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Abstract

Background: Directly comparing gene expression profiles of estrogen receptor-positive (ER+) and estrogen receptor-
negative (ER2) breast cancers cannot determine whether differentially expressed genes between these two subtypes result
from dysregulated expression in ER+ cancer or ER2 cancer versus normal controls, and thus would miss critical information
for elucidating the transcriptomic difference between the two subtypes.

Principal Findings: Using microarray datasets from TCGA, we classified the genes dysregulated in both ER+ and ER2
cancers versus normal controls into two classes: (i) genes dysregulated in the same direction but to a different extent, and
(ii) genes dysregulated to opposite directions, and then validated the two classes in RNA-sequencing datasets of
independent cohorts. We showed that the genes dysregulated to a larger extent in ER+ cancers than in ER2 cancers
enriched in glycerophospholipid and polysaccharide metabolic processes, while the genes dysregulated to a larger extent in
ER2 cancers than in ER+ cancers enriched in cell proliferation. Phosphorylase kinase and enzymes of glycosylpho-
sphatidylinositol (GPI) anchor biosynthesis were upregulated to a larger extent in ER+ cancers than in ER2 cancers, whereas
glycogen synthase and phospholipase A2 were downregulated to a larger extent in ER+ cancers than in ER2 cancers. We
also found that the genes oppositely dysregulated in the two subtypes significantly enriched with known cancer genes and
tended to closely collaborate with the cancer genes. Furthermore, we showed the possibility that these oppositely
dysregulated genes could contribute to carcinogenesis of ER+ and ER2 cancers through rewiring different subpathways.

Conclusions: GPI-anchor biosynthesis and glycogenolysis were elevated and hydrolysis of phospholipids was depleted to a
larger extent in ER+ cancers than in ER2 cancers. Our findings indicate that the genes oppositely dysregulated in the two
subtypes are potential cancer genes which could contribute to carcinogenesis of both ER+ and ER2 cancers through
rewiring different subpathways.
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Background

Breast cancer is the most frequently diagnosed heterogeneous

cancer among women in the world [1]. Two important subtypes

are estrogen receptor-positive (ER+) and estrogen receptor-

negative (ER2) breast cancers. They have different differentiation

status and cell proliferation rates [2,3], and behave distinctly in

survival time [4] as well as in response to chemotherapy [5–7] and

hormonal therapy [8]. To elucidate the molecular basis for the

phenotypic differences between the two subtypes, many studies

based on gene expression profiles have been performed to identify

differentially expressed (DE) genes between the two subtypes [9–

14]. These studies reveal that there are large-scale transcriptomic

differences between ER+ and ER2 breast cancers. For example,

cell growth-related genes are predominately upregulated in ER+
cancer comparing to ER2 cancer [13], whereas cell cycle related

genes show predominantly higher expression in ER2 cancer in

comparison with ER+ cancer [14]. However, direct comparing the

two subtypes cannot determine whether the DE genes result from

dysregulated gene expression in ER+ cancers or ER2 cancers in

comparison to normal controls. In fact, a gene could be observed

to be DE between the two subtypes in different situations: (1) the

gene is dysregulated to a different extent of the same direction in

the two subtypes, or (2) the gene is dysregulated in the opposite

directions in the two subtypes, or (3) the gene is dysregulated in

only one of the two subtypes. Gene expression differences from

these situations might affect the two subtypes of breast cancer

distinctly. Therefore, comparing genes dysregulated in ER+
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cancers versus normal controls with genes dysregulated in ER2

cancers versus normal controls could provide novel insights into

the roles of the transcriptomic differences between the two

subtypes.

In this study, we extracted DE genes of ER+ breast cancers

(i.e., ER+ DE genes) versus normal controls and DE genes of

ER2 breast cancers (i.e., ER2 DE genes) versus normal

controls from microarray datasets. Because of the insufficient

power of detecting DE genes, genes dysregulated in ER+
cancers only or in ER2 cancers only could not be accurately

defined. Thus, we focused on comparing genes dysregulated in

both subtypes and classified these genes into two classes: class 1

DE genes and class 2 DE genes. Class 1 DE genes were

dysregulated in the same direction and class 2 DE genes were

dysregulated in the opposite directions. We showed these two

classes of DE genes could be nonrandomly detected in

independent RNA-sequencing (RNA-seq) datasets. Then, we

classified the class 1 DE genes into two subclasses: genes

dysregulated to a larger extent in ER+ cancers than in ER2

cancers and genes dysregulated to a larger extent in ER2

cancers than in ER+ cancers. We showed that the two subclasses

of DE genes tended to enrich in distinct biological processes. We

also proved that class 2 DE genes are potential cancer genes

which could contribute to carcinogenesis of both ER+ and ER2

cancers by rewiring different subpathways in the two subtypes.

