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Abstract

Background: Testing gene-gene interaction in genome-wide association studies generally yields lower power than
testing marginal association. Meta-analysis that combines different genotyping platforms is one method used to
increase power when assessing gene-gene interactions, which requires a test for interaction on untyped SNPs.
However, to date, formal statistical tests for gene-gene interaction on untyped SNPs have not been thoroughly
addressed. The key concern for gene-gene interaction testing on untyped SNPs located on different chromosomes is
that the pair of genes might not be independent and the current generation of imputation methods provides
imputed genotypes at the marginal accuracy.

Results: In this study we address this challenge and describe a novel method for testing gene-gene interaction on
marginally imputed values of untyped SNPs. We show that our novel Wald-type test statistics for interactions with and
without constraints in the interaction parameters follow the asymptotic distributions which are the same as those of
the corresponding tests for typed SNPs. Through simulations, we show that the proposed tests properly control type I
error and are more powerful than the extension of the classical dosage method to interaction tests. The increase in
power results from a proper correction for the uncertainty in imputation through the variance estimator using the
jackknife, one of resampling techniques. We apply the method to detect interactions between SNPs on chromosomes
5 and 15 on lung cancer data. The inclusion of the results at the untyped SNPs provides a much more detailed
information at the regions of interest.

Conclusions: As demonstrated by the simulation studies and real data analysis, our approaches outperform the
application of traditional dosage method to detection of gene-gene interaction in terms of power while providing
control of the type I error.

Keywords: Jackknife-based testing framework, Untyped SNP, Imputation-based testing, Gene-gene interaction

Background
Genome-wide association studies (GWAS) have been an
important tool to discover single nucleotide polymor-
phisms (SNPs), which are associated with disease [1–3].
However, the development of a disease prediction model
based on established susceptibility SNPs from GWAS has
been less successful for complex diseases. One of the main
reasons in such a failure is that they do not take into
account gene-gene interactions [4]. Past efforts to ana-
lyze interactions between SNPs have been limited, since
discovery and replication of these findings is difficult in
GWAS. Since the effect size of the gene-gene interaction
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is small, the sample size from one study might not be
large enough to detect the interaction between genes. One
way to increase power for detecting gene-gene interac-
tion is by performing a meta-analysis for the gene-gene
interaction that combines disparate datasets from studies
where genotyping platforms differ in terms of SNP sets
[5]. Therefore, not only there is a need for better gene-
gene interaction test, but also for tests that are specifically
developed for interactions between untyped SNPs that are
not included in the genotyping platform in ameta-analytic
approach.
In the context of single-locus analysis, several

approaches have been proposed for testing associations
for untyped SNPs. One is the full likelihood approach
where the observed-data likelihood is derived by inte-
grating the study data and external reference data over
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the possible haplotype configuration, and imputing and
testing are performed simultaneously [6]. Such a full
likelihood-based approach dealing with both imputing
and testing under a unified framework will lead to effi-
cient estimators of the association parameters. Also, the
corresponding variance estimators will properly take into
account uncertainties of imputed values. However, even
if the principle of maximum likelihood is fairly simple,
obtaining the actual solution can be computationally
intensive given that the likelihood involves the sum over
the pairs of haplotypes that are compatible with the geno-
types. Numerical optimization would not be tractable
when a complex model is used for inferring genotypes at
the untyped SNPs.
Another type of association analysis for untyped SNPs is

the two-stage procedure where in the first stage, imputed
genotypes for untyped SNPs are obtained and at the
second stage, the imputed genotypes are used in a down-
stream analysis. This strategy could be less efficient and
satisfactory compared to approaches that use a proper
joint modeling [7]. However, from an operational point
of view, the two-stage procedure has its own advantage.
There have been many powerful approaches including
softwares for the first step which allow users to impute
missing genotypes in a sophisticated and convenient way
[8–14]. In the two-stage procedure, it is a standard to
replace the value of missing genotype by dosage [15],
which is the expected genotype count for each individ-
ual, and analyze the data by the standard association
analysis. The Wald test based on the logistic regression
model where disease status is response and dosages are
covariates, is valid. However, for the purpose of detecting
interactions, it has been shown that for typed SNPs, under
the gene-gene independence, the test under the logistic
regression model based on case-control data is less pow-
erful than test for cases only, which is based on genotype
distribution conditional on cases [16]. Unfortunately, for
untyped SNPs, the Wald test based on genotype distri-
bution (rather than disease distribution conditioned on
genotype) would be conservative when dosage is treated
as observed data (e.g., de Bakker et al. [17]). This is due to
overestimation of the variance.
The central aim of the paper is to develop powerful tests

