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ABSTRACT

Motivation: Recognition of poly(A) signals in mRNA is relatively
straightforward due to the presence of easily recognizable
polyadenylic acid tail. However, the task of identifying poly(A) motifs
in the primary genomic DNA sequence that correspond to poly(A)
signals in mRNA is a far more challenging problem. Recognition
of poly(A) signals is important for better gene annotation and
understanding of the gene regulation mechanisms. In this work,
we present one such poly(A) motif prediction method based on
properties of human genomic DNA sequence surrounding a poly(A)
motif. These properties include thermodynamic, physico-chemical
and statistical characteristics. For predictions, we developed Artificial
Neural Network and Random Forest models. These models are
trained to recognize 12 most common poly(A) motifs in human
DNA. Our predictors are available as a free web-based tool
accessible at http://cbrc.kaust.edu.sa/dps. Compared with other
reported predictors, our models achieve higher sensitivity and
specificity and furthermore provide a consistent level of accuracy
for 12 poly(A) motif variants.
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Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The polyadenylic acid tail or poly(A) tail is a stretch of A nucleotides
added to RNA during the RNA processing mainly to protect the
primary RNA stability (Bernstein and Ross, 1989). In mammals,
the poly(A) tail is added close and downstream of the characteristic
poly(A) signal, most often AAUAAA. The problem of prediction
of poly(A) signals has received considerable attention. Since the
distance of poly(A) signal from the poly(A) tail is approximately
10–30 nt (Beaudoing et al., 2000), recognizing such tails in mRNA
is relatively simple. A more challenging problem is to find a motif in
primary genomic sequence that corresponds to poly(A) signal site
in the transcribed RNA. The process of predicting poly(A) motifs
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in DNA depends on successfully identifying relevant properties
of the surrounding sequence of such motifs. We now present
a brief survey of reported work in this field so far. Statistical
properties of nucleotide sequences were used, for example, to reveal
putative poly(A) signals in yeast (Van Helden et al., 2000) or in
Arabidopsis (Ji et al., 2010). A program PROBE was developed to
identify cis elements that potentially play regulatory roles in mRNA
polyadenylation (Hu et al., 2005). Several tools are developed for
predicting poly(A) motifs in human. Polyadq tool for predicting
poly(A) motifs in a DNA sequence is reported in Tabaska and
Zhang (1999) where sequences of 100 nt downstream of a candidate
poly(A) motif were used to derive the feature set for prediction.
The ERPIN program (Legendre and Gautheret, 2003) utilizes 300 nt
flanking sequence upstream and downstream of the candidate
poly(A) motifs. A method based on application of support vector
machines (SVMs) was reported by Liu et al. (2003) in which
100 nt flanking sequence upstream and downstream around poly(A)
candidate motifs were utilized. PolyApred system was introduced
in Ahmed et al. (2009). The 100 nt flanking sequence upstream
and downstream around candidate poly(A) motif sequence were
utilized. A method POLYAR for recognition of polyadenylation sites
is reported recently (Akhtar et al., 2010). The reported results of
these tools are summarized in Table 1, together with the performance
of publicly available ones achieved on our datasets. In this study,
we present a web-based tool that implements two types of predictive
models, one based on Artificial Neural Networks (ANNs) and the
other based on Random Forest (RF) (Breiman, 2001). Our models
cover 12 main variants of human poly(A) motifs with accuracies
from 82.06% to 94.4%.

2 METHODS

2.1 Datasets
We used human mRNA sequences and mapped 100 nt from their 3′ end
back to the human genome applying stringent BLASTN matching criteria.
Negative records were selected from human chromosome 21. Within
candidate sequences, we selected those where the poly(A) motif is
found at locations conforming to the distributions reported in Beaudoing
et al. (2000). We flanked such poly(A) motifs by 100 nt upstream
and 100 nt downstream, resulting in training sequences of 206 nt in
length. Overall, 14 799 sequences for 12 motif variants can be found at
http://cbrc.kaust.edu.sa/dps/code/DataToBuildModel.tar.gz. More details are
given in Supplementary Material 1.

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



[16:30 8/12/2011 Bioinformatics-btr602.tex] Page: 128 127–129

M.Kalkatawi et al.

