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Abstract: Alzheimer’s disease (AD) is characterized by extracellular beta-amyloid plaques and 
intracellular tau tangles. AD-related pathology is often accompanied by vascular changes. The predominant 
vascular lesions in AD are cerebral amyloid angiopathy (CAA) and arteriosclerosis. Platelets circulate 
along the vessel wall responding immediately to vascular injury. The aim of the present study was to 
explore the presence and migration of platelets (thrombocytes) to sites of small vascular bleedings and/or 
to beta-amyloid plaques in the brain. We infused fluorescently labeled red PKH26 mouse platelets into 
transgenic Alzheimer mice overexpressing APP with Swedish/Dutch/Iowa mutations (APP_SDI) and 
explored if platelets migrate into the brain. Further we studied whether platelets accumulate in the vicinity 
of �-amyloid plaques. Our animal data shows that infused platelets are found in the liver and partly in the lung, while in 
the brain platelets were visible to a minor degree. In mice, we did not observe a significant association of platelets with 
beta-amyloid plaques or vessels. In the brain of Alzheimer postmortem patients platelets could be detected by 
immunohistochemistry for CD41 and CD62P, but the majority was found in vessels with or without beta-amyloid load, 
and only a few single platelets migrated deeper into the brain. Our findings suggest that platelets do not migrate into the 
brains of Alzheimer disease but are concentrated in brain vessels.  
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INTRODUCTION 

 Alzheimer's disease (AD) is the most common cause of 
dementia in the elderly. The hallmark pathologies include 
beta-amyloid (�A) depositions in brain (plaques) and vessels 
(cerebral amyloid angiopathy, CAA), tau pathology, 
cerebrovascular dysfunction, cholinergic impairment, 
microglia activation and inflammation. The causes for 
developing AD are not well known, however vascular risk 
factors contribute to cognitive decline and vascular damage 
may play a potent role [1-4]. It is well known that 
cerebrovascular dysfunction occurs in AD patients leading to 
alterations in the blood flow that might play an essential role 
in AD pathology contributing to neuronal loss and memory 
deficits. Neurotoxic �A plaque formation is seen in the walls 
of the brain blood vessels (CAA). CAA is a critical factor in 
the pathogenesis of AD, because the deposition of �A
peptides may induce degeneration of vessels subsequently 
reducing cerebral blood flow. However, the mechanisms 
how �A modifies hemostasis and thrombosis are not well 
known.  
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 Platelets are considered as key elements linking �A
deposition, peripheral inflammation and endothelial 
senescence [5]. Further, platelet activation has been observed 
in diabetes and may contribute to AD development [6]. In 
fact, platelet activation and adhesion to the vessel wall is the 
primary step of vascular injury mediating the development 
and onset of CAA [7]. Thus, besides their normal function in 
hemostasis, platelets play a central role in pathological 
thrombus formation, which is a crucial risk factor for AD 
development [8, 9]. Further, it became increasingly evident 
that blood platelets contribute to inflammation and cooperate 
with peripheral immune cells [10] and are altered in 
neuroinflammatory diseases including AD [11]. 

 Platelets share some properties with neurons, because 
they store, release and take up the neurotransmitter 
serotonin, being a therapeutic target [12]. Most importantly, 
platelets store and process also the amyloid precursor protein 
(APP) [13], which is cleaved into the toxic �A peptides and 
accumulates �A in the brain and vessels in AD. Moreover it 
was seen that altered platelet function such as increased 
activation [14] or altered membrane fluidity [15, 16] as well 
as an altered APP ratio [17, 18] are associated with the 
development of AD. Most importantly, platelets play a 
central role in pathological thrombus formation and 
thrombocytopenia, which are fundamental risk factors for 
AD [9, 10, 19,]. Effectively, uncontrolled platelet activation 
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can lead to vessel occlusion and subsequently to myocardial 
infarction or stroke. 
 The aim of the present study was to investigate to which 
extent fluorescently labeled platelets are found in the brain 
of transgenic AD mice and explore if these platelets are 
associated with ßA plaques. The association with ßA plaques 
and vascular pathology is also investigated in AD 
postmortem human brains. 