for interaction on imputed genotypes at untyped SNPs in
the second stage of the two-stage strategy which has prac-
tical advantage. We do not address the issue of imputation
itself. Rather, we address how to perform interaction tests
on imputed values given from the imputation approaches
and issue of how the performance of proposed tests
depends on linkage disequilibrium (LD) among SNPs.
Intuitively, jointly imputed values are required for test-
ing gene-gene interactions. However, to our knowledge,
most imputation analyses have imputed genotypes at
missing SNPs marginally and formal statistical tests for

gene-gene interactions which could be performed on
marginally imputed genotypes have not been developed.
In this article, we propose statistical tests which could be
applied on marginally imputed data from external impu-
tation algorithms, a Wald-type test (WTT) and a Wald-
type test with constraints (WTTc), that are constructed
under the null. We consider a “no interaction” model for
two unlinked loci which is defined in Song and Nicolae
[16], multiplicative penetrances, as the null. The Wald-
type statistics require the null covariance matrix properly
capturing the uncertainty of imputation. To accomplish
this, we use the jackknife, one of the resampling meth-
ods. Specifically, WTTc is an extension of inequality
constrained penetrance test, the approach of Song and
Nicolae [16], which has been shown to be more powerful
than classical tests of gene-gene interactions by restrict-
ing parameter space with inequalities. We investigate the
type I error and power of our tests by conducting exten-
sive simulation studies, and apply the method to the real
data example.

Methods
Test statistics
We consider SNP-SNP interaction for gene-gene interac-
tion analysis. Suppose we have the untypedmarkersG and
H , and we assume that they are in linkage equilibrium (LE)
in the general population. Let a and A be the two alleles at
the marker G and b and B the two alleles at the marker H .
Genotypes at marker G (H), aa,Aa, and AA (bb,Bb, and
BB), can be indexed by 0, 1, and 2, respectively. Suppose
that we have a case-only study with a total of n sam-
ples y1, . . . , yn. For the ith sample, let yi,obs and yi,miss
be the observed data and missing data of yi, respectively.
Therefore, for the untyped markers G and H , yi,miss =
(yi,G, yi,H) and yi,obs is the observed genotype data which
are in LD with markersG andH for subject i. We use pi =
(pi,00, pi,01, . . . , pi,21, pi,22) to denote a conditional distri-
bution for the joint genotype of markers G and H for the
ith sample (e.g., pi,00 = P((yi,G, yi,H) = (aa, bb)|yobs, η)),
where η is the parameter associated with an imputation
model.
We consider “no interaction” of Song and Nicolae [16]

(i.e., multiplicative penetrances) as the null hypothesis for
testing gene-gene interaction. “No interaction” of Song
and Nicolae [16] is equivalent to β = 0 where local odds
ratios β = (β00,β01,β10,β11) are defined as follows,

βlm = log
(
pl,mpl+1,m+1
pl,m+1pl+1,m

)
, l,m = 0, 1 (1)

where plm = P(yG = l, yH = m) among cases. These can
be estimated as

β̂lm = log
(
nl,mnl+1,m+1
nl,m+1nl+1,m

)
, (2)
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where nl,m is the count of joint genotypes when markers
G and H take genotypes l and m in n cases, respectively.
Note that nl,m = ∑n

i=1 I(yi,G = l, yi,H = m).
The form of the estimator (2) suggests how it can be

modified for untyped SNPs. For untyped SNPs, β̂
u =

T(E(Nl,m|yobs, η)), l,m = 0, 1, 2 for function T : R9 →
R
4, where Nl,m is a random variable with a distribution

F(nl,m) ∈ {
Fη(nl,m); η ∈ �

}
. When the markers G and H

are typed, nl,m is the observation of random variable Nl,m.
One can replace nl,m in (2) with

E
(
Nl,m|yobs, η

) = E
( n∑

i=1
I
(
yi,G = l, yi,H = m

) |yobs, η
)

=
n∑

i=1
E

(
I
(
yi,G = l, yi,H = m

) |yobs, η
)

=
n∑

i=1
pi,lm.

