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ABSTRACT
ISS
BACKGROUND Emerging evidence reveals a complex relationship between cardiovascular disease (CVD) and cancer,

which share common risk factors and biological pathways.

OBJECTIVES The aim of this study was to evaluate common epigenetic signatures for CVD and cancer incidence in

3 ethnically diverse cohorts: Native Americans from the SHS (Strong Heart Study), European Americans from the FHS

(Framingham Heart Study), and European Americans and African Americans from the ARIC (Atherosclerosis Risk In

Communities) study.

METHODS A 2-stage strategy was used that included first conducting untargeted epigenome-wide association studies

for each cohort and then running targeted models in the union set of identified differentially methylated positions

(DMPs). We also explored potential molecular pathways by conducting a bioinformatics analysis.

RESULTS Common DMPs were identified across all populations. In a subsequent meta-analysis, 3 and 1 of those DMPs

were statistically significant for CVD only and both cancer and CVD, respectively. No meta-analyzed DMPs were statis-

tically significant for cancer only. The enrichment analysis pointed to interconnected biological pathways involved in

cancer and CVD. In the DrugBank database, elements related to 1-carbon metabolism and cancer and CVD medications

were identified as potential drugs for target gene products. In an additional analysis restricted to the 950 SHS partici-

pants who developed incident CVD, the C index for incident cancer increased from 0.618 (95% CI: 0.570-0.672) to 0.971

(95% CI: 0.963-0.978) when adjusting the models for the combined cancer and CVD DMPs identified in the other

cohorts.

CONCLUSIONS These results point to molecular pathways and potential treatments for precision prevention of

CVD and cancer. Screening based on common epigenetic signatures of incident CVD and cancer may help

identify patients with newly diagnosed CVD at increased cancer risk. (JACC CardioOncol. 2024;6:731–742)
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ABBR EV I A T I ON S

AND ACRONYMS

ARICb = African American

participants of the

Atherosclerosis Risk In

Communities study

ARICw = European American

participants of the

Atherosclerosis Risk In

Communities study

Ca-CVD = cancer and

cardiovascular disease

CpG = cytosine followed by a

guanine with a phosphate link

CVD = cardiovascular disease

DMP = differentially

methylated position

DNAm = DNA methylation

EWAS = epigenome-wide

association study(ies)

GO = Gene Ontology

PC = principal component
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C ardiovascular disease (CVD) and
cancer are the leading causes of
death worldwide.1 In the United

States, CVD and cancer were the first and sec-
ond most common causes of death in both
2021 and 2022.2 Both diseases share risk fac-
tors, including aging, cigarette smoking,
physical inactivity, an unhealthy diet, excess
adiposity, and genetic and environmental
factors.3 They also share biological pathways,
including inflammation, oxidative stress,
apoptosis, and angiogenesis.3,4 Cancer treat-
ments, including chemotherapy, radio-
therapy, targeted cancer therapies, and
immunotherapy, can contribute to cardiotox-
icity.4-6 While CVD and cancer have tradi-
tionally been studied separately, the field of
cardio-oncology has grown in recent years.1

Epigenetic marks are able to regulate gene
expression, and their dysregulation might
lead to the disruption of essential biological
processes, potentially leading to disease.7 To our
knowledge, however, epigenetic changes associated
with CVD and cancer have only been studied sepa-
rately.8,9 Also, DNA methylation (DNAm), the most
well studied epigenetic mark, has not yet been jointly
evaluated for CVD and cancer outcomes in
population-based studies.