Materials and Methods

Datasets and preprocessing
Microarray and RNA-seq data were downloaded from The

Cancer Genome Atlas (TCGA) website (http://cancergenome.

nih.gov/). Clinical characteristics of the samples analyzed in this

study were summarized in Table 1. As it has been shown that the

batch effects are ‘‘minimal’’ in the TCGA breast cancer datasets

[15], a total of 519 primary female breast cancer samples with

known ER status (401 ER+ and 118 ER2) and 63 normal

controls were integrated into a microarray dataset from batches

47, 56, 61, 72, 74, 80, 85, 93, 96 and 103. Level 2 data of the

platform Agilent 244 K Custom Gene Expression G4502A-07

(Agilent Technologies Inc., Santa Clara, CA, USA) were

analyzed, in which log2 transformed and normalized expression

values were provided. Probe sets with missing rates higher than

20% were deleted, and the remaining missing values were

replaced by using the K nearest-neighbor imputation algorithm

(k = 15) [16]. Probe sets were then annotated using the TCGA

AgilentG4502A_07_3 annotation data file. Probe sets that did

not match any known Gene ID or that matched multiple Gene

IDs were deleted. For every sample, the expression values of the

probe sets that were matched to the same Gene ID were

averaged as the expression value of that Gene ID. We also

analyzed the RNA-seq datasets from TCGA, which included a

total of 787 primary female breast cancer samples (606 ER+ and

181 ER2) and 107 normal controls. These samples cover 564 of

the 582 samples of the microarray dataset and another 330

samples (215 ER+ cancers, 66 ER2 cancers and 49 normal

controls) from recently available batches 109, 117, 120, 124,

136, 142, 147, 155, 167, 177, 202 and 216. Level 3 data of the

platform Illumina HiSeq 2000 RNA Sequencing (Illumina Inc.,

San Diego, CA, USA) were analyzed, in which the RSEM

(RNA-Seq by Expectation Maximization) [17,18] calculated

and normalized expression counts of each gene was provided.

We then applied log2(x+1) transformation [19,20] to the

expression counts as they are often roughly log-normally

distributed with an additional peak near zero [21].

Identification of DE genes
For both microarray and RNA-seq datasets, ER+ DE and ER2

DE genes were identified between the normal samples and the two

subtypes of breast cancer samples by using the SAM (Significance

Analysis of Microarrays) (samr_2.0 R package, impute 1.32.0)

[22,23] with the false discovery rate (FDR) controlled at a given

level by 10,000 permutation tests. The dysregulated direction of an

ER+ DE or ER2 DE gene was determined by the average

expression difference, which was calculated by subtracting the

average expression value of the normal samples from average of

the ER+ or ER2 cancer samples. A DE gene was defined as

upregulated in cancers if expression difference was larger than

zero. A DE gene was defined as downregulated in cancers if the

expression difference was less than zero.

Table 1. Clinical characteristics of the samples at diagnosis.

Characteristics Microarray RNA-seq

ER+ ER2 p* ER+ ER2 p*

No. of patients 401 118 606 181

Age(years)

,55 151 64 1.31e-03 238 87 0.0350

$55 250 54 368 94

PR status

Positive 334 7 1.35e-54 515 13 9.33e-85

Negative 67 111 91 167

NA – – – 1

HER2 status

Positive 61 21 0.506 89 34 0.169

Negative 332 95 484 136

NA 8 2 33 11

Tumor size

#2 cm 108 23 0.133 164 36 0.0783

.2 cm 290 91 423 134

NA 3 4 19 11

Node status

Positive 202 52 0.219 307 76 0.0418

Negative 198 66 272 96

NA 1 – 27 9

Stage

I/II 290 89 0.381 430 130 0.513

III/IV 98 24 144 38

NA 13 5 32 13

PAM50 subtype

Luminal A 220 7 1.52e-67 218 6 1.21e-66

Luminal B 122 1 118 1

HER2-enriched 33 25 31 25

Basal-like 12 82 12 80

Normal-like 6 2 5 2

NA 8 1 222 67

*p denotes results of significant test for the comparison between ER+ versus
ER2 breast cancer by chi-square test.
RNA-seq, RNA-sequencing; PR, Progesterone Receptor; NA, Not Available; HER2,
Human Epidermal Growth Factor Receptor 2.
doi:10.1371/journal.pone.0070017.t001