Under the null hypothesis of no interaction,
p̂i,lm,0 :=P

(
yi,G= l, yi,H =m|yobs, η̂0

)=P
(
yi,G = l|yobs, η̂0

)
× P

(
yi,H = m|yobs, η̂0

)
where η0 is evaluated under the null hypothesis “multi-
plicative penetrances”. Thus, we could obtain the imputed
joint genotypes by taking a product of the marginally
imputed genotypes from most of imputation methods.
The log local odds ratios for untyped SNPs evaluated
under the null can be written as

β̂0u
lm = log

(
E

[
Nl,m|yobs, η̂0

]
E

[
Nl+1,m+1|yobs, η̂0

]
E

[
Nl,m+1|yobs, η̂0

]
E

[
Nl+1,m|yobs, η̂0

]
)

(3)

where E
[
Nl,m|yobs, η̂0

] = ∑n
i=1 p̂i,lm,0. E

[
Nl,m|yobs, η̂0

]
can be considered as a special case of dosage under the
null hypothesis : β = 0.
The Wald test will be valid as long as the variance

estimator is consistent (so the Wald test statistic follows
the chi-square distribution asymptotically). Dealing with
the variance is often much easier than manipulating the
likelihood functions. Thus, we consider a form of Wald
test using a consistent variance estimator for β̂ . When
both markers are observed, the Wald test statistic for
interaction of two markers is

β̂
T
V̂−1

β̂ (4)

where V̂ is the consistent estimator for variance of β̂ and

The test for interaction on untyped SNPs can be simi-
larly defined in the form of Wald-Type test (WTT)

WTT =
(
β̂
0u)T {

V̂ 0u}−1
β̂
0u

(5)

where V̂ 0u is the consistent estimator for variance of β̂
0u
.

The test statistic (5) has an approximate χ2
4 distribution.

Inequality constrained penetrance test (ICPT) [16], the
likelihood ratio test (LRT) with restrictions on interaction
parameters under the alternative, has been shown to be a
powerful approach for identifying gene-gene interactions
in the presence of directional constraints. The imposed
constraints are βlm for l,m = 0, 1 are all non-negative or
all non-positive, which hold in the models presented in
Table 1. We expand ICPT to untyped SNPs by approxi-
mating the LRT statistic by a Wald-like test statistic form
using a Taylor expansion. It could be shown that LRT
statistic is approximated by a quadratic form [18]. There-
fore ICPT for untyped SNPs can be written as Wald-type
test with constraints (WTTc)

WTTc=
(
β̂
0u)T {

V̂ 0u}−1
β̂
0u − min

β∗∈�1

(
β̂
0u − β∗)T {

V̂ 0u}−1

×
(
β̂
0u − β∗)

(6)

where �1 is an inequality-constrained space of param-
eter β . With a consistent variance estimate of V 0u and
appropriate weights obtained through the proper vari-
ance estimator (see Additional file 1), the test (6) follows
a chi-bar distribution with 1-4 degrees of freedom asymp-
totically under the null hypothesis (i.e., P(WTTc ≥ t) ≈∑4

l=1 wlP(χ2
l ≥ t)).

Variance estimation
The β̂

0u
can be viewed as a function of expected counts

under the null, which is dosage under the null. The Wald
test based on the distribution of disease status condi-
tioned on dosage is valid when the unobserved genotype
on untyped SNP is replaced by dosage (e.g., the logistic
regression model where the response variable is disease
status and the input variable is dosage). However, the
Wald test constructed on genotype distribution condi-
tioned on disease status is not valid anymore if one simply
replaces the unmeasured genotype on untyped SNP as
dosage. The latter case includes a Wald test where null

V = 1
n

⎛
⎜⎜⎜⎜⎝

1
p00 + 1

p01 + 1
p10 + 1

p11 − 1
p01 − 1

p11 − 1
p10 − 1

p11
1
p11

1
p01 + 1

p02 + 1
p11 + 1

p12
1
p11 − 1

p11 − 1
p12

1
p10 + 1

p11 + 1
p20 + 1

p21 − 1
p11 − 1

p21
1
p11 + 1

p12 + 1
p21 + 1

p22

⎞
⎟⎟⎟⎟⎠ .
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Table 1 Penetrance tables for two disease loci (g < f )