METHODS 

Isolation of Platelets 

 Blood was taken from adult anesthetized (50 mg/kg 
Thiopental) wildtype C57BL/6N mice directly from the heart 
and collected in EDTA tubes, and was centrifuged at 100xg 
for 15 min to obtain platelet rich plasma (PRP). All 
centrifugation steps were performed at room temperature. 
PGI2 (Prostaglandin, 500 nM, Sigma) was added to prevent 
platelet activation during processing. Platelets were isolated 
from PRP by centrifugation at 400xg for 10 min and washed 
in calcium-free Tyrode buffer (136 mM NaCl, 2.7 mM KCl, 
12 mM NaHCO3, 0.42 mM NaH2PO4, 1 mM MgSo4, 5 mM 
glucose, pH 6.5). After further centrifugation at 400xg for 10 
min platelets were finally resuspended in Tyrode buffer 
(adjusted to pH 7.4) and further processed.  

Labeling of Platelets with PKH26 

 Platelets were labeled with the red dye PKH26 Red 
Fluorescent Cell Linker Kit (Sigma) modified as described 
previously [20]. Briefly, isolated platelets were resuspended 
in 100 �l diluent C, then 2 �l of the diluted dye was added 
and the cells were incubated for 5 min at room temperature. 
After the incubation, 1 ml of Tyrode buffer (pH 7.4) was 
added, the cells centrifuged at 400xg for 10 min and 
resuspended for further use. 

FACS Analysis 

 FACS analysis on freshly isolated platelets was 
performed with a BD FACs (FACScan; Becton Dickinson) 
as described recently [21]. Briefly 10 �l of isolated platelets 
(1:10 diluted) were incubated with antibodies against CD31 
(Miltenyi Biotec 1:10) or CD61 (Miltenyi Biotec 1:10) or 
CD62P (BD 561923) or with IgG1 (Miltenyi Biotec 1:25) or 
IgG2a (Milteny 130-089-877) as a negative control in 50 �l
FACs buffer (2 mM EDTA, 0.5% FCS, in phosphate-
buffered saline (PBS), pH 7.1) for 30 min at 4°C washed and 

analyzed. In order to study cell death, 2 �l 7-amino-
actinomycin D (7-AAD, BD 559925) was added just prior to 
analysis. 

In Vivo Infusion into Alzheimer Mice  

 The Alzheimer mouse model (C57Bl/6-Tg(Thy1-
APPSwDuIowa)Bwevn/Mmjax) was obtained from Jackson 
Laboratory. These transgenic mice express neuronally 
derived human APP, harboring the Swedish 
K670N/M6781L, Dutch E693Q and Iowa D694N mutations. 
This model has been fully characterized [22] and exhibits 
marked �A plaques in brain and vessels after 6 months of 
age. Freshly isolated PKH26-labeled platelets (5x108) were
resuspended in 0.9% NaCl + 100U/ml heparin and slowely 
infused via the tail vein using a 30 gauge needle. After 24 
hours the mice were anesthetized, blood was collected (and 
platelets isolated), the brains and organs (lung, liver, spleen) 
were dissected, one piece was immediately frozen in a CO2
stream and another piece was put into 4% paraformaldehyde, 
fixed overnight, then cryoprotected in 20% sucrose overnight 
and stored in PBS/NaAcide until use.  

Visualization of PKH26 Labeled Platelets and Plaques 

 The tissue was cryostat sectioned (40 �m) and thawed 
onto glass slides, coverslipped in PBS and immediately 
evaluated under the fluorescence microscope. The red 
fluorochrome (PKH26) displays excitation at 551 nm and 
emission at 567 nm and is seen under the red channel (EX 
535/50, EM 610/75) and is not seen in the green channel (EX 
480/40 nm, EM 527/30 nm). As a control 1 �l of labeled 
plateles was pipetted onto control brains (spiking). Plaques 
in the Alzheimer mouse model were visualized using the 
green Thioflavine S dye (Sigma, 1.6 �g/ml, overnight) and 
4,6,-diamidino-2-phenylindole,dilacatete (DAPI, Sigma, 0.1 
�g/,ml, 60 min) was used to stain nuclei. 