Extent or Reverse Differences in ER+ & ER- Cancer
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Comparison of ER+ DE genes and ER2 DE genes
If N DE genes were overlapped between N1 ER+ DE genes and

N2 ER2 DE genes and if n of the N overlapped genes were

dysregulated in the same direction, then the n DE genes were

defined as class 1 DE genes; the other N-n DE genes were defined

as class 2 DE genes (i.e., genes dysregulated in the opposite

directions in the two subtypes).

A class 1 DE gene was defined as dysregulated to a larger extent

in ER+ cancers than in ER2 cancers if it was upregulated (or

downregulated) in both subtypes versus normal controls and if it

was also upregulated (or downregulated) in ER+ cancers versus

ER2 cancers (Figure 1A), otherwise, it was defined as dysregu-

lated to a larger extent in ER2 cancers than in ER+ cancers

(Figure 1B).

Cancer genes and human protein-protein interaction
(PPI) data

We downloaded 2104 cancer genes from the F-Census database

[24] which is a collection of documented cancer genes from

various data sources such as the CGC database [25], the AGCOH

database [26], the TSGDB [27] and other data sources.

The human PPI data were downloaded from HPRD [28],

IntAct [29], MIPS [30], MINT [31], DIP [32], BIND [33],

KEGG (PPrel and ECrel) [34] and Reactome [35] protein pairs

involved in a complex and neighboring reactions. The types of

interaction relationships between proteins include physical inter-

action, transcriptional regulation and sequential catalysis. We

pooled together the eight datasets and compiled an integrated

interaction network of 235,390 distinct interactions involving

14,556 human proteins.

Enrichment analysis
The Gene Ontology (GO) [36] gene annotation data and the

GO vocabulary data were downloaded from the National Center

for Biotechnology Information (NCBI) FTP Site (ftp://ftp.ncbi.

nih.gov/gene/DATA) and the GO website (http://www.

geneontology.org/GO.downloads.ontology.shtml) on March 25,

2011, respectively. Only the biological process sub-ontology was

analyzed in this study. Biological processes enriched with a list of

DE genes were identified by the GO-function algorithm [37],

which is designed for handling the redundancy of GO terms. The

statistical significance of a GO term is based on the hypergeo-

metric distribution test with p-values corrected by the Benjamini-

Yekutieli procedure [38]. The local redundancy was then treated

when an ancestor term and its offspring term or terms were

significantly enriched with DE genes. The ancestor term would be

selected if there was evidence that its remaining genes were still

related to breast cancer after removing the genes in its significant

offspring term or terms; otherwise, only the offspring term or terms

would be selected.

Results

Genes dysregulated to a different extent in ER+ and ER2

breast cancers
Using the microarray dataset with a 1% FDR control, we

identified 12,588 ER+ DE genes and 12,157 ER2 DE genes in the

ER+ and ER2 cancer samples versus normal controls, respec-

tively. The two lists of genes shared 9,734 genes, among which

93% (9,058 genes) were dysregulated in the same direction in the

two subtypes (i.e., class 1 DE genes). We then validated the class 1

DE genes using an RNA-seq dataset with 330 samples of a

different cohort, including 215 ER+, 66 ER2 cancer samples and

49 normal controls. At the same FDR control level of 1%, we

detected 6,006 class 1 DE genes in which 4,797 genes overlapped

with the 9,058 class 1 DE genes of the microarray dataset. This

was significantly more than expected by chance (p,2.2610216;

hypergeometric test). For each of the overlapped genes, the

dysregulated direction was identical in the two datasets for the

ER+ and ER2 cancers, respectively, which was unlikely to

happen by chance if the dysregulated directions (up or down) of

the shared DE genes were randomly assigned in the two datasets

(p,2.2610216; binomial test). These results proved that the class 1

DE genes could be nonrandomly reproducibly detected across

distinct datasets of different technologies. Because of the inefficient

power of detecting DE genes, each dataset may capture only a

fraction of the class 1 DE genes, but each of the gene lists were

composed of mostly true class 1 DE genes [39,40]. To increase

statistical power, we identified ER+ and ER2 DE genes in a larger

RNA-seq dataset which includes the 330 samples and 564 of the

582 samples of the microarray dataset. With a 1% FDR control,

we detected 7,948 class 1 DE genes of which 5,999 genes

overlapped and showed the identical dysregulated directions with

the 9,058 class 1 DE genes of the microarray dataset. Only the

5,999 class 1 DE genes confirmed in the RNA-seq dataset were

used in the following analyses.