D∪D R∪R D∪R
g f f g g f g g f

f f f g g f f f f

f f f f f f f f f

R∩D R∩R D∩D
g g g g g g g g g

g g g g g g g f f

g f f g g f g f f

D∪D, the union of dominant and dominant; R∪R, the union of recessive and recessive; D∪R, the union of dominant and recessive; R∩D, the intersection of recessive and
dominant; R∩R, the intersection of recessive and recessive; D∩D, the intersection of dominant and dominant [This table is adapted from Table 1 of Song and Nicolae [16]]

is β = 0, constructed on the joint distribution of geno-
types conditioned on cases. In the case, one needs to
take into account the imputation in the variance. Nev-
ertheless, it is often challenging to derive the asymptotic
variance accounting for the uncertainty of imputed val-
ues under the complex model of inferring genotypes at
untyped SNPs. To overcome the difficulty, one approach
of obtaining the consistent variance estimator is to use
the jackknife. The basic idea behind the jackknife lies in
systematically recomputing the statistic leaving out one
observation at a time from the sample set when sam-
ples are independent and identically distributed. In our
case, in principle, we need to repeat both imputation and
computation of test statistics although it is tempting to
apply a resamplingmethod on the imputed data. However,
for large data and computationally intensive imputation
approaches, repetition of imputation is not desirable.
To reduce the computational time, we can consider the

imputation approach for which imputation for one study
individual does not depend on others in study data (i.e. p̂i
does not depend on {yj,obs, j 	= i}). By obtaining η̂ only
from an external reference panel, such as the HapMap [19]
rather than together with the study data, we can impute
the unobserved genotypes in study individual indepen-
dent of the other individuals on whom imputation will
be performed. In this case, p̂i does not change in the
“new” dataset in resampling. Therefore, resampling can be
applied directly on imputed values from such imputation
approaches (e.g., IMPUTE [12]).
Even though the resampling method is a useful tool for

estimating the sampling variability of a statistic from com-
plex procedures, the disadvantage of resampling methods
is the excessive computation. In terms of the computa-
tional challenge, several important points for using the
jackknife over the bootstrap in our proposed framework
emerge as follows. First, while many existing imputation
methods use the available information only from the ref-
erence panel to learn about the parameters in the imputa-
tionmodel, IMPUTE2 [14], one of the popular imputation
approaches, uses all of the available information from

study dataset as welll as the reference panel. In the case,
when we make a “new” set of data from resampling, in
principal, one needs to repeat the imputation. However,
unlike the bootstrap, the imputed values from the imputa-
tion method on each new dataset after the (delete-1) jack-
knife are expected to be very similar to those from another
new dataset where another sample is deleted. Therefore,
even for the imputation method such that learning about
the parameters in the imputation model involves both the
reference panel and study individuals, repetition of the
jackknife might not be necessary.
Second, in many situations the jackknife requires much

fewer computations than the bootstrap. There is a sub-
stantial deduction in computations when the observed
data are categorical with a finite number of possible val-
ues. Even for continuous data, when the number of obser-
vations is large enough, some observations share the same
values, therefore for such observations the test statis-
tic based on n − 1 samples is the same. Thus, it is not
necessary to compute the statistic as large as a sample size.

Remark. We show the exact form of the jackknife vari-
ance estimator as follows. Let β̂n be the estimate of β and
β̂
i
n−1 be estimate of β after yi is deleted from the samples.

Let β̂
i
ps = nβ̂n − (n− 1)β̂

i
n−1 be the pseudo sample value.

Then the jackknife variance estimator for β̂n is 1
n(n−1)∑n

i=1

(
β̂
i
ps − β̃

) (
β̂
i
ps − β̃

)T
where β̃ = 1

n
∑n

i=1 β̂
i
ps.

Results
Simulation setting
We performed simulation studies to explore the validity
and power of WTT and WTTc in realistic settings. We
considered that the general population consists of a total
of 10,000 individuals. The general population was used
for assigning the genomic region of study subjects, not for
being a reference in imputation of study subjects where
study subject is one replica in the simulated dataset. We
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generated genotype data of the individuals in the general
population based on the observed haplotype distributions
in 180 kb and 174 kb regions of chromosomes 18 and
21 from the HapMap CEU samples using GWAsimula-
tor [20], respectively. Thus, the simulated individuals have
genotypes in the regions of chromosomes 18 and 21 with
similar LD structure to that of the HapMap CEU sam-
ples. We chose a pair of SNPs in chromosomes 18 and 21
to be markers G and H which would be untyped in the
simulated study data. For each study subject, one individ-
ual was randomly sampled from the general population
conditioned on the genotypes at markers G and H for
assigning the genotype data in the genomic region to the
study subject (i.e., for each study subject, one individual
whose genotype is the same as the study subject at SNP of
interest (markers G or H) was sampled out of the general
population and the whole genomic region of the sampled
individual is assigned to the study subject.).
In each simulation for study data, we generated n joint

