of latitude and

longitude coordinates. The original source of this infor-
mation was information generated from the user’s device
where Twitter users are required to opt in to enable geo-
location. For the purposes of this study Twitter IDs were
removed from datasets prior to analysis to ensure appro-
priate de-identification. Posts with these coordinate data
are made available to third parties via the Twitter API.
There are a number of reasons why twitter users may
choose to geolocate or geotag their tweet. Reasons for
lack of geolocation include changes in Twitter’s privacy
policy and individual privacy concerns about sharing
data and not opting-in to geolocation services/apps. Spe-
cifically, in 2015 Twitter changed its terms to require ex-
plicit op-in to share precise location data (i.e. GPS data)
whereas previously precise data was included when geo-
tagging tweets. Reasons why users may geolocate include
a preference to geotag their location when tweeting and
integration or use of other applications. COVID-19
cases at the U.S. county and national levels were avail-
able from the 2019 Novel Coronavirus COVID-19
(2019-nCoV) Data Repository, actively maintained on
GitHub by the Johns Hopkins University Center for Sys-
tems Science and Engineering, which collects case infor-
mation reported from a variety of validated sources [32].
Cases were obtained for each day when posts were col-
lected on Twitter. Active case counts were used in

Fig. 1 Flowchart describing data collection, processing, and analysis phases for social media posts related to COVID-19
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regression modeling, computed by subtracting county-
level recoveries and deaths from confirmed cases.
Normalization of tweets for national and local analysis
was done by dividing the number of tweets by the
amount of people living in a given county or census
tract. Population at these ecological units was available
from the US Census Bureau.

Content analysis using machine learning
In a prior published study, we used an unsupervised ma-
chine learning approach, called the biterm topic model
(BTM), to identify users self-reporting COVID-19 symp-
tom related experiences and concerns (e.g., lack of ac-
cess to testing when having symptoms) from the 60
million-tweet corpus collected during the study period.
Coding involved five thematic categories/codes for iden-
tification of “signal” tweets (i.e., tweets that were con-
firmed as associated with self-reporting of symptoms
and concerns after manual annotation). Results from the
study reported high inter-rater reliability (κ = 0.98); with
a more detailed description of these methods available in
Mackey et al., 2020 [29]. In brief, 35,786 posts were clus-
tered by BTM and identified as containing highly corre-
lated word patterns thought to be associated with
symptom-related conversations, with 3465 of these posts
then positively identified via manual annotation as asso-
ciated with self-reporting of symptoms and concerns.
These signal posts largely did not contain geospatial

information but were nevertheless detected during the
early outbreak period and were used for this study. This
initial set of training data, along with a matching num-
ber of posts coded for non-signal (i.e., posts that were
false positives and determined by manual annotation to
not be related to self-reporting of symptoms), were used
for further supervised machine learning classification
tasks using a support-vector machine (SVM) algorithm.
The SVM classifier was applied to the 459,937 posts in
this study with geospatial coordinates to identify 249,778
posts whose text content is more consistent with self-
reported user Twitter messages related to COVID-19
symptoms/concerns, therefore excluding “noise” associ-
ated with tweets that were about news coverage, satire,
and other topics not related to symptoms and concerns.
This final labeled subset of 249,778 geo-identifiable posts
was used in all regression models computed in this
study.
As our training set explicitly excluded posts that ap-

peared to originate from bots in its signal dataset (includ-
ing signal data we observing observed generally included
longer interactions with other users, original content, and
profile information that had individually identifiable infor-
mation or biographies), the output of the SVM classifier is
likely to exclude from its classification similar bot-like
traffic. In addition, we observed that the average ratio of

users’ followers to following was 1607:78, and only 111
users had accounts created recently in 2020 in the prior
published study, which are all macro characteristics indi-
cative of non-bot traffic.