The objective of this study was to evaluate whether
common epigenetic marks for incident cancer and
CVD exist across different racial/ethnic groups in the
United States. We conducted a multicohort
epigenome-wide association study (EWAS) of CVD
only, cancer only, and both cancer and CVD (Ca-CVD)
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The SHS. The SHS is a prospective cohort study
funded by the National Heart, Lung, and Blood
Institute to investigate CVD and its risk factors in
American Indian adults.10 From 1989 to 1991, a total
of 4,549 men and women aged 45 to 75 years,
members of 12 tribes based in the Northern Plains
(North Dakota and South Dakota), the Southern
Plains (Oklahoma), and the Southwest (Arizona),
agreed to participate. After the exclusion of partici-
pants with prevalent CVD, prevalent cancer and
missing data for relevant covariates, 2,186 partici-
pants were included in this study. DNAm was
measured using the Illumina MethylationEPIC Bead-
Chip array (details and preprocessing are described
in Supplemental Methods).
The FHS. The FHS is a population-based cohort that
started in 1948.11 A total of 5,209 men and women of
European ancestry between the ages of 30 and 62
years from the town of Framingham, Massachusetts,
were recruited. The FHS Offspring Cohort, founded in
1971, is a second-generation study in which children
of the FHS Original Cohort were recruited. After
excluding individuals with prevalent CVD and cancer
at examination 8, as well as individuals with missing
data for other relevant covariates, 1,474 Offspring
Cohort participants were included in this study.
DNAm was measured using the Illumina Infinium
HumanMethylation450 BeadChip array (details and
preprocessing are described in Supplemental
Methods).
The ARIC . The ARIC study is a prospective cohort
study that was initiated in 1987 to investigate CVD
risk.12 The study involved 15,792 participants sampled
from 4 U.S. communities, including Jackson, Mis-
sissippi; Washington County, Maryland; suburban
Minneapolis, Minnesota; and Forsyth County, North
Carolina. The baseline cohort consisted of individuals
aged 45 to 64 years, with the Jackson sample
comprising exclusively Black residents. All analyses
were conducted separately in the 2 ARIC subgroups,
African American participants of the ARIC study
(ARICb) and European American participants of the
ARIC study (ARICw). For this study, individuals with
prevalent CVD or cancer at the time of blood draw for
each visit were excluded, along with those who had
missing data for relevant covariates. The final anal-
ysis included a total of 2,212 African American par-
ticipants and 903 European American participants.
DNAm was measured using the Infinium Human-
Methylation450 BeadChip array (details and pre-
processing are described in Supplemental Methods).
CANCER AND CVD INCIDENCE ASCERTAINMENT

AND FOLLOW-UP DEFINITION. Details of cancer and
CVD assessment for each cohort are described in
Supplemental Methods. Briefly, in the SHS, CVD was
assessed using annual morbidity surveillance reviews
of hospitalization and death records. Incident CVD
was defined as the first occurrence of fatal or nonfatal
coronary heart disease, stroke or heart failure, or
other nonfatal CVD.10 Cancer incidence was assessed
using interviews, death certificates, and/or
chart reviews.

In the FHS, CVD was assessed using medical his-
tories, physical examinations during study visits,
hospitalization records, and personal physician re-
cords. Incident CVD was defined as a composite of
coronary heart disease, cerebrovascular events, pe-
ripheral artery disease, and heart failure.13 Cancer
was assessed by interviews, death certificates, and/or
chart reviews that included pathology reports.14

In ARIC, CVD was assessed through active sur-
veillance of hospitalizations and cohort follow-up.
Incident CVD included incident heart failure,
myocardial infarction, ischemic stroke, and atrial
fibrillation.15 Cancer incidence was identified linking
the cohort with state cancer registries and through
active surveillance of the cohort involving recording
hospital discharge codes for all participants.16

For all cohorts, we classified the primary endpoints
into 3 groups: incident cancer in participants who did
not develop CVD, incident CVD in participants who
did not develop cancer, and Ca-CVD for participants
who developed both cancer and CVD during follow-
up (in either order). We calculated follow-up from
the date of baseline examination to the date of the
cancer or CVD diagnosis, respectively, or adminis-
trative censoring (2017 in the SHS, 2018 for CVD and
2019 for cancer in the FHS, and 2015 in ARIC),
whichever occurred first. For the combined Ca-CVD
endpoint, we considered the date of the event that
happened second. For participants who died of any
cause of death other than cancer or CVD, we censored
the follow-up at date of death.