genotypes at markers G and H using Bayes rule under
the multiplicative penetrances model (i.e., the null model)
and the two-locus models shown in Table 1. That is, we
obtained the joint genotype frequencies for cases (i.e., sub-
jects in study data), by using penetrance of the two-locus
model and joint genotype frequency of markers G and
H in the general population where markers G and H are
in LE (i.e., the joint genotype frequency is the product
of the marginal genotype frequencies). The marginal fre-
quency of each marker was set as an estimator from the
general population generated using GWAsimulator. See
Tables S2 and S3 in Additional file 1 for all the marginal
genotype frequencies and the values of Table 1 used in the
simulation studies.
To quantify how much information for markers G and

H is contained in the other SNPs, MD [21], a measure for
the amount of missing information with respect to multi-
locus LD, was computed using the TUNA software [22]
on the HapMap CEU samples for each marker. MD mea-
sures the correlation between the imputed SNP and a set
of typed SNPs and ranges from zero to one. To impute the
genotypes at markersG andH , we chose a genotype impu-
tation method, IMPUTE [12]. We performed marginal
imputation with the reference as CEU HapMap Phase I
and II (i.e., 120 haplotypes). Then we took a product of the
marginally imputed genotype frequencies to obtain a joint
genotype frequency for untypedmarkersG andH for each
study subject.
In evaluating the tests for untyped markers, we assumed

that genotypes at markers G and H were unobserved. The
performances of Wald test (4) and ICPT were very sim-
ilar to those of WTT and WTTc, respectively, on both
imputed and genotyped data (results not shown). There-
fore, we conducted the following three types of analysis :
(A) perform WTT and WTTc on dosage at untyped

markers where V 0u was estimated by applying the jack-
knife on imputed values, (B) perform the Wald test (4)
and ICPT on dosage at untyped markers, treating dosage
as observed value, which are referred to as Dosage/WTT
and Dosage/WTTc, respectively, and (C) perform the
Wald test (4) and ICPT on the actual genotypes at
markers G and H , which are denoted as Truth/WTT
and Truth/WTTc, respectively. The dosage was obtained
based on p̂0 = (p̂lm,0)l,m=0,1,2. Each analysis was per-
formed on 5000 cases. For each model, 3000 and 100
studies were generated for evaluation of size and power,
respectively. All the tests were evaluated at significance
levels of 0.01 and 0.05 for size and power, respectively.

Simulation results
Tables 2 and 3 present the type I error and the power
with two pairs of SNPs which show different values of
MD, leading to different levels of multi-locus LD. The
results shown in Table 2 are for the case where MD =
0.9003 for marker G and MD = 0.7615 for marker H .
Table 3 displays the results for a pair of SNPs where
the values of MD are 0.7266 and 0.7345 for markers G
and H , respectively. Simulation results show that WTT
and WTTc have proper type I error under the level 0.01.
We can see that Dosage/WTT and Dosage/WTTc are
very conservative and are much less powerful than WTT
andWTTc across the disease models, respectively. WTTc
shows higher power thanWTT, seen in the case when the
corresponding tests were applied on the true genotypes.
Overall, the relative powers of WTT and WTTc com-

pared with Truth/WTT and Truth/WTTc, ideal tests
which were performed on the true genotypes at mark-
ers G and H , are lower as MD decreases for markers G
and H , respectively (see Tables 2 and 3). This is generally
expected because of lower information content.

Table 2 Size and power of tests for gene-gene interactions

Model WTT WTTc Dosage/ Dosage/ Truth/ Truth/
WTT WTTc WTT WTTc

Null 0.007 0.007 0 0 0.008 0.008

D∪D 0.55 0.58 0.15 0.28 0.81 0.87

R∪R 0.57 0.61 0.30 0.36 0.81 0.83

D∪R 0.42 0.46 0.13 0.17 0.68 0.73

R∩D 0.22 0.26 0.05 0.08 0.40 0.46

R∩R 0.67 0.69 0.34 0.42 0.85 0.90

D∩D 0.15 0.19 0.01 0.04 0.27 0.32

MD for markers G and H using the HapMap CEU samples are 0.9003 and 0.7615,
respectively. WTT and WTTc correspond to tests (5) and (6) where V 0u was
estimated by applying the jackknife on imputed values. Dosage/WTT and Truth/WTT
are test (4) using the asymptotic variance based on expected genotypes and true
genotypes, respectively. Dosage/WTTc and Truth/WTTc are ICPT on expected
genotypes and true genotypes, respectively. Models are described in Table 1.
Number of individuals in cases is 5000. Significance levels for size and power are 0.01
and 0.05, respectively. WTT, Wald-type test; WTTc , Wald-type test with constraints
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Table 3 Size and power of tests for gene-gene interactions