Longitudinal analysis
Analysis of signal tweets specifically located for the
United States involved scrutiny of the longitudinal rela-
tionship between tweets and cases at the U.S. county
level. Bivariate regressions were conducted to investigate
the strength of relationships between county-level tweets
and county-level active cases. These models were com-
puted to compare the distribution of tweets on the same
day as the distribution of active cases, as well as for
every combination of time-lagged tweets with active
cases. R2 values were used to assess the fit of linear
relationships and were compared to Nagelkerke’s R2 to
assess the fit of exponential relationships for the set of
same-day or time-lagged relationships. Nagelkereke’s
method provides a range from zero to one, as with the
R2 statistic for linear relationships, in computing a fit
relative to a nested null model without predictors.

Geospatial analysis
In order to explore the county-level distribution of all
geolocated tweets with COVID-19 keywords within the
United States, tweets were aggregated across the March
3rd - 17th data collection period and divided by county-
level population based on data from the US Census
Bureau. Geospatial cluster analysis was conducted for
the top five most populous cities in the United States.
For cities bounded by the perimeter of a single county,
the distribution across census tracts was analyzed at the
county level; otherwise, the distribution across census
tracts was analyzed at the city level. This strategy was
undertaken in order to relay relevant distributions across
space, particularly with cities contiguous with numerous
other cities and towns. Unique coordinates from the
overall study period were utilized for cluster analysis of
all five areas, so as to prevent clustering statistics from
being biased toward locations of individuals with higher
volumes of social media posting. For areas with suffi-
cient sample size, additional analysis was done on the
first day (March 3rd) and the last day (March 17th) of
the study period, in order to relay change in the distribu-
tion of social media messages. The computational
analysis itself involved calculation of the Getis Ord Gi*
statistic for each census tract within the area. These G
statistics were used to obtain corresponding z scores,
which were then visualized to relay high-value “hot”
spots and low-value “cold” spots.
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Results
A total of 459,937 tweets included geospatial informa-
tion and originated from 11,022 unique coordinates.
Tweets were available for 1971 US counties (55% of
US counties), with tweets per capita ranging from
0.0000076 per capita to 0.75 per capita. National ana-
lysis assessed active cases from March 3rd, which
totaled 59 cases across 24 counties ranging from 1 to
14 cases per county; increasing on March 17th to

5911 active cases (representing close to a 10,000%
increase) across 523 counties ranging from 1 to 807
per county.

Longitudinal analysis
Regression models comparing non-normalized tweets
and active cases tended to exhibit better fit as the day of
active case data became further from the day of tweet
data (Table 1). This prediction was especially strong for

Table 1 R2 values for regression models with number of active COVID-19 cases regressed on number of tweets related to COVID-19
at the county level. Linear and exponential models were computed for both same-day tweets and time-lagged tweet day predicting
active cases. Greener shading indicates higher R2 values within that table; otherwise, shading is relative to row values

*p value for tweets covariate under 0.05
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exponential models, with the fit of active cases by
COVID-related tweets reaching an R2 of 0.76 for the ex-
ponential model with tweets from March 4th predicting
active cases 13 days later. Average R2 for same-day pre-
diction was 0.16 for linear models and 0.15 for exponen-
tial models. Although only one comparison was
available, R2 for 14-day prediction was 0.49 for the linear
model and 0.73 for the exponential model. The tweet
covariate was not statistically significant when predicting
cases on March 3rd, March 4th, or March 5th. Con-
versely, 96% of bivariate models for subsequent days ex-
hibited p values under 0.05 for the tweet covariate.

Geospatial analysis
Between March 3rd and March 17th, we collected 249,
788 posts which were classified as related to COVID-19
user-generated symptoms and concerns as outputted by
the SVM classifier. These posts had 11,022 unique geo-
spatial coordinates. To illustrate the difference in social
media communication between early March and mid-
March, we compared tweets obtained at the beginning
of the study period (March 3rd) with those obtained 2
weeks later (March 17th). We detected 3842 (34.9%)
posts on March 3rd and 8420 (76.4%) on March 17th.
Within the five most populous cities in the United States
(or their respective encompassing counties), there were
95 unique coordinates from New York City, with 35
(36.8%) on March 3rd and 66 (69.5%) on March 17th;
178 unique coordinates from Los Angeles County, with
58 (32.3%) on March 3rd and 147 (82.5%) on March
17th; 86 from Cook County (i.e. Chicago), with 27
(31.4%) on March 3rd and 59 (68.6%) on March 17th; 81