STATISTICAL ANALYSIS.

Multicohort 2-stage epigenome-wide association
approach and meta-analysis. Traditionally, EWAS have
been conducted evaluating each CpG (cytosine fol-
lowed by a guanine with a phosphate link) site indi-
vidually in separate models. However, epigenetic
marks are interrelated and are more likely to influ-
ence biological processes all together. Thus, consid-
ering them jointly in a model that appropriately

https://doi.org/10.1016/j.jaccao.2024.07.014
https://doi.org/10.1016/j.jaccao.2024.07.014
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accounts for the particular challenges of epigenomic
data (eg, high dimensions and correlations) is a more
realistic approach.17

To evaluate the consistency of CVD, cancer, and
Ca-CVD DMPs across populations, we implemented a
2-stage EWAS approach. In the first stage, we con-
ducted an untargeted EWAS for each cohort, using
GLMnet penalized Cox regression (Cox elastic-net,
R package glmnet),18 which simultaneously con-
siders all CpG sites as independent variables in the
same model (see Supplemental Methods). We fit an
elastic-net Cox model using cancer, CVD, and Ca-CVD
time-to-event outcomes in separate models.

In the second stage, we conducted a targeted
EWAS. We defined the union set of DMPs identified
across all cohorts from the untargeted elastic-net in
the previous step (Central Illustration). Subsequently,
we ran elastic-net models in each cohort separately
for that union set list of DMPs. We calculated indi-
vidual HRs and 95% CIs using Cox proportional haz-
ards models for the DMPs that were identified in the
targeted EWAS in common for all cohorts. We used
Cox proportional hazards models instead of elastic-
net for the calculation of effect estimates, given that
elastic-net applies shrinkage and therefore might lead
to biased effect estimates. In those DMPs, we subse-
quently conducted a meta-analysis of Cox regression
coefficients using the R package meta.19 The 2-stage
approach was implemented for each of the 3 end-
points: CVD, cancer, and Ca-CVD. All models were
adjusted for age, sex, body mass index, smoking
status (never, former, or current), DNAm-based
smoking score,20 and estimated cell counts. CVD
and Ca-CVD models were additionally adjusted for
low-density lipoprotein cholesterol, high-density li-
poprotein cholesterol, diabetes (yes or no), hyper-
tension treatment (yes or no) and systolic blood
pressure. SHS models were additionally adjusted for
study center (Arizona, Oklahoma, or North Dakota
and South Dakota), 5 genetic principal components
(PCs) that accounted for population stratification,
and, for CVD and Ca-CVD models, albuminuria (<30,
30-300, and $300 mg/g). FHS models were addition-
ally adjusted for batch, as DNAm data were processed
in 2 different batches. ARIC models were adjusted for
5 PCs to correct batch effects in each cohort. For
White participants, ARIC models were additionally
adjusted for field center (Washington County, sub-
urban Minneapolis, and Forsyth County). In addition
to effect sizes and P values from the meta-analysis,
we reported the I2 statistic, a measure of heteroge-
neity among studies.21 As a sensitivity analysis, we
ran models for the CpGs included in the meta-analysis
that were statistically significant in the SHS among
never smokers.
Molecular pathway analyses . We conducted a
protein-protein interaction analysis of protein-coding
genes annotated to DMPs identified in the second
stage of the 2-stage approach described in the previ-
ous subsection (targeted EWAS DMPs) (Central
Illustration). We obtained reported biological in-
teractions among the protein nodes from the STRING
database version 11.5 (see Supplemental Methods).22