Model WTT WTTc Dosage/ Dosage/ Truth/ Truth/
WTT WTTc WTT WTTc

Null 0.011 0.010 0 0 0.006 0.008

D∪D 0.14 0.16 0 0.04 0.56 0.60

R∪R 0.17 0.21 0.02 0.03 0.86 0.94

D∪R 0.15 0.17 0.04 0.08 0.70 0.77

R∩D 0.15 0.17 0.02 0.03 0.71 0.77

R∩R 0.22 0.25 0.03 0.04 0.81 0.84

D∩D 0.13 0.14 0.01 0.04 0.73 0.76

MD for markers G and H using the HapMap CEU samples are 0.7266 and 0.7345,
respectively. WTT andWTTc correspond to tests (5) and (6) whereV 0u was estimated
by applying the jackknife on imputed values. Dosage/WTT and Truth/WTT are test (4)
using the asymptotic variance based on expected genotypes and true genotypes,
respectively. Dosage/WTTc and Truth/WTTc are ICPT on expected genotypes and
true genotypes, respectively. Models are described in Table 1. Number of individuals
in cases is 5000. Significance levels for size and power are 0.01 and 0.05, respectively.
WTT, Wald-type test; WTTc test, Wald-type test with constraints

We conducted additional simulation studies to investi-
gate the validity of the proposed tests with various values
of MD by generating study subjects under the null model
(i.e., multiplicative penetrances model). We chose differ-
ent markers so that we could change the values of MD
for marker G while fixing the value of MD at marker H
as 0.7615. As shown in Table 4, simulation studies sug-
gest that the type I errors for WTT and WTTc on the
imputed genotypes and theWald test (4) and ICPT on the
true genotypes are well controlled. Though the amount
of information in observed genotypes that can predict the
untyped SNPs is very low (e.g., MD = 0.0235), still the
tests maintain their type I errors around the nominal value
of 1%. This is due to the fact thatWald-type test is valid as
long as the estimator for the variance is consistent. Since
the jackknife can produce the consistent variance estima-
tor, the validity of the proposed tests is robust to the level
of multi-locus disequilibrium.

Table 4 Size of tests for gene-gene interactions under the
various values ofMD

MD of marker G WTT WTTc Truth/WTT Truth/WTTc

0.0235 0.008 0.006 0.006 0.006

0.2222 0.016 0.008 0.010 0.009

0.3528 0.011 0.006 0.007 0.005

0.6057 0.011 0.006 0.010 0.008

1 0.007 0.004 0.010 0.008

WTT corresponds to test (5). WTTc corresponds to test (6). Truth/WTT and
Truth/WTTc are test (4) and ICPT on true genotypes, respectively. The values ofMD
for marker G range from 0.0235 to 1 while the value ofMD for marker H is fixed as
0.7615. Number of individuals in cases is 5000. Significance level=0.01. WTT,
Wald-type test; WTTc , Wald-type test with constraints

Environment and genetics in lung cancer etiology (eagle)
study
We applied for the proposed methodology to a dataset
from a population-based case-control study on lung can-
cer, the Environment and Genetics in Lung Cancer Eti-
ology (EAGLE), which enrolled lung cancer cases and
controls in Italy between 2002 and 2005. The study pro-
tocol has been described in Landi et al. [23]. The study
has received approval from the Institutional Review Board
of the University of Milan and of the National Can-
cer Institute. All participants signed a written informed
consent. Here, we focus on data involving 1917 cases
after exclusion of individuals because of informed consent
issues and for quality control reasons. rs8034191 which
is located on chromosome 15q25.1 has been reported
as a signal associated with lung cancer [24, 25]. Also,
genetic variants in TERT and CLPTM1L on chromosome
5p15.33 have been shown to be associated with risk of
lung cancer [26, 27]. In the EAGLE dataset, rs8034191
is typed completely with no missing. The untyped SNPs
are imputed using IMPUTE2 with CEU HapMap Phase
III and 1000 Genomes Project data [28] as the reference.
We performed SNP-SNP interaction testing, WTTc, on
lung cancer between rs8034191 and SNPs which are typed
and untyped on a 1.8Mb region where both TERT and
CLPTM1L are located. We analyzed the typed SNPs such
that minor allele frequency (MAF) ≥ 0.05 without any
missing, which led to 219 SNPs in the region. The untyped
SNPs in the analysis are the 4573 SNPs on the region con-
taining TERT and CLPTM1L which meet the following
criteria : (1) expected MAF ≥ 0.05 and (2) information
measure provided by IMPUTE2 ≥ 0.5.
As shown in Fig. 1, quantile-quantile (Q-Q) plot of the