from Houston, with 26 (32.1%) on March 3rd and 73
(90.1%) on March 17th; and 40 from Maricopa County
(i.e. Phoenix) with 13 (32.5%) on March 3rd and 25
(62.5%) on March 17th. Therefore, across all city areas,
approximately one-third of the number of locations
interacting with the COVID-19 topic were represented
in early March. The number of locations approximately
doubled by mid-March, consistent with the national
trend in increase in number of locations tweeting about
COVID-19.
Geospatial cluster analysis was conducted for each

major metropolitan city area. In New York City, a cluster
of tweets was detected in Manhattan, which is the most
densely populated area of the city. Conversely, in Los
Angeles County, the densely populated downtown area
was labelled as a cold spot, whereas the relatively resi-
dential areas of West Los Angeles and San Gabriel
Valley were labelled as hot spots. The same pattern was
observed for Cook County (i.e., Chicago) and Houston,
where city centers exhibited lower levels of social media
conversations related to COVID-19 symptoms and con-
cerns. However, the distribution of tweets within
Maricopa County (i.e., Phoenix) seemed more consistent
with that of New York City, with relatively high repre-
sentation of COVID-19 conversations in the densely
populated city center (Fig. 2). These results may reflect
different underlining patterns of twitter user’s engage-
ment or geolocation in different city and residential
environments, or more or less engagement on COVID-
19-related topics due to specific community consider-
ations (e.g., on March 17th, New York City had 182 new
cases and Los Angeles County had 50 new cases),

Fig. 2 Z-scores for the Getis Ord Gi* statistic, indicating geospatial clustering of tweets about COVID-19 from (a) New York City, (b) Los Angeles
County, (c) Cook County (i.e. Illinois), (d) Houston, and (e) Maricopa County (i.e. Phoenix)
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though these patterns require further study and gener-
ation of additional hypotheses.
Analysis for different time points was possible for New

York City and Los Angeles County. On March 3rd, the
distribution of coordinates in New York City spanned
across lower and central Manhattan, radiating across the
East River into parts of Brooklyn and Queens. Despite
more social media activity on March 17th, the distribu-
tion of coordinates in New York City became much
more concentrated within the island of Manhattan. The
opposite trend was observed in Los Angeles County. On
March 3rd, small clusters of tweets were detected from
Los Angeles International Airport and some areas of San
Gabriel Valley. On March 17th, these small clusters ap-
peared to have grown to encompass most areas within
the county’s South Bay, Westside, San Gabriel Valley,
and Southeast regions (Fig. 3).

Discussion
From an initial dataset of 60 million tweets, this study
used a combination of geospatial analysis, statistical test-
ing, and machine learning to analyze approximately 460

k tweets that contained COVID-19-related keywords
that were geolocated in just over half of all counties in
the United States during the early stages of the pan-
demic. We observed variation in clustering of tweets
within populous metropolitan areas, indicating sub-
regional differences in patterns of social media commu-
nication about COVID-19.
Results of this study are primarily exploratory and

are important in generating further hypotheses to bet-
ter characterize social media communication dynamics
at early stages of a public health emergency, particu-
larly in the context of a novel emerging infectious
disease and when there is a lack of accurate informa-
tion on case counts, as this period was marked by
underreporting of active and asymptomatic cases due
to lack of testing capacity [12]. Overall, this study re-
vealed a number of quantitative aberrations, discrep-
ancies, and findings that require further study that
could help in better assessing the epidemiological and
communication characteristics of the ongoing
COVID-19 pandemic using geolocated tweets as a
proxy indicator for community attention to disease