Postmortem Tissue 

 Brain sections of two age-matched control human brains 
(Sez. 253/08 and Sez.836/09) and 3 Alzheimer cases (Sez. 
350/08, Sez. 937/07 and Sez. 232/10) were obtained from 
Klagenfurt Hospital (see Table 1). 

Immunohistochemistry of Postmortem Brains 

 Immunocytochemistry was performed on paraffinized 
sections (40 �m) using antigen retrieval. Briefly, sections 
were rehydrated in acid-n-butylester, (3x 5 min), and then in 

Table 1. Postmortem cases. 

Case Diagnosis Age Died Cause Death postM Delay [hr]

Sez. 253/08 control 81 Pneumonia 16 

Sez.836/09 control 40 Adenocarcinoma 14 

Sez. 350/08 AD 78 Peritonitis 16 

Sez. 937/07 AD 82 Pneumonia 20 

Sez. 232/10 AD 78 Bronchopneumonia 18 
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a series of ethanols (3x3 min 100% EtOH; 2x3 min 96% 
EtOH; 1x 3min 80% EtOH), then in a.d. (5 min) and finally 
cooked in 10 mM sodiumcitrate (pH 6.0) for 20 min at 
100°C. Slides were then cooled down to room temperature, 
rinsed in PBS, incubated 30 min in PBS+0.1% Triton (T-
PBS), blocked with 20% horse serum/0.2% bovine serum 
albumin/T-PBS and further incubated with the primary 
antibody mouse anti-cluster of differentiation 41 (CD41, 
integrin alpha 2b) (Serotec, 1:2000), rabbit anti-cluster of 
differentiation 62P (CD62P, P-selectin) (Abcam, 1:1000) or 
beta-amyloid (monoclonal anti-�-amyloid [13-28], clone 
BAM90.1, Sigma) in 0.2% bovine serum albumin/T-PBS at 
4°C for 2 days. Sections were washed and incubated with 
secondary (anti-mouse for �A and CD41; anti-rabbit for 
CD62P) fluorescently labeled antibodies (Alexa 350 or 
Alexa 488 or Alexa 546, Invitrogen) for 1hr (1:400), washed 
and the sections coverslipped with Vectashield. Some organ 
sections were stained using the ABC diaminobenzidine 
(DAB) method. Controls included omitting the primary 
antibody. 

Quantification of Fluorescence Staining 

 The number of platelets was counted under the 
fluorescence microscope (Olympus, BX61) at a 40x 
magnification. Positive FITC staining was always verified by 
investigation in the other channel, where no autofluorescence 
is seen. Alexa-488 and Thioflavin S were visualized under 
the green filter L5 (EX 480/40 nm, EM 527/30 nm), PKH26 
under the red filter Y3 (EX 535/50, EM 610/75) and Alexa-
350 and DAPI under the blue filter (EX 360/40; EM 470/40). 

RESULTS 

Characterization of Mouse Platelets 

 Mouse platelets were isolated and characterized by 
FACS. A single population of platelets was observed (Fig.
1A) and only <1% was necrotic (Fig. 1B). Freshly isolated 
mouse platelets expressed CD31 (Fig. 1D), CD61 (Fig. 1E)
and CD62P (Fig. 1F), compared to IgG controls (Fig. 1C). 
Platelets were labeled with the red PKH26 dye as seen in 
FACS (Fig. 2A) or fluorescence microscopy (Fig. 2B). The 
labeling was specific because red labeled platelets were not 
seen in the green channel (EX 480/40 nm, EM 527/30 nm) 
(Fig. 2C). 
 In wild type mice, no �A plaques were seen (Fig. 3A), 
while 12 month old APP_SDI mice contained a very high 
number of green Thioflavin S+ plaques (Fig. 3B). As a 
control freshly isolated red platelets were pipetted onto 
control brains, and a high number of red platelets was seen 
under the fluorescence microscope (Fig. 3C), however, it 
was not seen in the green channel (EX 480/40 nm, EM 
527/30 nm) (Fig. 3D). Co-staining with DAPI+ nuclei 
revealed the small size of the platelets (Fig. 3E). In order to 
test the migration into the AD mouse model, PKH26 labeled 
platelets were infused via the tail vein and the brain and 
organs analyzed after 24 hour. Only very few platelets 
migrated into the brain (Fig. 3F) and were poorly seen close 
to Thioflavin S+ plaques (Fig. 3G&H). Quantitative analysis  

