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Synthesis of tetrafluorinated piperidines from nitrones via a
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A method for the one-step construction of 3,3,4,4-tetrafluorinated piperidines from nitrones and readily accessible tetrafluorinated

iodobromobutane is described. The reaction requires an excess amount of ascorbic acid as the terminal reductant and is performed

in the presence of an iridium photocatalyst activated by blue light. The annelation is a result of a radical addition at the nitrone,

intramolecular nucleophilic substitution, and reduction of the N-O bond.

Introduction

Nitrogen-containing heterocyclic compounds play an important
role in pharmaceutical industry and related areas [1,2]. Among
the variety of aromatic and saturated structures, the piperidine
ring has a special role, as it is the most widely occurring form of
nitrogen in FDA-approved drugs [3]. The ability of fluorine
atoms to modify basicity, lipophilicity, as well as the hydrogen-
bonding properties of amines [4,5] makes fluorinated
piperidines [6,7] attractive targets in medicinal chemistry [8,9].
Previous efforts were mainly focused on the synthesis of mono-
and difluorinated compounds. A single fluorine atom is typical-
ly introduced into a saturated cycle by nucleophilic fluorination
reactions [10-17]. For compounds bearing gem-difluorinated

fragments, an alternative pathway based on the construction of

the cycle from building blocks may be considered [18]. Howev-
er, the latter frequently implies multistep protocols, since two
distinct bond-forming reactions are necessary for the cycle for-
mation. While mono- and difluorinated piperidines are well
known, tetrafluorinated piperidines are rare [19]. At the same
time, the chemistry of compounds containing the tetrafluoroeth-
ylene fragment (CF,CF,) has advanced considerably over the
last decade [20], and the use of preformed tetrafluorinated
building blocks [21] provides the most efficient way of making
these molecules.

Recently, we disclosed a photoredox method for the reductive

radical fluoroalkylation of nitrones [22-24]. We have also eval-
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uated the construction of fluorinated tetrahydroisoquinoline
structures starting from nitrones, but this required four consecu-
tive reactions with different conditions and chromatographic
separation at each step [25] (Scheme 1). Herein we report a
single-step protocol for the construction of fluorinated
piperidines based on an accidentally discovered annelation reac-
tion proceeding under reductive conditions.
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Scheme 1: The construction of tetrafluorinated piperidines from
nitrones.

Table 1: Optimization studies for the synthesis of 3a.
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Results and Discussion

Nitrone 1la was selected as a model substrate and it was
combined with commercially available dibromide 2a under blue
light irradiation in the presence of an iridium photocatalyst and
stoichiometric quantities (1.2 equiv) of a reducing system
(ascorbic acid/collidine). In this reaction no products were
formed with reactant 2a remaining unconsumed (Table 1). To
obtain a more reactive fluorinated halide, the bromine atom
residing at the fluorinated moiety was exchanged for iodine by
treatment with zinc, followed by the reaction with iodine mono-
chloride. The iodide 2b reacted quite rapidly with the nitrone
but the expected fluoroalkylation product was not observed.
Instead, the tetrafluorinated piperidine 3a was obtained in a
moderate yield (Table 1, entry 2). Apparently, after the fluo-
roalkylation event, the reduction of the N-O bond had occurred.
The corresponding addition of an additional amount of the
reductant and performing the reaction in DMF led to product 3a
in 84% isolated yield (Table 1, entry 4).

Under the optimized conditions, a series of nitrones were
involved in the reductive annelation reaction (Scheme 2). The
process worked with nitrones containing alkyl, halogen, and
electron-donating groups in the aromatic ring. With ester and

FF
- XWBF X = Br (2a) ) Zn: ICI
Oj\‘rMe 7 X = | (2b)

Ph™ 42 [r(dtbbpy)(ppy)slIPFe] (0.5 mol %), blue LED

ascorbic acid, 2,4,6-collidine
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Ph)WBI’ PH FF
F F F F
3a
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[Ir(dtbbpy)(ppy)2l[PFel
entry 22 ascorbic acid? collidine? solvent yield, %
1 2a,1.2 1.2 1.2 DMSO —
2 2b, 1.2 1.2 1.2 DMSO 56°
3 2b, 1.5 25 35 DMSO 70°
4 2b, 1.5 2.5 3.5 DMF 84°

aEquivalents are shown; Pdetermined by '°F NMR; Sisolated yield.
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Scheme 2: The scope of the annelation reaction for the synthesis of piperidines. Isolated yields are shown. 21.0 equiv of 2b was used.

cyano groups, the piperidines 3h and 3j were obtained in de-
creased yields, which may be tentatively attributed to a greater
propensity of the corresponding nitrones towards nucleophilic
addition of ascorbate. The nitrones derived from a-unbranched
aliphatic aldehydes also provided the expected piperidines
(products 3m—q) in reasonable yields. In case of 3n there was
some unidentified side product formed under the standard
conditions. In the previous research on the radical addition to
nitrones we sometimes encountered a fluoroalkylation of the ar-
omatic rings, if an excess of the fluorinated alkyl iodide was
used [22-24]. This prompted us to attempt the reaction with an
equimolar amount of the iodide 2b, which resulted in a cleaner
process. However, the reaction of a nitrone obtained from
cyclohexyl carboxaldehyde gave a complex mixture containing

unidentified products. The structures of compounds 3f and 3h

were established by X-ray analysis (CCDC, 3f: 2032382; 3h:
2032383).

The proposed annelation mechanism is shown in Scheme 3. The
iridium(III) photocatalyst under the action of light and ascorbic
acid generates the iridium(II) species. The latter serves as a key
reducing agent, and importantly, its formation is maintained
throughout the process while an excess amount of ascorbate is
present. The annelation likely starts from the addition of the
fluorinated radical to the C=N bond followed by a conversion of
the nitroxyl radical via hydrogen atom transfer [26,27] provid-
ing hydroxylamine 4. At the next stage, the intramolecular
N-alkylation occurs leading to an N-oxide. This step of nucleo-
philic substitution could be catalyzed by iodide anions accumu-

lating in the reaction mixture. Finally, the deoxygenation of the
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N-oxide fragment may proceed via consecutive protonation and

electron-transfer steps [28].
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Scheme 3: The proposed mechanism of the photoredox annelation
reaction (asc = ascorbic acid).

Conclusion

In summary, a one-step method for the synthesis of tetrafluori-
nated piperidines starting from nitrones and a fluorinated build-
ing block is described. The annelation is based on a sequence of
visible-light-promoted redox processes and a substitution reac-
tion, and involves the cleavage of the N-O bond.
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