A network enrichment analysis was performed by
incorporating available information for the relation-
ships between nodes based on Gene Ontology (GO)
and UniProt databases. We also attempted to identify
common relevant biological mechanisms for cancer
and CVD by evaluating which nodes are classified as
drug targets within the DrugBank database version
5.1. DrugBank combines detailed data annotations
with comprehensive drug target information,23 which
enables the assessment of whether gene products are
potential drug targets of specific compounds.
Predictive models of incident cancer in participants who
developed CVD first. To explore if measuring DNAm in
blood, which is an accessible tissue in the clinical
setting, might contribute to the identification of
candidates for risk stratification for cancer screening
in patients with newly diagnosed CVD, we evaluated
in the SHS the predictive ability of baseline blood
DNAm signatures identified in FHS, ARICb, and
ARICw for cancer incidence. Time to incident cancer
was evaluated starting from the time of CVD diag-
nosis. Predictive ability was measured by the
concordance index (C index) obtained from elastic-
net models; values close to 1 indicate good predic-
tive performance. Ninety-five percent CIs for the C
indexes were calculated using quantile bootstrap. We
also calculated the Brier score for each predictive
model, which measures calibration.24 In this case,
values close to 0 indicate good calibration. We
restricted this analysis to participants who were free
of cancer at the time of their first CVD event (n ¼ 950).
We compared the predictive ability of a model
adjusted for clinical risk factors (age, sex, smoking
status, body mass index, and study center) with the
predictive ability of these additional models: 1)
adjusted for clinical risk factors, estimated cell
counts, genetic PCs, and the epigenetic smoking
score; 2) additionally adjusted for cancer DMPs
identified in FHS, ARICb, and ARICw; and 3) addi-
tionally adjusted for Ca-CVD DMPs identified in FHS,
ARICb, and ARICw. We were unable to conduct par-
allel analysis of incident CVD among individuals
newly diagnosed with cancer because of the small

https://doi.org/10.1016/j.jaccao.2024.07.014
https://doi.org/10.1016/j.jaccao.2024.07.014


CENTRAL ILLUSTRATION Flowchart of the Multicohort Analysis

Domingo-Relloso A, et al. JACC CardioOncol. 2024;6(5):731–742.

Differentially methylated positions (DMPs) in the untargeted epigenome-wide association study (EWAS) were obtained by fitting separate elastic-net models for each

cohort. Targeted EWAS DMPs were obtained by fitting an elastic-net model, separately for each cohort, to the union set of DMPs identified in the untargeted EWAS for

all cohorts. DMPs in the targeted EWAS were annotated to their closest gene to perform a protein-protein interaction network in common nodes for at least 3 cohorts

(highlighted in black lines in Venn diagram; Supplemental Figure 2). Subsequently, a gene-set analysis was carried out on the network. ARICb ¼ African American

participants of the Atherosclerosis Risk In Communities study; ARICw ¼ European American participants of the Atherosclerosis Risk In Communities study;

Ca-CVD ¼ cancer and cardiovascular disease; CVD ¼ cardiovascular disease; FDR ¼ false discovery rate; FHS ¼ Framingham Heart Study; GO ¼ Gene Ontology;

SHS ¼ Strong Heart Study.
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number of cases (n ¼ 15 cancer cases happening
before CVD).

RESULTS

DESCRIPTIVE ANALYSIS. In the SHS (n ¼ 2,186), we
observed 277, 823, and 142 incident cancer, CVD, and
Ca-CVD cases, respectively (Table 1). In the FHS
(n ¼ 154), we observed 179, 294, and 50 incident CVD,
cancer, and Ca-CVD cases, respectively. In ARICb
(n ¼ 2,212), we observed 389, 622, and 244 incident
cancer, CVD, and Ca-CVD cases, respectively. In
ARICw (n ¼ 903), there were 193, 222, and 84 incident
cancer, CVD, and Ca-CVD cases, respectively.
Numbers of specific cancer and CVD endpoints in
each cohort are shown in Supplemental Table 1. In all
cohorts, participants with incident CVD were older
and more likely to have baseline hypertension and
diabetes compared with those without incident CVD.
Baseline current smoking was more common in par-
ticipants with incident cancer, CVD, and Ca-CVD
(Table 1) compared with those without.

