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GLOBathy, the global lakes 
bathymetry dataset
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Waterbodies (natural lakes and reservoirs) are a critical part of a watershed’s ecological and hydrological 
balance, and in many cases dictate the downstream river flows either through natural attenuation or 
through managed controls. Investigating waterbody dynamics relies primarily on understanding their 
morphology and geophysical characteristics that are primarily defined by bathymetry. Bathymetric 
conditions define stage-storage relationships and circulation/transport processes in waterbodies. 
Yet many studies oversimplify these mechanisms due to unavailability of the bathymetric data. We 
developed a novel GLObal Bathymetric (GLOBathy) dataset of 1.4+ million waterbodies to align with 
the well-established global dataset, HydroLAKES. GLOBathy uses a GIS-based framework to generate 
bathymetric maps based on the waterbody maximum depth estimates and HydroLAKES geometric/
geophysical attributes of the waterbodies. The maximum depth estimates are validated at 1,503 
waterbodies, making use of several observed data sources. We also provide estimations for head-Area-
Volume (h-A-V) relationships of the HydroLAKES waterbodies, driven from the bathymetric maps of 
the GLOBathy dataset. The h-A-V relationships provide essential information for water balance and 
hydrological studies of global waterbody systems.

Background & Summary
The majority of Earth’s accessible fresh surface water is stored in more than 100 million lakes and reservoirs 
(hereafter waterbodies), which serve as vital resources for an exhaustive list of critical ecosystem functions and 
human and animal habitats1. Changes in storage volume and/or the timing due to climate variability, human 
activity, etc., can lead to disruptions of natural physiologic processes and affect water quality and quantity. Such 
changes and their negative consequences have been observed in waterbodies around the world (e.g., in the Aral 
Sea and Lake Erie), for which a scientific consensus on the climatological and hydrological drivers behind these 
associated changes in water storage is still evolving2,3. Ultimately, in order to understand these drivers of change, 
we need models built with accurate and detailed representations of waterbody physical characteristics.

Due to a lack of bathymetric data, physical and hydrologic models that simulate historic and future water-
body dynamics are limited since they rely on data sources that are largely model-based4,5. Advancements in 
computing, Geographic Information Systems (GIS), remote sensing (RS), airborne LiDAR, and optical imag-
ing have increased accessibility and fidelity of waterbody geometry parameters6–8, reducing the reliance on 
limited ground-based observations. For instance, these technologies have led to advancements in estimates of 
time-varying waterbody parameters such as surface area, volume, and discharges5,9–11 and RS-based data ser-
vices provide daily estimates of changes in global waterbody surface levels such as Cooley et al.’s analysis of water 
levels in global waterbodies12, Global Reservoirs and Lakes Monitor (G-REALM; https://ipad.fas.usda.gov/crop-
explorer/global_reservoir/), and Database for Hydrological Time Series of Inland Waters (DAHITI; https://
dahiti.dgfi.tum.de/en/), inferred from relevant information offered by a suite of satellites, e.g., ICESat-2 (https://
icesat-2.gsfc.nasa.gov/), Jason-2 (https://www.jpl.nasa.gov/missions/jason-2/), and TOPEX-POSEIDON 
(https://sealevel.jpl.nasa.gov/missions/topex-poseidon/summary/). Despite the progress made, such products 
have not yet been fully utilized in operational hydrologic models13 due to limited reliability of high-quality 
cloud-free imagery data and a number of other latency and resolution issues11. RS-based bathymetry develop-
ment is also limited to penetration depth of satellite data in offshore and open-lake areas. In addition, further 
refinements might be required to address the potential errors in nearshore areas if satellite imagery data is 
obtained during high-turbidity and resuspension events where sediment concentrations are high or errors that 
mountain shadows could cause in mountainous regions5,14.
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There are numerous global15–17 and local18 datasets that provide estimates of basic waterbody parameters 
such as average depth, shoreline length, surface area, volume, and other geophysical parameters. Table 1 pro-
vides a list and associated parameters for the main existing datasets worldwide. Although these datasets provide 
valuable information for basic hydrologic and limnological modeling applications, they lack the bathymetric 
information needed to accurately and/or realistically depict geophysical conditions in the global inland water-
body systems and support long-term modeling of physical and biogeochemical processes and water balance 
simulations at an adequate spatial resolution.