Table 1. Accuracy of various poly(A) prediction tools

Tool Results reported
by authors

Results on our
AATAAA dataset

Polyadq MCC = 0.41–0.51 Se = 28.23%
Sp = 83.88%
Acc = 56.05%

Polya_SVM (Cheng
et al., 2006)

Se = 37.2–71.0%
Sp = 74.6–96.7%

Se = 58.30%
Sp = 64.42%
Acc = 61.36%

Polyar Se = 23.9–94.9%
Sp = 14.7–66.4%

Se = 57.28%
Sp = 49.69%
Acc = 53.48%

Our Model (ANN) Table 2 Se = 80.55%
Sp = 83.57%
Acc = 82.06%

Our Model (RF) Table 2 Se = 86.10%
Sp = 91.60%
Acc = 88.90%

Polyah (Salamov,
1997)

MCC = 0.62

ERPIN Se = 56%
Sp = 69–85%

Polyapred Se = 57.0%
Sp = 75.8–95.7%

Poly(A) Signal Miner
(Liu et al., 2003)

Se = 56.0–89.3%
Sp = 67.5–93.3%

2.2 Features and feature selection
Our model uses features from thermodynamic, compositional, statistical
and other properties of nucleotides and polynucleotide sequences. The
thermodynamic and structural properties of dinucleotides that we used were
selected from Friedel et al. (2008). We also used electron–ion interaction
potential (EIIP) of nucleotides (Veljkovic and Slavic, 1972). Finally, our
models utilize scores from position weight matrices (PWMs) in the upstream
and downstream regions of the poly(A) motifs. This process resulted in 274
features used (Supplementary Material 2).

2.3 The tool
For details of models see Supplementary Material 2. Our tool contains two
types of predictors of poly(A) motifs, ANN-based and RF-based. The ANN
models consist of an input, a hidden and an output layers. The output layer
contains two neurons that predict if the input pattern corresponds to real or
false poly(A) motif (the stronger wins). To mitigate overfitting, we deployed
an early stopping method (Zang and Yu, 2005). The RF model is based on
WEKA implementation (Hall et al., 2009).

3 RESULTS
For performance we used sensitivity Se = TP/(TP + FN),
specificity Sp = TN/(TN + FP) and accuracy Acc = (TP + TN)/
(TP + TN + FP + FN), where TP, TN, FP and FN are the numbers of
true positives, true negatives, false positives and false negatives,

Table 2. Performance of ANN and RF methods for 12 poly(A) motifs

Varian ANN mode RF model

Se (%)
Sp (%)

Acc (%) Se (%)
Sp (%)

Acc (%)

AAAAAG 94.57
85.44

90.01 93.2
95.6

94.4

AAGAAA 86.04
84.74

85.39 88.7
94.1

91.4

AATAAA 80.55
83.57

82.06 86.1
91.6

88.9

AATACA 91.71
88.39

90.05 87.3
92.5

89.9

AATAGA 95.18
93.37

94.27 86.7
91.3

89.0

AATATA 91.32
89.28

90.30 87.2
93.6

90.4

ACTAAA 89.85
89.49

89.67 85.0
91.1

88.1

AGTAAA 89.94
85.63

87.78 83.1
94.5

88.8

ATTAAA 83.71
83.96

83.84 85.2
92.6

88.9

CATAAA 91.56
91.98

91.77 83.5
92.4

88.0

GATAAA 88.75
91.66

90.20 87.9
92.5

90.2

TATAAA 92.30
86.20

89.25 86.1
94.2

90.1

respectively. We compared our results those of publicly available
tools when applied to our datasets (Table 1). We tested on the only
motif common to all tools (AATAAA). In Table 2, we report the
performance of our ANN and RF-derived models on 12 poly(A)
motifs. ANN model is trained on 50% of data and tested on the
remaining 50% (training takes a long time so cross-validation is
not applied). For the RF model, we achieved the best results using
100 trees without restricting maximal depth using nine random
features per node. Model performance in 100-fold cross-validation
is shown.

4 CONCLUSION
We developed a web tool for the recognition of poly(A) motifs
in human genomic DNA that demonstrates improved prediction
accuracy over the existing publicly available poly(A) predictors.
We hope that our tool will find good use in the studies of human
gene properties.
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