showed that only 2±0.5 platelets were found in a whole 40 
�m thick brain section (n=5 brains; 22 sections analyzed 
each). In order to test the capture of red PKH26 platelets in 
the periphery, different organs were analyzed 24hr after 
infusion. Most of the platelets were found in the liver (10-
20%; Fig. 2D&E) and in the lung (<1%; Fig. 2F&G), but 
not in the spleen and only a few platelets were seen in the 
brain (Fig. 2H&I) in the ventricle (Fig. 2H) or associated 
with a vessel (Fig. 2I). In the blood only <5% of the PKH26 
labeleled platelets was found (data not shown). 

Platelets in Postmortem Human Brain 

 In order to investigate the presence of platelets in the 
human brain, 2 controls and 3 Alzheimer brains (Table 1)
were stained for platelet marker CD41 and CD62P. Again 
visualization under the green fluorescence filter (EX 480/40 
nm, EM 527/30 nm) compared to the red fluorescence filter 
(EX 535/50, EM 610/75) showed the specificity of the 
staining and not only autofluorescence (Fig. 4). In control 
brains only very few CD41+ or CD62P+ platelets were found 
outside of vessels in the brain tissue, while the majority was 
seen within vessels (Fig. 4). In Alzheimer brains, the 
characteristic neuropathological features were found with 
intensely stained �A plaques and ßA depositions in vessels 
(CAA) (Fig. 5). Only very few CD62P+ platelets were seen 
in the tissue not associated with �A plaques (Fig.; Fig. 6). 
Many CD62P+ platelets were associated directly with a �A
plaque or with a vessel close to a �A plaque (Fig. 5; Fig. 6). 
The majority of CD62P+ platelets was seen in vessels 
without �A plaques or associated with cerebral amyloid 
angiopathy (Fig. 6). The platelets in asscociation with ßA 
plaques also displayed a discoid shape and were not different 
from platelets found in the vessels. 

DISCUSSION 

 In the present study we show that platelets do not migrate 
deep into the AD brain but concentrate in vessels 
contributing to CAA. Besides we observed that infused 
platelets are captured in the liver and in the lung.  