Despite a few efforts to develop bathymetry datasets for inland waterbodies, work needs to be done to 
refine global underwater topography and address the deficiencies of existing datasets. ETOPO1 (https://www.
ngdc.noaa.gov/mgg/global/), for instance, is a raster-based global bathymetry dataset suitable for global and 
large-scale studies, however, it does not resolve smaller waterbodies due to its coarse resolution (1 arc-minute). 
Digital Elevation Models (DEMs) such as MERIT DEM19, SRTM20, HydroSHEDS Hydrologically Conditioned 
DEM21, DEM-H22, and NASADEM23 have masked and flattened waterbodies due to difficulties of estimating 
bathymetry at these locations without considering the geophysical properties of these systems. Other regional 
bathymetry datasets such as the Bathybase (http://www.bathybase.org/) and those compiled by several states 
in the US (e.g., Texas and Minnesota waterbodies) are applicable in local studies, however, are not scalable 
for large-scale hydrological modeling. United States Geological Survey (USGS) also compiles the Reservoir 
Sedimentation Database (RESSED; https://water.usgs.gov/osw/ressed/) which is aimed to provide bathymetry 
surveys for waterbodies in the US, although the dataset includes outdated surveys and covers less than ~0.5% of 
the waterbodies in the US.

The main objective of this study is to present a new GLObal Bathymetric dataset, GLOBathy, which pro-
vides validated estimates of maximum depth (Dmax), bathymetric maps in resolution of 1 arc-second, 
and head-Area-Volume (h-A-V) relationships for 1.4+ million waterbodies originally obtained from the 
well-established HydroLAKES4 dataset (https://www.hydrosheds.org/pages/hydrolakes). GLOBathy is the first 
dataset to provide reliable estimates of maximum depth, bathymetry, and h-A-V relationships on such a scale 
and at high resolution, relevant to a wide range of hydrological, environmental, biological, limnological, and 
coastal applications.

Methods
We utilize HydroLAKES as the dataset unit for GLOBathy because it provides the most comprehensive spa-
tial coverage of waterbodies on Earth. HydroLAKES provides an exhaustive list of waterbody characteristics 
information including shoreline length, surface area, volume, average depth, average discharge, elevation, res-
idence time, drainage area, and average slope around the waterbody for about 1.43 million waterbodies with 
global coverage, however, it does not supply critical geospatial bathymetric information. The workflow to create 
GLOBathy is summarized here and then described step-by-step. First, we tested a series of candidate functions 
to find the best form to estimate Dmax for the HydroLAKES dataset. The candidate functions were validated 
using a compiled set of Dmax, shoreline length (P), surface area (A), volume (V), waterbody surface elevation 
(Elev), and watershed area (WA) observations from 1,503 waterbodies around the world. After computing Dmax 
for all HydroLAKES, we calculated bathymetry by using the distance method developed (explained later in 
the article) by Hollister and Milstead8, borrowing attributes from HydroLAKES. As a final step, we developed 

Dataset Data Provider
Number of 
Waterbodies Region Main Products (not limited to)

G-REALM USDA 340 Global Name, Location, Dam and River Name, A, V, Vres, Davg, tr, 
Elev, WA, lat, lon

GLWD Lehner and Doll (2004) 253,067 Global Location, P, lat, lon, Wetland Information

HydroLAKES Global HydroLAB 1,427,688 Global Name, Location, P, A, V, Vres, Davg, Qavg, tr, Elev, S, WA, 
lat, lon