p-value distribution from WTTc on untyped SNPs shows
that the deviations of the p-values from the Uniform dis-
tribution are minor except in the extreme tails, which is
expected in GWAS where most of p-values are expected
to follow the Uniform distribution.
We show the results of WTTc for interaction in the

1.8Mb region in Fig. 2, where we plot − log10p-value
for typed SNPs and untyped SNPs. The untyped SNPs
show very similar pattern to the typed SNPs and detailed
results for the region. The typed SNPs as local maxima
in − log10 p-value are flanked by a column of other
untyped SNPs, which is a pattern characteristic of true sig-
nal rather than genotyping error (If it is a true signal rather
than artifacts such as genotyping error, SNPs in LD tend
to show similar level of signal). Therefore, the analysis
on untyped SNPs allows us to have much more compre-
hensive view. We can see that basically all of the typed
SNPs which show local peak tend to have another nearby
untyped SNP which shows slightly enhanced interaction
signals. For example, untyped SNP rs6887387 located at
344218 with an information metric as 0.948 computed by
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Fig. 1 Q-Q plot for WTTc for interactions on lung cancer. p-values are
from WTTc for interactions between rs8034191 and untyped SNPs on
regions where both TERT and CLPTM1L are located. Q-Q,
quantile-quantile; WTTc , Wald-type test with constraints

IMPUTE2 shows stronger evidence against no interaction
than typed SNP rs6555205 located at 360543.

Discussion
We have presented new tests for gene-gene interaction
on marginally imputed values from the existing imputa-
tion methods at untyped SNPs (e.g., IMPUTE/IMPUTE2,
MACH [8], BEAGLE [11], and PLINK [13]). Our meth-
ods, WTT and WTTc, are constructed under the null
hypothesis in the Wald-like form where we obtain the
estimator of the variance (under the null) which directly

takes into account uncertainty of inferring genotypes at
the untyped SNPs using the jackknife. For detecting inter-
actions among SNPs with small effects, larger number of
subjects are needed for a discovery and it has been shown
that a meta analysis could be statistically as efficient as
an analysis by pooling individual-level data [5]. Proposed
interaction analysis of untyped SNPs can permit such a
meta-analysis with different genotyping platforms, which
will lead to an improvement in power. Even though in
Methods section we have presented the proposed tests
for the untyped SNPs, an extreme form of missing geno-
type, both WTT and WTTc are also applicable when
each marker is missing completely at random or markers
are jointly missing completely at random (see Additional
file 1).
For testing (pure) interaction which is defined as devi-

ation from multiplicative penetrances, case-only analysis
could be much more powerful than logistic regression
method using cases and controls [16]. For case-only stud-
ies, one could develop a test statistic based on genotype
distribution directly conditioned on cases. However, when
the test statistics are constructed on the distribution of
genotypes and unmeasured genotypes are simply replaced
as dosage which is a popular approach as downstream
analysis after the imputation, the tests can suffer from the
loss of the power due to overestimation of variance. When
we compared the average of the variance estimator V̂ 0u

across simulations with the empirical variance estimator
of β̂

0u
across simulations, we observed that the variance

estimator of β̂
0u

from the case where one just simply
replaces unobserved genotype as dosage is overestimated
(i.e., 1

K
∑K

k=1 V̂ 0u
k,jj > 1

K−1
∑K

k=1

(
β̂0u
k,j − 1

K
∑K

k=1 β̂0u
k,j

)2
for

Fig. 2 Results of WTTc for interactions on lung cancer for the region of TERT and CLPTM1L. − log10 p-value is plotted against chromosomal location
for the typed and untyped SNPs in blue (+) and red (o), respectively. WTTc , Wald-type test with constraints
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j = 1, . . . , 4 where K is the number of simulations,
and V̂ 0u

