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Abstract: Iodonium(III) salts bearing uracil moieties have recently appeared in the literature, but their
structural scope and utilization are limited because of their hygroscopic characteristics. In this study,
we describe our detailed investigations for synthesizing a series of uracil iodonium(III) salts derived
with various structural motifs and counterions. These new compounds have been utilized as attractive
synthetic modules in constructing functionalized nucleobase and nucleosides.
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1. Introduction

Diaryliodonium(III) salts, one of the useful and important classes of hypervalent iodine
compounds, have a wide range of applications, such as active bactericides, benzyne precursors,
and arylation reagents for reacting a wide range of nucleophiles—even under metal-free conditions [1–8].
N-Heteroaryliodonium salts (Figure 1, center), as well as conventional diaryliodonium salts (Figure 1,
left), have also received considerable attention on account of their importance as versatile arylation
reagents [9,10]. Classically, N-heteroaryliodonium salts could be obtained via the treatment of
unstable vinyliodonium(III) dichloride with aryl lithium reagents [11–13]. The stepwise synthesis
of 3-pyridyl(aryl)iodonium(III) salts via the corresponding 3-pyridyl-iododichloride has also been
reported [14]. Recently, Olofsson et al. reported the one-pot synthesis of N-heteroaryliodonium
triflates from the corresponding N-heteroaryliodides by the reaction toward arenes [15]. Although this
approach is a versatile and reliable synthesis method of N-heteroaryliodonium triflates, there were still
some limitations in the scope of substrates.

Nucleobases are important substructures in biologically active compounds [16,17], and the
introduction of such moiety into iodonium(III) salts would be of high utility in organic synthesis.
In 1998, Kim et al. reported the uracil-5-ylphenyliodonium(III) triflates (Figure 1, right) prepared by the
reaction of 5-tributylstannylated uracils with aryl(cyano)iodonoium triflate. They also demonstrated
the preparation of uracil-5-ylphenyliodonium(III) triflates via the reaction of unfunctionalized uracil with
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phenyliodine(III) diacetate (PIDA) in the presence of triflic acid, and applied it to the palladium-catalyzed
alkenylations [18,19]. Recently, the Gaunt research team prepared heteroaryl-uracil-iodonium(III) triflates
using mCPBA (m-chloroperbenzoic acid) and triflic acid as an oxidant and counterion, respectively, and then
utilized these synthesized salts for organocatalytic arylation of aldehydes [20]. However, the isolation and
application of uracil-iodonium(III) salts remained mostly limited to treating triflate (−OTf) salts [18–22],
and the relationship between their stability and the structural feature of uracil-iodonium(III) salts has
still not been sufficiently explored. This is likely because of their hygroscopic characteristics causing
gradual decomposition, as claimed in previous studies [20]. In this context, we recently developed
a series of stable uracil-iodonium(III) salts with various structural motifs and counterions that are
suitable for isolation and storage [23]. Herein, we report the details of the preparation of further
variation of uracil-iodonium(III) salts, together with their new applications.Molecules 2019, 24, x 2 of 13 
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2. Results and Discussions