GRanD GWSP 6,862 Global Name, Location, Dam and River Name, DL, DH, A, Vres, 
Davg, Qavg, Elev, WA, lat, lon

GLCP Meyer et al. (2020) 1,422,499 Global Name, Location, Watershed information, PP, A, T, WP, lat, 
lon

ReGeom Yigzaw et al. (2018) 6,824 Global Name, Location, GS, A, V, Vres, Davg, DIMavg, DH, h-A-V, 
lat, lon

NHDPlus USGS and USEPA 448,512 US Name, Location, P, A, V, Davg, Dmax, Elev, lat, lon

RMD Rodgers (2017) 3,828 US Name, Location, Dam Name, P, A, Davg, Vres, H, Qmax, 
Qavg, Elev, WA

Texas Waterbodies TWDB 121 TX, US h-A-V relationships (observed, ground-based)

Table 1.  Major global and local waterbodies datasets. Waterbody parameters are abbreviated as: P = shoreline 
length, A = surface area, V = total volume, Vres = active waterbody volume, Davg = average depth, 
Dmax = maximum depth, Qavg = average discharge flowing through the waterbody, Qmax = maximum 
discharge flowing through the waterbody, tr = residence time, Elev = waterbody surface elevation, S = average 
slope around the waterbody, WA = waterbody watershed area, DL = dam length, DH = dam height, 
H = hydraulic height, WSE = water surface elevation, GS = approximated geometric shape, DIMavg = average 
waterbody dimensions, h-A-V = head-Area-Volume relationships, PP = total watershed precipitation, 
T = average watershed temperature, WP = watershed population, lat = latitude, lon = longitude.
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h-A-V relationships for each waterbody based on the generated bathymetry and validated with available field 
observations.

Estimation of maximum depth for HydroLAKES.  Two different approaches were tested to compute 
Dmax. In the first method, we followed the assumption that waterbodies can be approximated by regular geomet-
ric shapes17 and calculated Dmax for four geometries: box (i.e., with vertical sidewalls), cone, triangular prism, and 
ellipsoid. Dmax was calculated for each shape given estimates of A and V and corresponding geometric functions. 
The second formulation assumed that Dmax is a function of the waterbody geometric and geophysical characteris-
tics such as P, A, V, Elev, and WA. Many studies have validated this assumption4,8,24–28, and in particular, Heathcote 
et al. demonstrated the practicality of using geographic conditions to predict a waterbody’s Dmax and V29.

In the second approach to estimating Dmax, we tested several functional forms (i.e., exponential, multiple 
regression, etc.) and found after validating over 1,503 observations that the random forest regression is the best 
empirical model. Random forest is a learning method primarily for classification and regression by constructing 
an ensemble of decision trees, randomly and independently sampled from a feature space (i.e., a forest)30,31. To 
avoid overfitting of the regression model, we carried out a cross-validation. Best results were obtained when the 
number of trees were set to 30 in the random forest regression. Random forest regression also resulted in better 
estimates of Dmax than using the geometric shapes (as detailed in the Technical Validation section), therefore, 
we used this method to continue with generation of the bathymetry data. The validation dataset consists of sev-
eral local datasets including the Bathybase dataset that provides field-based observations for waterbodies in the 
central US, bathymetry datasets from state agencies in the US waterbodies32, and other global resources such as 
the G-REALM dataset. Figure 1 shows the distribution of global waterbodies Dmax and location of observation 
waterbodies subset.

Mapping bathymetry and development of h-A-V relationships for waterbodies in the 
HydroLAKES dataset.  Advances in Geographic Information Systems have facilitated mapping of Earth’s 
surface with the capability of estimating underwater topography4,8,33. We used a distance method in this study to 
develop the bathymetric maps of the GLOBathy dataset. The distance method is a GIS-based technique and has 
been applied to waterbodies in the northeastern US with a wide range of geophysical conditions. Comparison of 
the results with field bathymetry data has shown an overall satisfactory performance and improved estimates of 
bathymetry and volume of the test waterbodies8.