k,jj and β̂0u
k,j are the (j, j)th diagonal values of V̂ 0u

and the jth element of β̂
0u

obtained from simulated data
k, respectively (see Additional file 1: Table S1). With
increasing imputation uncertainty, the imputed dosage
becomes less variable due to lack of information. Thus
the variance of the dosage would be smaller than the
variance of the observed genotype, which will lead to
overestimation of the variance when dosage is treated
as observed data. The loss in power due to overesti-
mation of the variance will be even worse in meta-
analyses since such overestimation of variance will be
cumulative when we combine interaction evidence across
studies.
In the simulation studies, we used the significance level

of 0.01 to validate the test statistics. The simulation stud-
ies showed that the type I error rates of proposed statistics
were close to the nominal significance level 0.01. To see
whether the tests could have size matching reasonably
well with the other nominal significance levels, we per-
formed a Kolmogorov-Smirnov (KS) test comparing the
distribution of the p-values from the null scenario with
the Uniform(0,1) distribution. The KS test comparing the
distribution of p-values with the Uniform distribution is
a test whether the null distribution is accurate, which is
a stronger condition than maintaining a nominal size of
test. WTT follows the correct null distribution (results
not shown). Thus, we found that the asymptotic distribu-
tion ofWTT is accurate, indicating that at any significance
level, it is expected that the proper type I error is achieved
around the nominal type I error. WTTc is slightly con-
servative based on the KS test (i.e., the null p-value from
those tests is stochastically greater than the Uniform(0,1)
random variable).
We investigated the effect of multi-locus LD on the pro-

posed tests. As expected, power decreases as multi-locus
LD information among SNPs becomes lower. However,
with respect to the validity, simulation studies show that
WTT and WTTc are robust to the amount of informa-
tion which could be used to predict the genotypes at the
untyped SNP. This is due to the fact that the jackknife pro-
vides the consistent variance estimator. With the similar
reason, when the reference set is a poor representation
of study dataset or the reference set is small so that η̂0
has a big variance, the tests would still be valid since the
jackknife could take into account the poor estimation of
η0u. In other words, the jackknife properly accounts for
the additional variability from estimation of η0u when the
jackknife estimates the variance of β̂

0u
. It is worth noting

that in our simulations, we used only 60 HapMap CEU
samples for imputation andWTT andWTTc are valid and
significantly more powerful than the tests which simply
replace unmeasured genotypes as dosage.

To evaluate the performance of WTTc over WTT, we
compared the power of the two tests. We showed that
consistent improvement in performance of WTTc could
be obtained by restricting the parameter space under the
alternative hypothesis. With the same argument as in the
typed markers [16], we expect that the gains of using
WTTc will grow with the type I error, although we have
not studied this. However, WTT for interaction between
untyped SNPs is very simple and computationally trac-
table so it has its own advantage compared with WTTc.
In this paper, we developed interaction testing

approaches by considering SNP level. We note that sev-
eral methods to perform interaction analysis at the gene
level have been proposed [29, 30]. Working at the gene-
level is computationally feasible and reduces the burden
of multiple-testing correction. However, SNP-based
interaction analysis can perform well when a single SNP
in a gene interacts with a single SNP in another gene [29,
30]. One needs to bear in mind the trade-offs between the
interaction analysis for SNP and gene levels.
Even though the jackknife is a great method to estimate

the variance which could take into account the uncertainty
at untyped SNPs, it may not perform well when the allele
frequency is low. However, this is not just the problem
of the jackknife. The test based on the asymptotic theory
is not suitable for low allele frequencies. For rare SNPs,
one way to solve the problem is that we can combine sev-
eral genotype configurations although some information
might be lost.
We believe that two-stage strategies, in which inter-

action test is performed only on a subset of markers
based onmarginal associations, aremore appropriate than
exhaustive search for identifying gene-gene interactions,
in terms of computation and a penalty for multiple testing.
Under the strategy, the proposed tests are computationally
feasible.

Conclusions
The proposed methodologies provide a promising solu-
tion for the gene-gene interaction tests using imputed
values from external imputation algorithms in the two-
stage strategy.We are currently extending our approach to
the case where SNPs are in LD, which involves controls as
well as cases.

Additional file

Additional file 1: Supplementary Material. 1. the form of the weights in
the chi-bar distribution of the WTTc,. 2. how the proposed methods are
applicable for genotype at each marker missing completely at random or
genotypes at two markers jointly missing completely at random. 3. the
simulation result comparing the average of variance estimator with the
empirical variance estimator when dosage was treated as observed
genotype data (Table S1). 4. the values used in simulation studies (Tables
S2 and S3).

http://www.biomedcentral.com/content/supplementary/s12863-015-0225-9-s1.pdf
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