Synthetic methods and broad applications of conventional diaryliodonium(III) salts have been
intensively investigated [5–8]. Synthetic routes to diaryliodonium(III) salts typically involve stepwise
methods using a variety of organometallic nucleophiles, such as lithio-, silyl-, stannyl-, and boryl-arenes,
instead of simply arenes themselves (Scheme 1A) [24–27]. To shorten the synthetic route, direct methods
via electrophilic substitution were partially achieved for a limited number of aromatic compounds and
counterions using the iodine(III) compounds activated by strong acids, or [hydroxy(tosyloxy)iodo]arenes;
however, it led to only moderate yields and low regioselectivities (Scheme 1B) [28]. More recently,
the synthesis of diaryliodonium(III) triflates via a straightforward approach, starting from iodoarenes
or aromatic compounds, has been explored with the use of stoichiometric cooxidants such as mCPBA
(Scheme 1C) [29]. As an environmentally-benign transformation utilizing the unique character of
fluoroalcohol media, we established the direct, waste-free method for preparation of diaryliodonium(III)
salts from a variety of arenes using hypervalent iodine(III) reagents (Scheme 1D) [30].Molecules 2019, 24, x 3 of 13 
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In a pilot experiment, using 1,3-dimethyluracil 1a as a substrate, we examined the synthesis of
uracil-aryliodonium triflates bearing electron-donating or electron-withdrawing aryl moieties in order
to determine the influence of the substituent on the benzene ring (Table 1). PIDA derivatives bearing
different para-substituents 2a–e were first used for a protocol previously reported by Kim et al. [18].
The reported triflate 3aa-OTf was produced in a seemingly good yield, and afterwards, the reaction
was precipitated as fine white powder in diethyl ether. However, we became aware that this triflate
3aa-OTf was severely hygroscopic and could not be easily isolated and stored during the experiment
without strict care against air and moisture (Entry 1). Similar chemical behavior was previously noted
by Gaunt et al., who reported that some uracil-aryliodonium(III) triflates are very difficult to handle and
should be abruptly dried under a vacuum [20]. Moreover, triflate 3ab-OTf, which was generated from
p-tolyl-PIDA 2b, was unstable, and its preparation thus resulted in decomposition during the reaction
and workup. In contrast, the triflates 3ac-OTf, 3ad-OTf, and 3ae-OTf, having an electron-withdrawing
aryl moiety, were isolated in moderate to high yields as fine powders (Entries 3–5). Decreasing the
amount of TfOH from two to one equivalent lowered the product yield (Entry 6). Considering the
result from this screening, it seems that the presence of an electron-donating group decreased the
stability of the uracil-aryliodonium triflates. In fact, uracil-iodonium(III) salts applied in different
preparative methods were usually limited to the triflates with electron-deficient aryl moieties [20,21],
which is in good accordance with our present observations.

Table 1. Influence of substituents on benzene ring of uracil-iodonium(III) triflates.
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We then confirmed the suitability of N-protecting groups for the uracil molecule in the reaction with
4-ClC6H4I(OAc)2 (2e) to give the corresponding iodonium(III) triflates (Scheme 2). Using acetonitrile as
a solvent instead of dichloromethane allowed the triflate 3ae-OTf to be obtained with a slightly higher
yield of 85%. The N-protected uracils containing benzyl (R1 = Bn, R2 = H; 1b) and methoxymethyl
(R1 = MOM, R2 = H; 1c) groups were treated for the reaction conditions, producing the corresponding
iodonium(III) triflates 3be-OTf and 3ce-OTf in high yields. The conditions could also be applied to
uracil itself (R1 = H, R2 = H; 1d) and 6-methyluracil (R1 = H, R2 = Me; 1e), generating 70% and 90%
yields in the triflates 3de-OTf and 3ee-OTf, respectively. In the case of thymine, or 5-methyluracil as a
substrate, the precipitate was not detected.
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In general, the chemical and physical properties of iodonium(III) salts strongly depend on the nature
of both the aryl moiety and the anionic counterpart. We then began to prepare uracil-iodonium(III)
derivatives carrying different types of counterions, as shown in Table 2. Among the reported various
protocols for iodonium(III) salt synthesis, we conducted the dehydrative condensation of uracil
with a Koser-type reagent (ArI(OH)OTs) for the preparation of uracil-aryliodonium(III) tosylate in
fluoroalcohol medium, according to our established procedure (Scheme 1D) [30]. The reaction was thus
performed with 1,3-dimethyluracil 1a and stoichiometric 4-ClC6H4I(OH)OTs 2f in 2,2,2-trifluoroethanol
(TFE), which successfully gave the desired tosylate 3af-OTs in a high yield (Entry 1). The use of
1,1,1,3,3,3-hexafluoroisopropanol (HFIP) instead of TFE resulted in a small decrease in product yield
(Entry 2). An extensive number of Koser-type reagents are readily available, and their variations
in the dehydrative condensation can expand the structures of the obtained iodonium(III) products.
One example of this extension is the preparation of the mesylate salt, 3ag-OMs (Entry 3). Similar
modification of the counterion was possible by the utilization of the PIDA derivative 2e, which generated
(+)-10-camphorsulfonate 3ae-OCs (Entry 4). Trifluoroacetate and perchlorate anions were conveniently
introduced as counterions to the products, 3ae-OCOCF3 and 3ae-ClO4, under similar reaction
conditions (Entries 5 and 6). We also found that among various counterions, the uracil-iodonium(III)
tosylates demonstrated especially high stability for ease of handling; thus, we sought to prepare
uracil-iodonium(III) tosylates carrying different types of aryl moieties (Entries 7–10). The tosylate
salt 3ah-OTs was non-hygroscopic, stable under air, and tolerable to prolonged storage, while the
corresponding triflate 3aa-OTf was hygroscopic and difficult to handle (Table 2, Entry 7 versus
Table 1, Entry 1). Other tosylates having 4-nitrophenyl and 4-trifluoromethylphenyl moieties could be
synthesized in the same manner (Entries 8 and 9). This protocol in fluoroalcohol was also effective for
the preparation of triflates (Entries 10–12).