The distance method8 consists of three steps: 1) convert the waterbody polygon to raster data, 2) calculate the 
closest Euclidean distance of each waterbody cell in the raster data to the waterbody shoreline as well as the max-
imum distance to the shore, and 3) use Eq. 1 to convert distance into depth (D) for each cell in the waterbody:

D
l D

L (1)
max=

×

Fig. 1  Global waterbodies maximum depth (Dmax) distribution. Observational waterbodies are shown with 
red polygons.
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where l is Euclidean distance of the corresponding waterbody cell to the shoreline, Dmax is the maximum depth 
of the waterbody (estimated in the previous section), and L is the maximum distance of the waterbody cells 
from the shoreline. Figure 2 shows estimated bathymetric maps for some of the selected waterbodies worldwide.

The h-A-V relationships were derived using bathymetric information of each waterbody in the GLOBathy 
dataset and take the form of polynomial functions as follows:

=A ah (2)b

=V ch (3)d

where a, b, c, and d are the unknown empirical coefficients for each waterbody, and A and V are the surface area 
and volume of the waterbody at water level h (with respect to the bottom of the waterbody). To estimate the 
unknown coefficients, the bathymetry was used to calculate A and V at ten depth layers evenly distributed in the 
vertical direction of the waterbody profile. Given values for h, A, V, the polynomial function was fitted to these 
(h, A) and (h, V) data points to find the best estimates of the empirical coefficients for both A = f(h) and V = f(h) 
relationships. Specific details of the bathymetric and h-A-V data are provided in the Data Records section.

Data Records
The data products of the GLOBathy dataset can be obtained from the figshare repository34. These products 
include: 1) bathymetric maps, 2) Dmax estimates, and 3) h-A-V relationship estimates for each waterbody in the 
GLOBathy (and also HydroLAKES) dataset. The details of these products are provided in Table 2.

Fig. 2  Bathymetric maps for selected waterbodies in the GLOBathy dataset.
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Technical Validation
To evaluate the performance of the empirical models of Dmax, a set of waterbodies with observations of P, A, 
V, Elev, WA, and Dmax was compiled. This independent dataset of Dmax observations for 1,503 waterbodies 
are from three main sources: Bathybase; Texas waterbodies in the US by the Texas Water Development Board 
(TWDB; https://www.twdb.texas.gov/surfacewater/surveys/completed/list/index.asp); and the G-REALM 
dataset. Additionally, we used a variety of online reservoir databases to manually identify the parameters for 
waterbodies larger than 500 km2 in surface area. This observation dataset of Dmax was then paired with corre-
sponding estimates of P, A, V, and other geophysical characteristics (i.e., waterbody surface elevation, average 
depth, and watershed area) of the HydroLAKES dataset. The set of validation waterbodies was constructed to 
represent the global distribution of waterbodies, spatially (see Fig. 1) and for a wide range of geophysical prop-
erties as shown by the summary statistics in Table 3.

Figure 3 illustrates the validation of observed versus estimated Dmax for the observational waterbodies based 
on the different approaches explained above (i.e., four geometric shapes and two functional forms). We selected 
Nash-Sutcliffe efficiency (NSE), percentage bias (PBIAS), root mean squared error normalized with standard 
deviation (NRMSE), and Spearman’s Rho correlation coefficient (ρ) model skill criteria to evaluate the accu-
racy and bias in predicting Dmax. As shown by the model skill coefficients, the triangular prism (NSE = 0.76, 
PBIAS = 27.57%, NRMSE = 0.49, and ρ = 0.58) and cone (NSE = 0.75, PBIAS = −8.65%, NRMSE = 0.50, and 
ρ = 0.58) shapes performed relatively well in prediction of the observational waterbodies Dmax.