Fig. 3 Changes in z-scores for the Getis Ord Gi* statistic, relaying clustering at the start of the study period (March 3rd) and the end of the study
period (March 17th) for New York City and Los Angeles County
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outbreaks, with possible insights related to disease
transmission trends over time.
Analysis of county-level data in the United States also

suggested a time lag between Twitter posts and predict-
ive power for officially reported COVID-19 cases. In this
study, posts exhibited much better fit for reported active
cases as the time gap between Twitter posts and cases
increased, especially in exponential models. The reason for
this discrepancy may be that social media users are
responding to the perceived risk of COVID-19 due to news
coverage and conversations generated from other users’ ex-
periences earlier than official reporting of cases by state
public health agencies [33]. Specifically, there is generally a
lag with public health surveillance reporting, which can also
be impacted by the availability and speed of laboratory test-
ing [34]. Hence, this study’s approach can potentially
provide closer to real-time insights by identifying commu-
nities where self-reporting of symptoms and public concern
about disease transmission are experiencing statistical and
geospatially specific fluctuations.
Analysis of the areas for the five most populated cities

in the United States revealed some consistencies and
also some differences in relation to Twitter engagement
on COVID-19-related topics. All cities appeared to fol-
low the national longitudinal trend of increasing tweets
and corresponding case counts, where approximately
one-third of all cities analyzed included Twitter discus-
sions related to COVID-19 on March 3rd, which then
doubled by March 17th. This result appears to indicate
that, in addition to the total number of Twitter posts fol-
lowing a similar longitudinal trend as local COVID-19
rates, the number of unique locations interacting with
this issue was also indicative of the evolving national
concern about the pandemic.
Specifically, temporal differences were observed be-

tween New York City and Los Angeles County, where
clustering of highly tweeted areas became more concen-
trated in New York City and less concentrated and dis-
persed in Los Angeles County. As New York City
exhibited extremely high COVID-19 rates in mid-March
compared to the rest of the country, this result may
partly be due to highly concentrated user engagement in
specific areas of the city, mainly Manhattan (with users
in this area possibly more likely to geotag their tweets),
actively discussing COVID-19 topics. Los Angeles
County exhibited the opposite trend, where the distribu-
tion of tweets became more dispersed between March
3rd and March 17th, possibly reflecting the fact that case
counts were relatively lower in this area compared to
other states/cities. Furthermore, lack of highly concen-
trated tweet geographic clusters may indicate that public
concern about the outbreak was still being formulated,
particularly as case counts continued to increase locally.
In both city-specific groups of tweets, we observed that

users commented about concerning issues related to an
absence of people/crowds, decrease in traffic, and store/
event closures, towards the end of the study period. This
may reflect growing awareness to the pandemic’s sever-
ity as the pandemic progressed.
Overall, the cities of New York and Phoenix exhibited

different Twitter clustering patterns than those for the
areas of Los Angeles, Chicago, and Houston. In New
York and Phoenix, clusters were generally observed from
relatively densely populated city centers. However, in
Los Angeles, Chicago, and Houston, clusters were
mostly observed outside of city centers. Further research
is needed to assess why these city and residential specific
variations may be occurring, which could be influenced
by differences in dynamics between working and living
in different cities (including access to public transporta-
tion, commuting for work, and the impact of stay-at-
home orders on working and living conditions specific
to cities or states) [35]. Areas that exhibited similar
tweet clustering (e.g., the Phoenix area and New York
City) require further study to assess if there are similar
patterns of user risk-perception or COVID-19-related
self-reported behavior.
Importantly, our study builds on a growing body of

infoveillance literature using geolocated data to explore
potential disease transmission and online communica-
tion dynamics using publicly available social media data.
This includes a 2016 study of Japanese tweets containing
influenza symptoms which found a similar time lag be-
tween the rate of tweets with forecasting words and the
national influenza rate [36]. A separate study of Korean
tweets from 2016 found that tweets with keywords re-
lated to Middle East respiratory syndrome (MERS) were
more predictive of the South Korean quarantine rate as
the time lag increased, but less predictive of laboratory-
confirmed cases [37]. Finally, a 2010 study of English-
language tweets about the H1N1 pandemic found that
tweets which were automatically coded as indicative of
personal disease experience, based on keywords, exhib-
ited high correlation with personal disease experience
after manual verification of tweets [38].
Throughout the COVID-19 crisis, maps and data