Table 2. Facile synthesis of uracil-iodonium(III) salts with various counterions.
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7 Me H I(OH)OTs (2h) none OTs 3ah-OTs 78
8 Me 4-NO2 I(OH)OTs (2i) none OTs 3ai-OTs 20
9 Me 4-CF3 I(OH)OTs (2j) none OTs 3aj-OTs 16

10 Me 4-Cl I(OAc)2 (2e) TfOH OTf 3ae-OTf 98
11 Bn 4-Cl I(OAc)2 (2e) TfOH OTf 3be-OTf 75
12 MEM 4-Cl I(OAc)2 (2e) TfOH OTf 3fe-OTf 55

a 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) was used instead of 2,2,2-trifluoroethanol (TFE). b OMs = methanesulfonyloxy,
c CSA = camphorsulfonic acid, d OCs = camphorsulfonyloxy.

Aiming at developing useful synthetic modules in nucleoside chemistry, we then attempted to
synthesize iodonium(III) salts bearing 2,3,5-tri-O-acetyluridine (Scheme 3). Similarly, to a stirred
solution of 2,3,5-tri-O-acetyluridine 1g and 4-chloroiodobenzene diacetate 2e in dichloromethane,
a solution of TfOH in dichloromethane was added dropwise at room temperature. After completion
of the reaction, the solvent was removed and then precipitated by adding Et2O through stirring of
the desired salt 3ge-OTf. The salt 3ge-OTf was stable as fine powder for at least 1 h with the care of
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moisture. However, as time passed, the hygroscopic salt 3ge-OTf melted and became gummy-like
material. To overcome the instability of this salt 3ge-OTf, we further examined the counterion
exchange [31] and other solvents; unfortunately, all these attempts did not lead to the improvement of
the stability of the salt 3ge-OTf.
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We next performed the one-pot synthesis of uracil-iodonium(III) salts from aryl iodides and
uracils utilizing mCPBA as an oxidant (Scheme 4). The triflates 3ae-OTf—3ce-OTf and 3ee-OTf
mentioned above could be prepared in moderate to high yields using an equimolar amount of
4-chloroiodobenzene (Equation (1)). Likewise, a variety of tosylate salts bearing a broad range of aromatic
moieties, such as 4-chlorobenzene, 2-chlorobenzene, 2,6-dichlorobenzene, 2-trifluoromethoxybenzene,
2-trifluoromethylbenzene, 2-bromobenzene, and 2-cyanobenzene, can be readily prepared (Equation (2)).
In some cases, using HFIP or CH2Cl2 instead of TFE could produce tosylate salts in higher yields.Molecules 2019, 24, x 6 of 13 
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Application studies of the obtained uracil-iodonium(III) salts 3 were then undertaken to exemplify
their utility in several reactions. The selected examples are shown in Scheme 5. Thus, the Cu(I)-catalyzed
sequential C−H and N−H arylation of indole [21] by iodonium triflate 3ae-OTs produced the indoyl
uracil 4 in moderate yield (Scheme 5, Equation (1)). On the other hand, Cu(II)-catalyzed sulfide
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construction through a sulfur-iodine exchange protocol [32] of iodonium(III) triflate 3ae-OTs with
potassium thioacetate generated 5 in 61% yield (Equation (2)).
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Furthermore, as shown in Table 3, the reactive heteroaryne analogues, generated from the uracil
iodonium(III) salts 3 by deprotonation using lithium bis(trimethylsilyl)amide (LiHMDS) [33], could be
trapped with furan 6a—producing the [4 + 2] cycloaddition products 7a. When uracil-iodonium(III)
tosylate 3ae-OTs, including a 4-chlorophenyl group, was applied to the reaction, the cyclization product 7a
was obtained in 31% yield (Entry 1). Although the use of 4-trifluoromethylphenyliodonium(III) tosylate
3aj-OTs led to an inferior product yield (Entry 2), the corresponding tosylate 3ak-OTs—including a
2-chlorophenyl group—improved the yield result of this reaction (Entry 3). We then attempted several
2-substituted aryl iodonium(III) tosylates, such as 2,6-dichlorophenyl 3al-OTs (Entry 4), 2-fluorophenyl
3aq-OTs (Entry 5), 2-trifluoromethoxy 3am-OTs (Entry 6), and 2-trifluoromethylphenyl 3an-OTs (Entry 7).
Among the various uracil iodonium(III) salts tested, 3an-OTs was found to be most promising.