Given that the two subtypes were extensively different at the

transcriptomic level, we then classified the 5999 class 1 DE genes

into two subclasses: genes dysregulated to a larger extent in ER+
cancers than in ER2 cancers and genes dysregulated to a larger

extent in ER2 cancers than in ER+ cancers (see Materials and

Methods). In the microarray dataset, we found 2,151 class 1 DE

genes that were dysregulated to a larger extent in the ER+ cancers

than in the ER2 cancers and 3,848 class 1 DE genes that were

dysregulated to a larger extent in the ER2 cancers than in the

ER+ cancers. In the RNA-seq dataset, 1,746 (81%) of the 2,151

and 3,531 (92%) of the 3,848 genes were dysregulated to a larger

extent in the ER+ and ER2 cancer samples, respectively, which

were highly unlikely to occur by chance if a gene dysregulated to a

larger extent in ER+ or ER2 cancers were randomly assigned for

the two datasets (both p,2.2610216; binomial test). These results

indicated that most of the class 1 DE genes were stably

dysregulated to a larger extent in either ER+ or ER2 cancers.

By using the GO-function [37] with a 5% FDR control, we then

found that the 1,746 genes were significantly enriched in 20

Figure 1. Schematic diagram of a gene dysregulated to a larger
extent in ER+ (or ER2) cancer. Black line indicates average
expression level of normal controls. Dysregulated directions are
denoted in red arrow for upregulation and in green arrow for
downregulation. The length of the arrow lines indicates dysregulated
extent. (A) A gene dysregulated to a larger extent in ER+ cancer than in
ER2 cancer. (B) A gene dysregulated to a larger extent in ER2 cancer
than in ER+ cancer.
doi:10.1371/journal.pone.0070017.g001
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biological processes (Table 2). Besides transmembrane receptor

protein tyrosine kinase signalling pathway and cell migration which

had been found to be depended on oestrogen signalling in ER+
breast cancer [41,42], these processes are mainly involved in

glycerophospholipid and polysaccharide metabolic processes. Spe-

cifically, genes encoding enzymes of phosphorylase kinase family

and glycosylphosphatidylinositol (GPI) anchor biosynthesis were

upregulated to a larger extent in the ER+ cancers than in the ER2

cancers, whereas genes encoding enzymes of glycogen synthase

family and phospholipase A2 family were downregulated to a larger

extent in the ER+ cancers than in the ER2 cancers, suggesting that

GPI-anchor biosynthesis and glycogenolysis were elevated and

hydrolysis of phospholipids was depleted to a larger extent in the

ER+ cancers than in the ER2 cancers. In contrast, the 3,531 genes

were significantly enriched in 22 biological processes (Table 3)

which are mostly involved in cell proliferation and reflect the

molecular basis of the higher proliferation rate of ER2 cancers.

Genes oppositely dysregulated in ER+ and ER2 breast
cancers

Of the genes dysregulated in both subtypes, 676 DE genes were

oppositely dysregulated in the two subtypes of breast cancer from

the microarray dataset (i.e., class 2 DE genes). We found that 163

of the 676 genes were also detected as class 2 DE genes in the

RNA-seq dataset of 330 samples, which was significantly more

than expected by random chance (p,2.2610216; hypergeometric

test). In the larger RNA-seq dataset, we detected 720 class 2 DE

genes in which 306 genes overlapped with the 676 class 2 DE

genes of the microarray dataset (Table S1). In the following

analyses, we focused only on the 306 class 2 DE genes. For each of

these genes, we found that the dysregulated direction was identical

in the two datasets for the ER+ and ER2 cancers (Table S1),

respectively, which was unlikely to occur by chance if the

dysregulated directions of these genes were randomly assigned

(p,2.2610216, binomial test). These results indicated that the

class 2 DE genes could be nonrandomly reproducibly detected,

which supported that each dataset may capture only a part of the

class 2 DE genes, and each of the gene lists may comprise true

class 2 DE genes [39,40].