Characterization of Mouse Platelets & Labeling 

 Platelets are about 3 �m small cells and are processed 
from megakaryocytes and do not have a nucleus. For 
platelets characterization we used FACS analysis for CD31, 
CD61 and CD62P, antigens that are expressed on the surface 
of resting platelets. Platelets express CD31 (cluster of 
differentiation 31), a member of the immunoglobulin 
superfamily that is expressed on the surface of circulating 
platelets, monocytes, neutrophils, and particular T-cell 
subsets [23]. CD61 is also known as integrin �3 and is well 
established as a platelet marker. It is present as a subunit for 
the fibrinogen-receptor, playing a role in blood clotting [24]. 
CD62P is stored in alpha-granules of platelets, but normally 
is not expressed on the surface. This calcium dependent 
protein migrates during platelet activation to the plasma 
membrane and mediates platelets interaction with endothelial 
cells or leukocytes and CD62P serves as a marker for 
activated platelets. [25] . Thus, the isolation of the platelets  
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Fig. (1). Characterization of mouse platelets. Platelets from wild type mice C57BL/6N were isolated and characterized by FACS. FACS 
analysis revealed a common population of freshly isolated mouse platelets (A) with very low dead 7-amino-actinomycin (7-AAD)+ cells 
(0.5±0.2%; B). Platelets stained positive for CD31 (34±15%, D green), CD61 (40±12%, E green) and CD62P (78±4%, F green) compared
against an IgG1 control (red C) or IgG2a control (green C). (The color version of the figure is available in the electronic copy of the article).
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Fig. (2). Labeling of mouse platelets with the red dye PKH26 and infusion into mice. Freshly isolated mouse platelets were stained with 
PKH26 and characterized by FACS (A) or by fluorescence microscopy (B&C). The fluorochrome PKH26 is seen in the red channel (EX 
535/50, EM 610/75) and is not seen in the green channel (EX 480/40 nm, EM 527/30 nm) (C). Freshly isolated red platelets (5x108 in 100 �l)
were injected via the tail vein and analyzed in the liver (D&E), lung (F&G) or brain (H&I) after 24 hr. The platelets were either stained by 
CD61+ immunohistochemistry using DAB chromogen (D, F, H) or directly by their fluorescence (E, G, I). In the liver strong CD61+ platelets 
were seen in hepatic vessels (* in D), but not in the liver tissue (Lt). In the lung CD61+ platelets were seen in the lung vessels (* in F) and in 
alveoli tissue (Al) but not in bronchioles (Br). In the brain, platelets were found in the plexus choroideus (* in H). Red platelets were poorly 
seen in the brain and associated with vessels (I). Scale bar = 6 �m (B&C) and 50 �m (D-I). (The color version of the figure is available in the 
electronic copy of the article).
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Fig. (3). Infusion of PKH26 labeled platelets into the APP_SDI 12 month old mouse. Twelve month old APP_SDI mice show many 
Thioflavin S+ (green) beta-amyloid plaques in the cortex (B), while no staining is seen in age-matched C57BL/6N wildtype mice (A). As a 
control PKH26 red platelets were pipetted (1 �l spiking) onto control sections and visualized under the fluorescence microscope (C-E). Note 
several red platelets in the red channel (EX 535/50, EM 610/75) (C) but not in the green channel (EX 480/40 nm, EM 527/30 nm) (D). Co-
staining with nuclear DAPI (blue in E) shows the small size of the platelets (E). When freshly isolated red platelets (5x108 in 100 �l) were 
injected via the tail vein into 12 month old APP_SDI mice only very few platelets were found in the brain (F), and poorly associated with 
Thioflavin S (G, green) beta-amyloid plaques (H). Scale bar = 150 �m (A&B), 10 �m (C-H). (The color version of the figure is available in 
the electronic copy of the article).
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WT 12 months 

A� B�

H�G�F�

E�D�C�



10    Current Neurovascular Research, 2015, Vol. 12, No. 1 Kniewallner et al. 

Fig. (4). Platelets in a human postmortem control brain. Paraffin embedded brain sections were stained for CD41 (A&B) and CD62P (C-F) 
using fluorescence (Alexa 488, green, EX 480/40 nm, EM 527/30 nm) immunohistochemistry. Very few CD41+ (A) and CD62P+ (C) 
platelets were seen in the brain tissue, while the majority of CD62P+ platelets was associated with vessels (E). As a control for 
autofluorescence the same picture is shown also in the red channel (EX 535/50, EM 610/75) (B, D, F). Scale bar = 50 �m. (The color version 
of the figure is available in the electronic copy of the article).
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Fig. (5). Platelets in a human postmortem Alzheimer brain. Paraffin embedded brain sections were stained for beta-amyloid (Alexa 350, blue, 
EX 260/40; EM 470/40, ADGJ) and CD62P (Alexa 488, green, EX 480/40 nm, EM 527/30 nm, BEHK) by fluorescence 
immunohistochemistry. Fig. CFIL show the merged pictures. Example 1 (ABC) shows platelets (arrows) not associated with a beta-amyloid 
plaque (*). Example 2 (DEF) shows platelets (arrows) associated directly with a plaque (*) or in a vessel close to a plaque. Example 3 (GHI) 
shows platelets (arrow) in a beta-amyloid (*) vessel (c) representing cerebral amyloid angiopathy. Example 4 (JKL) shows platelets (arrow) 
in a vessel wall adjacent to the brain tissue probly entering the brain. Scale bar = 35 �m. (The color version of the figure is available in the 
electronic copy of the article).

gives rise to healthy cells, since also 7-AAD did not provide 
any indication for cell damage. In order to label these cells 
with a fluorescent dye, the freshly isolated platelets were 
stained with the red dye PKH26, which was very potent and 
yielded a nearly 100% labeling. This staining was only 
visible in the red fluorescence channel (EX 535/50, EM 
610/75) but not in the green channel (EX 480/40 nm, EM 
527/30 nm), thus giving us a potent tool to investigate any 
migration of these exogenous platelets into the brain. 