Table 3. Optimization of furan addition to uracil ring with base activation of iodonium(III) salt 3 a.
LiHMDS, lithium bis(trimethylsilyl)amide.
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Entry R1 3 Yield (%) b

1 4-Cl 3ae-OTs 31
2 4-CF3 3aj-OTs 20
3 2-Cl 3ak-OTs 37
4 2,6-Cl 3al-OTs 24
5 2-F 3aq-OTs 22
6 2-OCF3 3am-OTs 28
7 2-CF3 3an-OTs 40 c

a Reactions were performed using 2 equiv of LiHMDS and 5.5 equiv of furan 6a at 10 ◦C in toluene (0.1 M).
b Determined by 1H-NMR. c Isolated yield.

To confirm the scope of this reaction, we examined a variety of arynophiles 6 using the optimized
experimental procedure (Table 4). The cycloaddition using tosylate 3an-OTs with 2,5-dimethylfuran
6b gave the expected product 7b in a 42% yield (Entry 2). In the case of N-substituted pyrroles 6c-e,
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the reactions also proceeded smoothly and finished within 3 h to furnish the corresponding products
7c–e in acceptable yields (Entries 3–5). When diphenylisobenzofuran 6f was subjected to the reaction
at 40 ◦C, the cycloadduct 7f was produced and isolated in 55% (Entry 6).

Table 4. [4 + 2] Cycloaddition using uracil-iodonium(III) salt 3an-OTs a.
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Having established the [4 + 2] cycloaddition conditions using the 3an-OTs above, we were able to
extend the reactivity of the uracil iodonium(III) salts to other types of cycloadditions. The representative
results are given in Scheme 6. Thus, the reaction of 3an-OTs with N-tert-Butyl-phenyl nitrone 8 [34]
afforded a [3 + 2] annulated product 9 (Equation 1). The cycloaddition of 3,4-dihydro-2H-pyran 10 [35]
as an alkynophile yielded the [2 + 2] annulated product 11 (Equation 2). When diphenyldiselenide
12 [36] was subjected to the reaction conditions, σ-bond insertion occurred and the 5,6-difunctionalized
product 13 was obtained in a moderate yield (Equation (3)).
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On the basis of the experimental results in Tables 3 and 4 and Scheme 6, we would speculate that
the reaction mechanisms for these cycloadditions and σ-bond insertion involve the formation of the
heteroaryne analogue of uracil, as in uracilyne 14 (Figure 2). LiHMDS can abstract the Csp2 uracil ring
hydrogen of the iodonium(III) salts 3. Owing to the exceptionally high leaving group ability of the aryl
iodanyl group [37], the facile elimination of 2-substituted iodobenzene for generation of uracilyne 14
was possible. This reactive alkyne species 14, having a highly strained and distorted C≡C bond [38–41],
can react with the arynophiles 6 to give the corresponding cycloadducts 7. At present, there is no
report on the successful generation of cyclic uracil alkyne 14 (uracilyne, Figure 2) and its vicinal
difunctionalization. The aryne chemistry has a synthetic advantage for the multi-functionalization
of aromatic rings in a single operation [42]. Heteroarynes [43,44], such as pyridyne and indolyne
(Figure 2), are thus regarded as attractive tools for the construction of multi-functionalized heteroarene
derivatives [43–49]. When compared with the benzyne chemistry, the application of heteroarynes is
still not fully investigated. For example, the treatment of halouracils with a variety of strong bases
failed to generate 14 [43]. Similarly, uracilyne 14 could not be generated from iodouracil [50]. In a more
recent report, Garg et al. attempted to generate pyrimidyne from silyltriflate precursors, but failed in
the result [51].
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3. Conclusions

In conclusion, we demonstrated detailed investigations and new application protocols concerning
the synthesis of uracil-iodonium(III) salts and their use as attractive synthetic modules in constructing
unique functionalized molecules containing nucleobases. We found that the stabilizing effect of the
tosylate moiety facilitates the preparation of uracil-iodonium(III) salts carrying different types of aryl
moieties. These insights can encourage the utilization of uracil iodonium(III) salt as a useful building
block in organic synthesis. Further investigations on the utilization of uracil iodinium(III) salts are
underway in our research groups.