The opposite dysregulation of the class 2 DE genes implied that

they might be cancer genes for the two subtypes of breast cancer,

given that the expression of cancer genes tends to be differently

dysregulated in the different subtypes of breast cancer [43,44]. In

fact, we found that 42 (14%) of the 306 genes were known cancer

genes collected in the F-census database [24], which was

significantly more than expected by chance (p = 0.03, hypergeo-

metric test). In addition to the 42 known cancer genes, many other

class 2 DE genes have been suggested to be proto-oncogenes or

tumor suppressor genes in previous studies [45–49]. For example,

knocking down INPP4B resulted in epithelial cell growth and

overexpression of INPP4B led to reduced tumor growth [49],

suggesting that INPP4B is a tumor suppressor gene. Furthermore,

after removing the 42 cancer genes from the 306 class 2 DE genes,

we found that the remaining 264 genes were significantly enriched

in the direct interaction neighbors of the cancer genes collected in

F-census (p = 0.04, hypergeometric test). This result implied that

many of the remaining class 2 DE genes collaborated closely with

the cancer genes and might function similarly as their interacted

cancer genes during carcinogenesis. Thus, the class 2 DE genes are

potential cancer genes for breast cancer.

Genes oppositely dysregulated in the two subtypes may

contribute to ER+ and ER2 cancers through different subpath-

ways. For example, PFKP, an estrogen signaling suppressive gene

that encodes a rate-limiting enzyme of glycolysis [50,51], was

downregulated in ER+ cancers (Figure 2). This downregulation

could induce the accumulation of fructose-6-phosphate [52]. The

Table 2. The biological processes enriched with genes dysregulated to a larger extent in ER+ cancer.

Accession GO Term P-values Q-values

GO:0044255 cellular lipid metabolic process 5.23E-08 5.03E-04

GO:0009888 tissue development 1.69E-07 7.63E-04

GO:0008610 lipid biosynthetic process 2.38E-07 7.63E-04

GO:0016477 cell migration 5.17E-07 1.02E-03

GO:0045017 glycerolipid biosynthetic process 5.28E-07 1.02E-03

GO:0016043 cellular component organization 1.01E-06 1.61E-03

GO:0009605 response to external stimulus 4.12E-06 2.84E-03

GO:0008654 phospholipid biosynthetic process 1.63E-05 8.26E-03

GO:0010033 response to organic substance 1.92E-05 9.02E-03

GO:0009719 response to endogenous stimulus 2.07E-05 9.06E-03

GO:0042476 odontogenesis 4.63E-05 1.75E-02

GO:0071845 cellular component disassembly at cellular level 4.64E-05 1.75E-02

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 4.74E-05 1.75E-02

GO:0009790 embryo development 5.03E-05 1.79E-02

GO:0016051 carbohydrate biosynthetic process 6.87E-05 2.28E-02

GO:0048583 regulation of response to stimulus 8.60E-05 2.70E-02

GO:0006650 glycerophospholipid metabolic process 8.70E-05 2.70E-02

GO:0048731 system development 1.76E-04 3.92E-02

GO:0044264 cellular polysaccharide metabolic process 1.83E-04 3.92E-02

GO:0048858 cell projection morphogenesis 2.01E-04 4.20E-02

doi:10.1371/journal.pone.0070017.t002
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accumulated fructose-6-phosphate could then be converted into

ribose-5-phosphate for synthesizing DNA and RNA since the key

enzymes of the oxidative subpathway of the pentose phosphate

pathway were upregulated in the ER+ cancers (Figure 2) [53]).

This can contribute to the cell proliferation of ER+ cancers

[54,55]. By contrast, PFKP is upregulated in the ER2 cancers,

which could accelerate the rate-limiting step of the anaerobic

glycolysis subpathway (Figure 3). The elevated activity of this step

could provide abundant energy and substance which can support

cancer cell proliferation [56,57] since all of the downstream

enzymes of the anaerobic glycolysis subpathway were upregulated

in the ER2 cancers (Figure 3). Therefore, the upregulation of

PFKP also contributes to ER2 cancers through the anaerobic

glycolysis subpathway.

For another example, FBP1, an estrogen signaling responsive

gene that encodes the enzyme catalyzing the reverse reaction of

PFKP [58,59], was upregulated in the ER+ cancers, which could

elevate the activity of the oxidative branch of the pentose phosphate

pathway and thereby contribute to cancers [60,61] (Figure 2). By

contrast, FBP1 was downregulated in the ER2 cancers, which

could accelerate glucose metabolism and thereby contribute to

ER2 cancers through the anaerobic glycolysis subpathway [62,63]

(Figure 3). These two examples illustrate that an oppositely

dysregulated gene could provide energy and substance for both

ER+ and ER2 cancers through different subpathways.