dashboards have been popularly used to describe the ex-
tent and distribution of the pandemic and offer action-
able public health insights [32, 39, 40]. However, these
maps have primarily focused on the disease distribution
itself (e.g., visualizing validated cases, testing and vaccine
centers, and requesting users to self-report symptoms),
whereas social consequences of the disease (such as
those discussed in social media posts) may also provide
useful insights warranting the production of map visuali-
zations [41, 42]. Furthermore, there exist powerful geo-
spatial and statistical methods that can applied to these
data to assess specific risk factors associated with
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geolocated communities, including examining potential
COVID-19-related challenges such as health disparities,
lack of access to testing/treatment, and assessing the im-
pact of policy on pandemic response and human behav-
ior [43]. This form of digital syndromic COVID-19
surveillance can generate previously undiscoverable in-
sights not readily available from other data sources.
Infoveillance-derived metrics, such as the relative fre-

quency of posts from a given area and the change over
time of tweets from specific communities, may also be
helpful in coordinating public health communication
strategies to effectively disseminate targeted information
and education relevant to pandemic response, needed
public health interventions, and associated clinical care
[19, 44]. Geospatially-resolute infoveillance statistics may
also be helpful after the initiation of public health com-
munication programs, as they can provide evidence on
the comparative effectiveness of strategies and/or the
variation in community-level absorptive capacity for a
given communication strategy [33, 45]. Furthermore,
geospatial variation in COVID-19 risk factors has previ-
ously been tied to discrepancies in patterns of hospital-
ized care for COVID-19 [46], and spatial concentrations
of healthcare workforce personnel have been associated
with COVID-19 case distributions [47, 48]. Concor-
dantly, further research should assess how geospatial
variation in online communication dynamics of COVID-
19 may be predictive of patterns in patient care and
population-based healthcare metrics.

Limitations
Findings from this study are subject to a number of key
limitations. Importantly, only a fraction of all tweets are
geolocated, which raises the possibility of sampling bias
with respect to the overall tweet corpus. Aggregated ana-
lyses correspond to 2 weeks of social media communica-
tion and therefore may have limited generalizability
beyond the early outbreak period. Furthermore, some
communities and their specific demographic features
may have a greater propensity to post Twitter messages
or geolocated tweets, regardless of conditions experi-
enced in any of its users’ communities. While it is pos-
sible that this error is approximately systemic, and
thereby may not appreciably contribute to the discovery
of spurious relationships, little analysis has been done to
verify whether the proportion of posts responding to
local conditions is consistent across geospatial units.
Similarly, we have considered the variation in COVID-
19 cases to be reflective of true variation at an artificially
deflated magnitude, due to insufficient testing. However,
testing capacity of local public health bodies may have
appreciably varied during the study period, potentially
resulting in erroneous variation, in addition to the sus-
pected erroneous variation in magnitude. This study is

intended to be primarily hypothesis generating, and find-
ings from this study should be further validated in more
highly controlled settings while also leveraging add-
itional sources of both structured and unstructured data.
For example, a study in a manageable set of smaller
communities should seek to determine whether variation
in social media data is highly predictive of community
caseloads that were obtained by communities with simi-
lar levels of testing at this early stage of the pandemic,
and also attempt to account for variations that may re-
late to public health policy decisions at the local level.
Such future studies may also seek to assess differences
in the predictive power of social media messages at dif-
ferent intervals from the caseload prediction time point.

Conclusion
Results from this study suggest that social media com-
munication dynamics during the early stages of a global
pandemic exhibit a number of geospatial specific varia-
tions and that engagement of these topics may be pre-
dictive of future confirmed case counts, though further
studies to validate these findings are needed. Across five
major US cities, geospatial patterns of tweets about
pandemic-related experiences and concerns revealed
variations in geospatial hot and cold spots of tweet loca-
tions between metropolitan communities, with suggested
further variations relating to how these clustering pat-
terns change over time. The utility of social media data
as an infoveilance data layer for measuring early concern
about infectious disease outbreaks warrants further
study, as does the potential moderating effect of concern
on behavior-related prevention of transmission.
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