4. Experimental Section

Melting points (mp) are uncorrected. The 1H-NMR (and 13C-NMR) spectra of the products were
recorded by JEOL JMN-300 or Bruker Avance III 600 spectrometer operating at 400 or 600 MHz (100 or
150 MHz for 13C-NMR) in CD3OD or CDCl3 at 25 ◦C with tetramethylsilane as the internal standard.
The data are reported as follows: chemical shift in part par million (δ), multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, br = broad singlet, m = multiplet), integration, and coupling
constant (Hz). The infrared spectra (IR) were obtained using a Hitachi 270-50 spectrometer and the
absorptions are reported in reciprocal centimeters (cm−1) for representative peaks. High resolution mass
spectra were measured with a Thermo Scientific Exactive Plus Orbitrap. Phenyliodine(III) diacetate
(PIDA; 2a) and PhI(OH)OTs (HTIB, Koser’s reagent; 2h) are commercially available compounds and
were used as received. Other hypervalent iodone(III) reagents 2b–g and 2i–j were synthesized from
the corresponding commercial iodoarenes by oxidations, according to the literature procedures [52–55].
The N-protected uracils 1b, 1c, and 1f were prepared from uracil by the known methods [56–58].
Solvents and all other starting materials were obtained from commercial suppliers and used without
further purification.
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4.1. General Procedure for the Synthesis of Uracil-Iodonium(III) Triflates

To a stirred solution of 1,3-dimethyluracil 1a (0.50 mmol) and 4-chloroiodobenzene diacetate 2e
(0.55 mmol) in dichloromethane or acetonitrile (2 mL), a solution of trifluoromethanesulfonic acid
(ca. 150 mg, 1.0 mmol, 2 equiv) in acetonitrile (1 mL) was added dropwise at room temperature, and the
resulting slightly colored solution was stirred for 3 h. After addition of methanol (~2 mL), the solvents
were removed under reduced pressure. The residue was then treated with diethyl ether with stirring
for precipitation of the iodonium(III) salt. The precipitate was filtered and dried in vacuo to give a
pure iodonium(III) salt in powder form.

(1,3-Dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)(4-nitrophenyl)iodonium triflate (3ac-OTf). A white
powder, m.p. 212–213 ◦C. IR (KBr) cm−1: 1716, 1663, 1352, 1248, 1023, 632. 1H-NMR (600 MHz,
CD3OD) δ 3.34 (s, 3H), 3.50 (s, 3H), 8.33 (d, 2H, J = 9.0 Hz), 8.39 (d, 2H, J = 9.0 Hz), 8.97 (s, 1H) ppm.
13C-NMR (150 MHz, CD3OD) δ 28.4, 37.0, 88.2, 120.3, 125.9, 136.2, 150.2, 150.9, 155.0, 159.4 ppm. HRMS
(FAB): Calcd. for C12H11IN3O4 [M − OTf]+: 387.9789, found: 387.9791.

(1,3-Dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)(4-(trifluoromethyl)phenyl)iodonium triflate (3ad-OTf).
A white powder, m.p. 190–191 ◦C. IR (KBr) cm−1: 1723, 1680, 1614, 1325, 1229, 1025, 639. 1H-NMR
(600 MHz, CD3OD) δ 3.34 (s, 3H), 3.49 (s, 3H), 7.85 (d, 2H, J = 8.4 Hz), 8.35 (d, 2H, J = 8.4 Hz), 8.96
(s, 1H) ppm. 13C-NMR (150 MHz, CD3OD) δ 28.4, 37.0, 88.1, 118.6, 128.0, 128.1, 128.2, 135.7, 150.9,
154.8, 159.4 ppm. HRMS (FAB): Calcd. for C13H11F3IN2O2 [M − OTf]+: 410.9812, found: 410.9816.