Discussion

Although some studies have compared breast cancer subtypes

with normal breast tissues using gene expression profiles [64–66],

they mainly focused on the dysregulated genes in various subtypes

and none of these studies compared directions of genes commonly

dysregulated in different subtypes, especially in ER+ and ER2

subtypes. In this study, we classified genes dysregulated in ER+
and ER2 breast cancers into two classes and proved that the two

classes of genes could be nonrandomly reproducibly detected from

the microarray and the RNA-seq datasets of different cohorts. We

showed that most of the genes dysregulated in the two subtypes

were dysregulated in the same directions but to a different extent

in the two subtypes (i.e., class 1 DE genes). We then classified the

class 1 DE genes into two subclasses which enriched in distinct

biological processes. Generally, glycerophospholipid and polysac-

charide metabolic processes significantly enriched with the genes

that were dysregulated to a larger extent in the ER+ cancers than

the ER2 cancers, while genes dysregulated to a larger extent in

the ER2 cancers were significantly enriched in biological

processes involved in cell proliferation. Especially, phosphorylase

kinase family and enzymes of GPI-anchor biosynthesis were

upregulated to a larger extent in the ER+ cancers than in the ER2

cancers, suggesting that these enzymes could be potential drug

targets for breast cancer. For instance, inhibiting enzymes of

phosphorylase kinase family might be an alternative way to

suppress breast cancer growth. In fact, a recent study had

demonstrated that targeting phosphorylase kinase could suppress

angiogenesis in zebrafish [67]. Similarly, another study has showed

that depletion of substrate of phosphorylase kinase, glycogen

phosphorylase, causes glycogen accumulation, leading to tumor

cell senescence and impaired tumor growth in vivo [68].

We also found 306 genes that were interestingly dysregulated in

the opposite directions in the two subtypes (i.e., class 2 DE genes)

Table 3. The biological processes enriched with genes dysregulated to a larger extent in ER- cancer.

Accession GO Term P-values Q-values

GO:0051726 regulation of cell cycle ,2.2E-16 ,7.7E-13

GO:0006259 DNA metabolic process ,2.2E-16 ,7.7E-13

GO:0006974 response to DNA damage stimulus ,2.2E-16 ,7.7E-13

GO:0006996 organelle organization ,2.2E-16 ,7.7E-13

GO:0007049 cell cycle ,2.2E-16 ,7.7E-13

GO:0051301 cell division ,2.2E-16 ,7.7E-13

GO:0051329 interphase of mitotic cell cycle ,2.2E-16 ,7.7E-13

GO:0007059 chromosome segregation 1.97E-14 6.59E-11

GO:0006950 response to stress 1.11E-12 3.16E-09

GO:0034622 cellular macromolecular complex assembly 4.73E-08 8.21E-05

GO:0016071 mRNA metabolic process 1.30E-07 2.21E-04

GO:0044267 cellular protein metabolic process 4.44E-07 7.06E-04

GO:0044419 interspecies interaction between organisms 6.81E-07 1.05E-03

GO:0051640 organelle localization 1.75E-06 2.48E-03

GO:0048522 positive regulation of cellular process 2.10E-06 2.90E-03

GO:0008283 cell proliferation 3.00E-06 4.02E-03

GO:0022613 ribonucleoprotein complex biogenesis 8.17E-06 1.01E-02

GO:0031145 anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein
catabolic process

9.85E-06 1.17E-02

GO:0009411 response to UV 1.14E-05 1.33E-02

GO:0018209 peptidyl-serine modification 2.05E-05 2.24E-02

GO:0044265 cellular macromolecule catabolic process 2.41E-05 2.51E-02

GO:0043412 macromolecule modification 4.49E-05 4.34E-02

doi:10.1371/journal.pone.0070017.t003
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for both microarray and RNA-seq datasets. The 306 class 2 DE