Based on model skill evaluations, functional form Dmax = f(P, A, V, WA, Elev) guarantees predicted Dmax is 
representative of geophysical characteristics of the waterbodies. Functional form Dmax = f(P, A) estimates Dmax 
with less accuracy, however, it provides a simpler prediction framework because it estimates Dmax as a function 
of P and A, which are surface variables and available (or can be easily estimated using GIS and RS) with high 
accuracy for almost every waterbody on Earth’s surface.

Model skill criteria indicate that the first functional relationship suggested above, i.e., Dmax = f(P, A, V, WA, 
Elev), provides a more realistic estimate of Dmax for observational waterbodies (NSE = 0.97, PBIAS = −1.08%, 
NRMSE = 0.17, and ρ = 0.94) in comparison to triangular prism and cone shape methods. This model also 
performs better in estimation of Dmax for shallow lakes compared to the other geometric and functional rela-
tionships as shown in Fig. 3. To verify the robustness of this empirical function, we carried out a random cross 
validation analysis in which we divided the observational waterbodies dataset into train and test subsets in 
100 iterations. Then we tested the out-of-sample predictive capability of the model developed based on the 
train set in each iteration. Average model skill criteria based on the 100 iterations for both train (NSE = 0.91, 
PBIAS = 1.96%, NRMSE = 0.21, and ρ = 0.91) and test (NSE = 0.86, PBIAS = −3.18%, NRMSE = 0.29, and 
ρ = 0.89) subsets indicated good performance of the model. Comparison of the observed and estimated Dmax 

Filename/Directory
Number of 
Data Files Descriptions

Bathymetry_Rasters.zip 1,427,688 raster files of bathymetric maps in Tagged Image File Format (TIFF) for each individual 
waterbody in resolution of 1 arc-seconds and in WGS84 projection system

GLOBathy_basic_parameters.zip 17

“GLOBathy_basic_parameters(ALL_LAKES).csv” provides estimation of Dmax based on 
four different geometric shapes (box, cone, triangular prism, and ellipsoid) and the two 
empirical methods [Dmax = f(P, A) and Dmax = f(P, A, V, Elev, WA)]

15 spreadsheets with the name pattern “GLOBathy_basic_parameters(*LAKES).csv” that 
each includes the same information as the “GLOBathy_basic_parameters(ALL_LAKES).
csv” file above but in smaller csv files (100,000 waterbody increments in each file) for 
easier navigation of the dataset

“GLOBathy_basic_parameters_README.txt” that provides details for attributes of the 
spreadsheets

GLOBathy_hAV_relationships.nc 1
estimation of h-A-V relationships derived from polynomial functions of A = f(h) and 
V = f(h) using the bathymetric maps of each waterbody in the Network Common Data 
Form (NetCDF) format

Table 2.  Details of the GLOBathy products and data files. Waterbody parameters are abbreviated as: 
Dmax = maximum depth, P = shoreline length, A = surface area, V = total volume, Elev = elevation of 
waterbody surface, WA = area of waterbody watershed, h = water level in the waterbody (with respect to the 
bottom), h-A-V = head-Area-Volume relationships.

Waterbody Parameter Average Minimum Maximum Median

Shoreline length (km) 238 1.38 15828 8.91

Surface area (km2) 894 0.10 377002 2.10

Volume (MCM) 113455 0.24 75600000 8.91

Waterbody surface elevation (m) 406 −415.00 4724 366.00

Watershed area (km2) 26457 0.20 2764126 53.61

Maximum depth (m) 34.29 0.50 1642 13.10

Table 3.  Summary statistics of the 1,503 observational waterbodies dataset. MCM denotes million cubic 
meters.
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values based on the functional relationship developed using P and A only (NSE = 0.54, PBIAS = −0.23%, 
and NRMSE = 0.68, and ρ = 0.44) and average model skill in cross validation analysis for train (NSE = 0.44, 
PBIAS = 1.61%, NRMSE = 0.74, and ρ = 0.49) and test (NSE = 0.38, PBIAS = −4.49%, NRMSE = 0.83, and 
ρ = 0.40) subsets in 100 iterations do not suggest improvements in accuracy of the predicted results. That implies 
P and A alone, although accurately available, are not reliable to be used for Dmax estimation in global scales.