(4-Chlorophenyl)(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)iodonium triflate (3ae-OTf).
A white powder, m.p. 154–155 ◦C. IR (KBr) cm−1: 1717, 1662, 1514, 1251, 1227, 1024, 631. 1H-NMR
(600 MHz, CD3OD) δ 3.34 (s, 3H), 3.48 (s, 3H), 7.55 (d, 2H, J = 9.0 Hz), 8.13 (d, 2H, J = 9.0 Hz), 8.92
(s, 1H) ppm. 13C-NMR (150 MHz, CD3OD) δ 29.8, 38.3, 89.5, 113.6, 133.0, 138.1, 140.4, 152.3, 155.9,
160.8 ppm. HRMS (FAB): Calcd. for C12H11ClIN2O2 [M − OTf]+: 376.9548, found: 376.9546.

(2,4-Dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)(4-chlorophenyl)iodonium triflate (3de-OTf). A white powder,
m.p. 191-192 ◦C. IR (KBr) cm−1: 1738, 1670, 1366, 1216, 1164. 1H-NMR (600 MHz, CD3OD) δ 7.56
(d, 2H, J = 9.0 Hz), 8.10 (d, 2H, J = 9.0 Hz), 8.70 (s, 1H) ppm. 13C-NMR (150 MHz, CD3OD) δ 90.9,
113.5, 133.0, 137.9, 140.4, 143.5, 152.2, 154.6, 161.6 ppm. HRMS (DART): Calcd. for C10H7ClIN2O2

[M − OTf]+: 348.9235, found: 348.9236.

4.2. General Procedure for the Synthesis of Uracil-Iodonium(III) Tosylates

To a solution of 1,3-dimethyluracil 1a (0.20 mmol) in 2,2,2-trifluoroethanol (TFE) (3 mL),
(4-chlorophenyl)(hydroxy)iodonium tosylate 2f (0.22 mmol) was added and it was stirred at room
temperature. After completion of the reaction, the solvent was removed under vacuum. The product
was then precipitated by the addition of Et2O with stirring. The precipitate was filtered to give
uracil-iodonium(III) salt 3af-OTs as a white powder.

(4-Chlorophenyl)(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)iodonium tosylate (3af-OTs).
A white powder, m.p. 186–187 ◦C. IR (KBr) cm−1: 1715, 1656, 1615, 1214, 1169, 997, 682. 1H-NMR
(600 MHz, CD3OD) δ 2.37 (s, 3H), 3.33 (s, 3H), 3.47 (s, 3H), 7.23 (d, 2H, J = 7.8 Hz), 7.54 (d, 2H, J = 9.0
Hz), 7.69 (d, 2H, J = 7.8 Hz), 8.12 (d, 2H, J = 9.0 Hz), 8.92 (s, 1H) ppm. 13C-NMR (150 MHz, MeOD) δ
19.9, 28.4, 36.9, 88.2, 112.3, 125.5, 128.4, 131.6, 136.7, 139.0, 140.3, 142.2, 150.9, 154.5, 159.4 ppm. HRMS
(FAB): Calcd. for C12H11ClIN2O2 [M − OTs]+: 376.9548, found: 376.9569.

(4-Chlorophenyl)(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)iodonium mesylate (3ag-OMs).
A white powder, m.p. 185–186 ◦C. IR (KBr) cm−1: 1739, 1715, 1662, 1218, 1158, 1033. 1H-NMR
(600 MHz, CD3OD) δ 2.70 (s, 3H), 3.34 (s, 3H), 3.49 (s, 3H), 7.56 (d, 2H, J = 9.0 Hz), 8.13 (d, 2H,
J = 9.0 Hz), 8.94 (s, 1H) ppm; 13C-NMR (150 MHz, CD3OD) δ 29.8, 38.3, 40.0, 90.0, 113.7, 133.0, 138.1,
140.4, 152.4, 156.0, 160.8 ppm. HRMS (FAB): Calcd. for C12H11ClIN2O2 [M − OMs]+: 376.9548,
found: 376.9545.
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(4-Chlorophenyl)(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)iodonium (+)-10-camphorsulfonate
(3ae-OCs). A white powder, m.p. 194–195 ◦C. IR (KBr) cm−1: 1747, 1717, 1653, 1353, 1217, 1204.
1H-NMR (600 MHz, CD3OD) δ 0.87 (s, 3H), 1.15 (s, 3H), 1.41–1.44 (m, 1H), 1.61–1.63 (m, 1H), 1.91
(d, 1H, J = 14.4 Hz), 2.05–2.08 (m, 2H), 2.34–2.37 (m, 1H), 2.67–2.69 (m, 1H), 2.77 (d, 1H, J = 14.4 Hz),
3.31–3.33 (m, 1H), 3.36 (s, 3H), 3.51 (s, 3H), 7.57 (d, 2H, J = 9.0 Hz), 8.15 (d, 2H, J = 9.0 Hz), 8.96 (s,
1H) ppm. 13C-NMR (150 MHz, CD3OD) δ 20.1, 20.4, 25.8, 27.8, 29.8, 38.4, 43.6, 44.0, 59.6, 89.6, 113.7,
132.9, 138.1, 140.3, 152.4, 156.1, 160.9, 218.2 ppm. HRMS (FAB): Calcd. for C12H11ClIN2O2 [M − OCs]+:
376.9548, found: 376.9552.