genes significantly enriched with the known cancer genes and the

rest genes that have not been documented in cancer gene

databases tend to closely collaborate with the cancer genes,

indicating that these genes are potential cancer genes. In addition,

the genes upregulated in the ER+ cancers but downregulated in

the ER2 cancers included the previously found ER+/luminal

expression signature genes [15,69] and genes encoding MAPK

signaling proteins and transcription factors. In contrast, the genes

upregulated in the ER2 cancers but downregulated in the ER+
cancers included genes encoding chemokines and cell adhesion

molecules as well as apoptosis inhibitors. Many genes annotated in

these functions had been demonstrated to be proto-oncogenes or

tumor suppressor genes (TSGs) [45–49]. However, the confirma-

tion of their proto-oncogene or TSG roles still needs further

mutation experiments. In our recent study [70], we revealed that,

in case-control experiments without considering genetic mutation

(such as point mutation, insertion, deletion, copy number

alteration) information, the expression levels of about one half of

the "proto-oncogenes" are downregulated in cancer samples

comparing to normal controls and about one half of the "TSGs"

are upregulated in cancer samples. For a particular "cancer gene"

(proto-oncogene or TSG), as genetic mutations usually occur in

only a small proportion of cancer samples, its dysregulated

direction detected in case-control experiments without genetic

mutation information mainly reflects the expression change that

occurs in samples with the wild-type counterpart [70]. Moreover,

a gene can act as a proto-oncogene with activated mutations and it

can also act as a TSG with inactivated mutations [70,71]. Thus,

we could not determine the class 2 DE genes played oncogene or

TSG roles in the two subtypes as no genetic mutation information

was available. Nevertheless, as the dysregulation of wild-type genes

can still promote or support cancer cell growth, the opposite

dysregulation of a class 2 DE gene could contribute to

carcinogenesis of both ER+ and ER2 cancers.

Because expression levels of the 306 oppositely dysregulated

genes tended to correlate with ER status, their expression may

potentially influence the sensitivity of ER+ cancers to adjuvant

endocrine therapy [72,73]. Thus, it is feasible to identify

biomarkers based on these genes for predicting broad endocrine

or specific agent resistance [74,75]. Considering that predictive

biomarkers for resistance to tamoxifen and/or aromatase inhib-

itors are essential to select the optimal adjuvant treatment for ER+
cancers and increase patient survival rates [76–78], it deserves our

future researches.

As ER status is determined manually according to a certain

percentage of ER+ cells using immunohistochemistry [15], some

of the ER+ cancers contain ER2 (basal) cells, and vice versa. A

previous study showed that patients with 1% ER+ cells had

significantly better survival compared with patients who had

Figure 2. Downregulation of PFKP and upregulation of FBP1 contribute to ER+ breast cancers. ER+ DE genes in the pentose phosphate
pathway are denoted in red for upregulation and in green for downregulation. The red frame indicates the elevated oxidative subpathway of the
pentose phosphate pathway in ER+ cancers. The figure is created based on KEGG pathway hsa00030. Only a part of the pathway is shown for clarity.
doi:10.1371/journal.pone.0070017.g002

Extent or Reverse Differences in ER+ & ER- Cancer

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e70017



completely ER2 cells, and survival also increased incrementally as

the percentage of ER+ cells increased [79]. Recently, Iwamoto T

et al. found that a minority of tumors with 1% to 9% ER+ cells

show molecular features similar to those tumors with.10% ER+
cells, whereas most show ER2 molecular characteristics [80].

These studies implied that expression levels of the class 1 and class

2 DE genes in ER+ cancer samples with low percentage ER+ cells

would be similar to ER2 cancers. To test this assumption, we

compared lowest ER+ cell (1–19%) cancers with highest ER+ cell

(90–99%) cancers and found that 97% (3,427) of the 3,531 genes

dysregulated to a larger extent in the ER– cancers were also

dysregulated to a larger extent in the lowest ER+ cell samples, and

99% (303) of the 306 class 2 DE genes were also oppositely

dysregulated in the lowest and the highest ER+ cell samples. This

analysis suggested that cell types and composition variation can

also result in DE genes between sample groups. We then checked

the component of cell types in tumor and normal samples and

found that the average percentages of epithelial cell in cancer

samples and normal samples were 84% and 74% [15], respec-

tively. Potentially, more stromal cells were included in normal

Figure 3. Upregulation of PFKP and downregulation of FBP1 contribute to ER2 breast cancers. ER2 DE genes in the glycolysis/
gluconeogenesis pathway are denoted in red for upregulation and in green downregulation. The red frame indicates the elevated anaerobic
glycolysis subpathway in ER2 cancers. The figure is created based on KEGG pathway hsa00010. Only a part of the pathway is shown for clarity.
doi:10.1371/journal.pone.0070017.g003
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samples than cancer samples. Thus, a minority of ER+/ER2 DE

genes might be DE genes of epithelial cells and stromal cells.