As shown in Table 1, Texas waterbodies dataset has provided h-A-V estimations for several waterbodies in 
Texas, US through field surveys. Figure 4 shows comparison of observed and estimated h-A-V relationships for 
selected waterbodies in the Texas waterbodies dataset, as well as those inferred from ground-based bathym-
etry data in other locations. To represent different geophysical conditions, waterbodies of various geometric 
characteristics were selected for comparison. Model skill criteria shows that estimated h-A and h-V polynomial 
functions compare well with observed information.

Finally, to validate the quality of estimated bathymetric maps of the GLOBathy in terms of representing 2D 
variability in lake depth, we compared bathymetry of selected lakes in the dataset with ground-based bathymetry 
observations in different geographic locations. This comparison is provided in Figure S1 of the Supplementary 
Information. Observational bathymetry maps are limited, yet we tried to select waterbodies within a wide range 
of physical characteristics (e.g., shape at surface area, maximum depth, lake volume, natural/unnatural) and in 
different geographic locations. Figure S1 shows that GLOBathy estimates bathymetry with reasonable accuracy 

Fig. 3  Comparison of observed vs estimated maximum depth (Dmax) based on four selected geometric shapes 
and two empirical relationships as a function of shoreline length (P), surface area (A), volume (V), watershed 
area (WA), and waterbody surface elevation (Elev).
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and resembles the patterns of depth variability for these selected waterbodies fairly well, given the complexity of 
estimating underwater topography.

Usage Notes
GLOBathy can be used in a suite of applications including limnology, hydrodynamic modeling, aquatic systems 
chemistry and biology, hydrology, and water resources management. In particular, GLOBathy is suitable for 
large-scale geophysical studies (e.g., continental and global scales) where numerous waterbodies are present and 
observational-based data is not available for each waterbody in the system.

Existing ground-based datasets often provide bathymetry data for large or well-known waterbodies, with 
data not uniformly distributed or available worldwide. However, GLOBathy provides detailed depth and 
bathymetric information for more than 1.4 million waterbodies globally, including small lakes that are often 
neglected in bathymetry datasets. Those small waterbodies are important for ecosystem functioning, water 
supply and storage, the hydrological cycle, and in evaluating global or regional carbon-cycling processes16,35,36. 
Additionally, GLOBathy provides computational tools (“Generate_Bathymetry_Rasters.py” Python program; see 
Code Availability section for more details) to create bathymetric maps for any waterbody that is excluded from 
the dataset.

Fig. 4  Validation of head-Area-Volume (h-A-V) estimation for selected observation waterbodies. Solid and 
dotted lines denote h-A-V relationships based on GLOBathy bathymetry maps and observations, respectively. 
Also, red and blue colors indicate h-A and h-V relationships, respectively. MCM denotes million cubic meters. 
Latitude and longitude values show pour point location of each waterbody.
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One major advantage of GLOBathy is that it can be used as a complementary source of information to study 
waterbodies or geophysical systems worldwide. For instance, it can be merged with HydroLAKES, ReGeom17, 
and GLCP16 to study surface water availability and the global distribution of surface water resources. It can 
also be used jointly with several datasets such as G-REALM, DAHITI, and Cooley et al.’s analysis of global 
waterbodies water levels12 to study surface water variability. GLOBathy can be utilized in water resources 
management studies in concert with datasets that provide information on physical attributes of reservoirs 
and dams such as Global Reservoir Surface Area Dataset (GRSAD)37,38, GranD (https://globaldamwatch.org/
grand/), Reservoir Assessment Tool (RAT)39, GlObal geOreferenced Database of Dams (GOODD)40, and 
Georeferenced global Dam And Reservoir (GeoDAR)41. GLOBathy also complements datasets with hydro-
graphic information such as National Hydrography Dataset Plus (NHDPlus; https://www.epa.gov/waterdata/
nhdplus-national-hydrography-dataset-plus), HydroBASINS42, and HydroRIVERS42 (https://hydrosheds.org/) 
which can lead to improvements of hydrological modeling and understanding the global water cycle. For exam-
ple, GLOBathy can be used in the National Oceanic and Atmospheric Administration’s (NOAA) National Water 
Model (NWM; https://water.noaa.gov/about/nwm) to improve assignment of reservoirs’ physical attributes and 
hydrological forecasting over the entire continental United States (CONUS) domain.