Infusion In Vivo, Capture and Migration Through the 
BBB 

 Platelets are non-nuclear cell fragments and are derived 
from bone marrow megakaryocytes. They usually survive in 
the bloodstream of humans for 7-10 days [26]. Fresh isolated 
platelets were infused directly into the blood stream of mice 
via the tail vein. We used this vein, because it allows an easy 
fast and reproducible infusion into the mice without 

anesthesia. In order to study if these exogenous infused 
platelets are captured in the periphery, we found that a 
majority was captured in the liver, and also partly in the lung 
but not spleen, and a minority was seen in the blood. While 
we only observed this capture after 24hr, we cannot exclude 
that the exogenous platelets were degraded at earlier time 
points and we also cannot exclude capture in other organs. 
Anyhow, we found that only a few exogenous red labeled 
platelets entered the brain. 
 The blood-brain barrier (BBB) provides a tight barrier 
and protects the brain from entry of toxic molecules into the 
brain. In the intact brain, so far very few cells can enter the 
brain, however, it has been demonstrated that blood cells can 
enter the brain during normal immune patrol [27, 28]. 
However, in the diseased brain the BBB is damaged and 
small bleeds are found in the brain and thus blood cells can 
more easily enter the degenerating brain, including AD [29-
31]. Indeed it has been shown that T-cells, monocytes, mast 
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cells or microglia can migrate into the brain [27,28, 32]. In 
fact, recent papers show that monocytes can migrate into the 
brain and are found close to �A plaques [33-38]. To our 
knowledge, we are the first to study if platelets can migrate 
into the brain. Platelets express a number of surface antigens 
and can directly interact with receptors at the BBB. 
Normally, platelets do not adhere to healthy non activated 
vessels, however, the interaction of platelets with the 
inflamed damaged endothelium of vessels is a complex 
process involving several different surface markers [39]. 
Platelets adhesion at sites of vascular injury involves 
tethering and rolling along the endothelium, however, stable 
adhesion requires additional complex inflammatory 
responses [39].  

Migration into the Brain of an AD Mouse Model 

 AD is characterized by �A plaques and tau pathology, 
including inflammation and cerebrovascular dysfunction. 
Transgenic animal models allow to study some pathological 
hallmarks of this disease, but do not fully display an AD 
model. The APP_SDI model is a powerful model, �A 
plaques are markedly produced and in a 12 month old mouse 
the brain is nearly fully with �A depositions. The advantage 
of this model is also that it shows �A depositions in vessels,  
 

the CAA. The disadvantage of this model is that it does not 
have any tau pathology. Anyhow, we think that this model is 
very useful to study if platelets may enter the brain. Thus, 
red platelets were infused into the APP_SDI mice and the 
brains analyzed after 24hr. However, although the APP_SDI 
mice display a severe degenerative pathology, we could not 
find a marked migration of platelets into the AD mouse 
brain. Only here and there a few exogenous red platelets 
were seen. Technically it is not easy to visualize exogenous 
platelets, because they are very small (around 3-4 �m) and 
close to the detection limit by conventional fluorescence 
microscopy. Thus in order to verify fluorescence analysis we 
spiked a normal brain with red fluorescent platelets and 
observed a high number close to DAPI+ nuclei to directly 
compare their size. Although we verified that PKH26 is very 
specific, autofluorescence could not be excluded due to 
degradation dependent alteration after vein infusions. Thus, 
it was very important at any step to prove the specific 
fluorescence in the red channel (EX 535/50, EM 610/75) 
without any fluorescence in the green channel (EX 480/40 
nm, EM 527/30 nm). However, although we show that 
platelets do not invade the AD mouse brain, there is clear 
indication that platelets may mediate and enhance the 
adhesion and possibly migration of leukocytes [40]. 