However, given that the two subtypes were compared to the same

group of normal samples, this would not affect the extent and

opposite expression differences between ER+ and ER2 cancers.

Besides ER status, breast cancers are often classified into five

intrinsic molecular subtypes [69,81–85]. This taxonomy subdi-

vides most of ER+ cancers into luminal A and luminal B subtypes

while most ER2 cancers belong to basal-like subtype. By contrast,

the HER2-enriched subtype composes of almost equal number of

ER+ and ER2 cancers [15], while only a few breast cancers are

normal breast-like subtype which may contain a disproportion-

ately high content of normal epithelial and stromal cells [84,86]. It

has been found that luminal B cancers have a significantly worse

prognosis than luminal A cancers [77,87,88] and have many

similar molecular changes with the worst prognosis basal-like

cancers, such as higher expression of proliferation-related genes

[15], loss of the tumor suppressor RB1 [89] and higher kinase

score [90]. These findings implied that expression levels of the

class 1 and class 2 DE genes might be more closed to basal-like

cancers (ER2) in luminal B cancers than in luminal A cancers. For

the class 1 DE genes, among the 1,746 genes dysregulated to a less

extent and 3,531 genes dysregulated to a larger extent in the ER2

cancers than the ER+ cancers, 80% (1,401 genes) and 85% (3,012

genes) were also dysregulated to a less and a larger extent in the

luminal B cancers than in the luminal A cancers, respectively.

Additionally, among the 200 class 2 DE genes which were

upregulated in the ER+ cancers but downregulated in the ER2

cancers, 68% (136 genes) were upregulated to a less extent in the

luminal B cancers than in the luminal A cancers. The expression

similarities between the luminal B and the basal-like subtypes

implied that luminal B cancers contain relatively less ER+/luminal

cells and more ER2/basal cells than luminal A cancers. To verify

this hypothesis, we divided the ER+ samples into two groups with

high ($ 50%) and low (,50%) percentages of ER+ cells and found

that the luminal A and the luminal B subtypes significantly

enriched with the high and the low ER+ cell groups (p = 0.0021,

Fisher’s exact test), respectively. This indicated that luminal B

cancers tended to contain more ER2/basal cells than luminal A

cancers, which could explain their worse survival compared with

luminal A cancers, given that survival increases incrementally as

the percentage of ER+ cells increasing [79].

One limitation of this study is that the statistical power of

identifying class1 and class 2 DE genes could be low [91,92].

Notably, it is known that, in the presence of small technical

variations, the DE genes from two experiments tend to be

inconsistent even if they are identified from two technically

replicated microarray experiments using identical samples and

mostly comprised true discoveries [39,40]. This finding suggests

that most of the two classes of DE genes identified from the two

datasets might be true DE genes, although only a part of DE genes

can be captured in each dataset due to the inefficient power. As a

result, many of the two classes of DE genes detected in only the

microarray dataset could actually be class 1 or class 2 DE genes in

the larger RNA-seq dataset with increased power. To further

verify this assumption, we roughly defined DE genes in the larger

RNA-seq dataset using t-test with p,0.05 and identified another

2,836 ‘‘class 1’’ and 641 ‘‘class 2’’ DE genes. These genes

overlapped 1,636 genes with the rest 3,059 class 1 and 199 genes

with the rest 370 class 2 DE genes identified in the microarray but

not in the RNA-seq dataset, respectively. Among the overlapped

genes, 1,521 class 1 (92.97%) and 169 class 2 (84.92%) DE genes

showed the same dysregulated directions in the microarray and the

RNA-seq datasets for ER+ and ER2 cancers, respectively, which

were unlikely to happen by chance if the dysregulated directions of

the rest DE genes were randomly assigned (both p,2.2610216,

binomial test). Moreover, it had been proved that two DE gene

lists are highly reproducible by considering expression-correlated

or function-associated genes even though percentage of overlap

between the two gene lists was extremely low [39,40,93]. Thus, we

believe that most of the class 1 and class 2 DE genes identified in

either microarray or RNA-seq dataset could be true.

Supporting Information

Table S1 The 306 RNA-seq dataset validated oppositely

dysregulated genes.
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