In addition, many ecological and biogeochemical studies of inland waterbodies depend on bathymetry 
and detailed depth information of aquatic systems. GLOBathy can contribute to those studies by improving 
the understanding of depth variations in waterbodies worldwide. In that regard, GLOBathy complements the 
Global Lake Ecological Observatory Network (GLEON)36, Lake-Catchment (LakeCat)43, and LAGOS (https://
lagoslakes.org/) datasets44,45 that aim to represent water quality of inland waterbodies. Understanding physical 
processes in waterbodies also depends on detailed bathymetric information. Therefore, using realistic bathym-
etric information could lead to improvements in modeling currents, surface fluxes and evaporation, water tem-
perature, waves, erosion and resuspension, nutrient and particle transport in waterbodies, especially for those 
cases with lack of ground-based bathymetric data where often simplified depth conditions are used. Weather and 
climate prediction models (e.g., Unified Forecast System; https://ufscommunity.org/) also depend on accurate 
information on waterbody surface temperature, therefore, GLOBathy could be a useful resource in that regard 
by improving water temperature modeling of waterbodies.

It is obvious that datasets compiled from field surveys provide more reliable bathymetry information than 
other sources of data. However, previous efforts to create observational bathymetry datasets are limited and only 
available in local scales (e.g., Bathybase, Texas and Minnesota Waterbodies, and RESSED) due to difficulties and 
costs of obtaining field-based underwater topography. That might leave gaps in definition of the geophysical 
systems in large-scale studies (where a great number of waterbodies might be present), therefore, observational 
data might be combined with model- and/or RS-based bathymetry such as GLOBathy to fill the gaps and refine 
system representation.

Code availability
We provide two Python scripts to accompany the GLOBathy dataset:

•	 “Generate_Bathymetry_Rasters.py” prepares bathymetric maps of the GLOBathy dataset. It requires two 
inputs: 1) a csv file containing maximum depth of the waterbodies (e.g., “GLOBathy_basic_parameters(ALL_
LAKES).csv” can be used as a template), and 2) polygon shapefiles of the corresponding waterbodies (e.g., 
“HydroLAKES_polys_v10.shp” obtained from the HydroLAKES dataset can be used as a template). This script 
can be used to re-generate GLOBathy data with new Dmax estimations/observations or for any other case 
study, as long as the waterbody Dmax value and shapefile are available.

•	 In addition, we provide the “WGS_84_cell_dimesion_calculator.py” script which can be used to calculate cell 
dimensions of the GLOBathy raster files in South-North and East-West directions. It will provide the cell 
dimensions for any given location, so that accurate distances and volumes may be calculated. This is neces-
sary because the geocentric coordinate system of the input raster data (WGS84) does not preserve distances. 
This script requires either the average latitude of the domain to be updated in the script header manually or 
a path to at least one bathymetry raster file to obtain the dimensions. In the first case the outputs are average 
cell dimensions of the study area. In the latter case for each bathymetry raster input, a csv file is generated 
that includes cell dimensions for every cell in the raster file. This script can also be used for other cases with a 
similar geocentric coordinate system. Script options (at the beginning of the script) need to be updated based 
on the input raster file.
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