Platelets in Human Postmortem Brains 

 In the present study we performed postmortem analysis 
using antigen retrieval. In control brains only very few 
CD41+ or CD62P+ platelets could be seen in the brain. Again 
platelets could only be visualized in vessels in control human 
brains. The diagnosis in postmortem Alzheimer brains was 
verified by �A plaque histochemistry and tau pathology (not 
shown). Several �A plaques were seen throughout the brain 
section. Using immunofluorescence we found the majority of 
the CD62P+ platelets in brain vessels, either with or without 
�A depositions. Only a few CD62P+ platelets were 
visualized in the brain tissue but poorly associated with 
plaques. However, since we did not stain for brain vessels, 
we cannot exclude that the platelets seen in the tissue are 
associated with a small brain vessel. As initially stated, the 
adhesion of platelets to the inflamed tissue is very complex 
[10, 39], thus it is very unlikely that platelets can cross the 
BBB, which may be in line with our data in the mouse AD 
model. However, on the other hand, in severe AD massive 
vascular impairments, including microbleeds, and vascular 
lesions have been observed [41-45] and it is very likely that 
platelets can enter the brain via such lesion sites. In fact, our 
data may represent such a severe vascular impairment in the 
human postmortem brains. 

Platelets and Cerebral Amyloid Angiopathy 
 Beta-amyloid deposition is a major hallmark in AD, not 
only in brain tissue but also in vessels, defined as cerebral 
amyloid angiopathy [46, 47]. It well known now that in the 
AD brain MRI+ microbleeds and small vascular bleeding are 
seen [44, 48-50]. However, it is unclear, if these vascular 
lesions occur prior or during the AD pathology, that means 
do lesions occur before or after �A depositions. We and 
others have already hypothesized [2, 8, 11, 51-54] that  
 

Fig. (6). Quantitative analysis of platelets in Alzheimer (AD) 
postmortem brains. Postmortem AD sections were immunohisto 
chemically stained for beta-amyloid (�A) (Alexa 350) and for 
platelet marker CD62P (Alexa 488) in 3 AD brains. Semi-
quantitative measurements were performed under a 40x 
magnification in the parietal cortex. Fifty fields were randomly 
selected. Plaques (PLQ) and cerebral amyloid angiopathic vessels 
(CAA) were identified in the blue filter (Alexa 350, EX 260/40; 
EM 470/40). The field was photographed and then the CD62P 
Alexa 488 platelets photographed in the green filter (Alexa 488, EX 
480/40 nm, EM 527/30 nm). Pictures were merged and the number 
of co-localized cells was counted and averaged from all 
measurements. Values are given as mean±SEM platelets (n=3 AD 
cases) field (325x225 �m field). (The color version of the figure is 
available in the electronic copy of the article).
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vascular lesions may be a primary event in the development 
of AD. It seems likely that long lasting vascular impairment 
occurs over decades, as a cause of chronic exposure to 
vascular risk factors, such as e.g. cholesterol or homocys-
teine [55-57]. Similar as in the periphery, these small 
vascular bleeds activate blood platelets close to the rupture. 
As AD is a chronic disease, many such small vascular 
lesions may be induced during decades, however, the 
capacity of the platelets to repair these lesions may be 
exhausted in the elderly. Once platelets are activated at sites 
of vascular inflammation, they release biologically active 
molecules which can modify the function of the vascular 
wall [58]. It is an interesting fact, that platelets contain very 
high amounts of APP, which generates the �A peptides. 
Platelets mainly express the smaller 40 amino acid form of 
�A, and although not fully proven, it has been suggested that 
this peptide may contribute to thrombus formation. It is now 
hypothesized that these �A depositions in the damaged 
vessel wall of beginning AD may be the inducer of CAA. 
Further, it needs to be proven if these CAA lesions are the 
origin of the brain plaques. 
 Taken together, platelets are an important key blood cell 
linking vascular pathology and AD. Plateletes are altered in 
AD and could serve as extremely useful biomarkers for 
dementia [59] or as therapeutic targets [19]. Our present data 
show that freshly isolated platelets do not migrate deep into 
the Alzheimer mouse brain, but a majority is seen in the 
Alzheimer human postmortem brain. These platelets are 
mainly located in vessels and not close to �A plaques and we 
conclude that platelets may contribute to cerebral amyloid 
angiopathy in AD. 
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