(4-Chlorophenyl)(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)iodonium trifluoroacetate (3ae-OCOCF3).
A white powder, m.p. 174–175 ◦C. IR (KBr) cm−1: 1714, 1652, 1609, 1191, 1137. 1H-NMR (600 MHz,
CD3OD) δ 3.36 (s, 3H), 3.50 (s, 3H), 7.58 (d, 2H, J = 8.4 Hz), 8.14 (d, 2H, J = 8.4 Hz), 8.94 (s, 1H) ppm;
13C-NMR (150 MHz, CD3OD) δ 28.4, 36.9, 88.2, 112.3, 130.2, 131.6, 136.6, 138.8, 139.0, 150.9, 154.4,
159.4 ppm. HRMS (FAB): Calcd. for C12H11ClIN2O2 [M − OCOCF3]+: 376.9548, found: 376.9556.

(4-Chlorophenyl)(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)iodonium perchlorate (3ae-ClO4).
A white powder, m.p. 134–135 ◦C. IR (KBr) cm−1: 1720, 1653, 1610, 1120, 1083. 1H-NMR (600 MHz,
CD3OD) δ 3.34 (s, 3H), 3.49 (s, 3H), 7.54 (d, 2H, J = 8.4 Hz), 8.13 (d, 2H, J = 8.4 Hz), 8.91 (s, 1H) ppm;
13C-NMR (150 MHz, CD3OD) δ 29.8, 38.4, 89.4, 113.6, 133.0, 138.1, 140.4, 152.4, 156.0, 160.9 ppm; HRMS
(FAB): Calcd. for C12H11ClIN2O2 [M − ClO4]+: 376.9548, found: 376.9563.

4.3. Reaction of Uracil-Iodonium(III) Tosylates with Arynophiles

In a flame-dried flask, under nitrogen, to a mixture of iodonium salt 3an-OTs (0.50 mmol) and
furan 6a (2.75 mmol, 5.5 equiv) in toluene (5 mL, 0.1 M) in an ice-cooled bath maintained at 10 ◦C,
LiHMDS (0.77 mL (1.3 M in toluene), 1.0 mmol, 2.0 equiv) was dropwise added by syringe, and the
mixture was stirred for 3 h. After completion of the reaction checked by TLC, the reaction mixture
was quenched with an aqueous solution of ammonium chloride. The resultant biphasic solution was
extracted with CH2Cl2, dried with solid sodium sulfate, and then concentrated. The residue was
purified by column chromatography on silica gel using hexane-EtOAc as eluent to give 7a as a white
solid (40%).

1,3-Dimethyl-5,8-dihydro-5,8-epoxyquinazoline-2,4(1H,3H)-dione (7a). A white solid, mp 140–141 ◦C. IR:
2967, 2928, 1662, 1466, 1389, 1361, 1151 cm−1. 1H-NMR (400 MHz, CDCl3) δ 7.34 (dd, J = 5.6, 1.6 Hz,
1H), 7.01 (dd, J = 5.2, 2.0 Hz, 1H), 5.83–5.92 (m, 1H), 5.58–5.66 (m, 1H), 3.46 (s, 3H), 3.27 (s, 3H) ppm;
13C-NMR (100 MHz, CDCl3) δ 170.5, 158.2, 151.5, 148.0, 138.8, 118.6, 81.4, 81.0, 33.4, 28.2 ppm; HRMS
(FAB): Calcd. for C10H11N2O3 [M + H]+: 207.0770, found: 207.0771.

The reactions of other substrates 3, 8, 10, and 12 shown in Table 3 and Scheme 6 were performed
by the same experimental procedures.
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