MULTICOHORT 2-STAGE APPROACH AND META-ANALYSIS.

The Central Illustration shows a summary of the
number of DMPs identified for each cohort and each
endpoint in the untargeted and targeted EWAS, as
well as the number of statistically significant DMPs
identified in the meta-analysis of common DMPs
from the targeted EWAS (see more detailed version of
this figure in Supplemental FIgure 1). The overlap
between DMPs from the untargeted EWAS across
cohorts for each endpoint can be found in
Supplemental Figure 1. In the subsequent targeted
EWAS, 24 DMPs were common across all populations
for CVD, 3 for cancer and 4 for Ca-CVD. Of these
common DMPs, with a cutoff P value of <0.05, 3
DMPs were statistically significant in the meta-
analysis for CVD—annotated to genes ISOC2
(cg27153400), LINC01257 (cg01414728), and KLF11
(cg05647197)—and 1 was statistically significant for
Ca-CVD, annotated to CBX4 (Table 2). With a less
stringent cutoff P value of 0.1, 2 additional DMPs
were statistically significant for CVD, annotated to
HLA-L and ATXN1, and 1 for Ca-CVD, annotated to
SIX1. No DMPs were statistically significant in the
meta-analysis for the cancer only endpoint. In the
sensitivity analysis among never smokers, point es-
timates were mostly directionally consistent,
although CIs were wider, as expected given the
reduction in sample size. Tenth and 90th percentiles
of DNAm in statistically significant DMPs in the meta-
analysis are shown in Supplemental Table 2.

MOLECULAR PATHWAYS ANALYSES. We conducted
a protein-protein interaction network analysis of
protein-coding genes annotated to DMPs that were
identified in elastic-net analysis of at least 3 cohorts
from the targeted EWAS (Supplemental Figure 2). The
resulting protein interaction network contained 147
nodes and 217 edges (Figure 1, Supplemental File,
sheets M and N). For CVD only, the most connected
node in the network was EGFR, with 19 edges (sta-
tistically significant in ARICw, FHS, and SHS). PAX6
was the most connected node associated only with
Ca-CVD DMPs in the network (14 interactions). For
only cancer, FOXA1 was the most connected node (10
interactions). The most connected node shared by
cancer and CVD was NKX2-5, with 10 interactions.
PTPRN2 was the only node associated to Ca-CVD,
cancer, and CVD DMPs in at least 3 cohorts. Addi-
tionally, an unrestricted approach was applied to
analyze the 358 protein-coding genes (confidence
score 0.0 or greater), resulting in a network of 352
nodes and 3,734 edges (Supplemental Figure 3,
Supplemental File, sheets Q and R). The main find-
ings were similar for both networks.

NETWORK ENRICHMENT ANALYSIS. A total of 264
GO and 13 UniProt terms were statistically significant
at a false discovery rate–corrected (calculated using
the Benjamini-Hochberg approach) P value <0.05.
The top 5 GO terms for the biological process cate-
gory were animal organ development, tissue devel-
opment, cell differentiation, anatomical structure
development, and developmental process. For the
molecular function category, the top 5 terms were all
related to regulatory region sequence-specific DNA
binding. For the cellular component category, the
top terms were chromatin, chromosome, and
membrane-bounded organelle related. The UniProt
top terms were DNA binding, nucleus, transcription
regulation, repressor, and homeobox (Supplemental
File, sheet O). In the DrugBank search, among the
24 overlapping nodes between at least 2 endpoints
in 3 or more cohorts and the most connected nodes
(Supplemental File, sheet P), we identified 8 drug
target proteins (UniProt ID) for treatments related to
the 1-carbon metabolism and epigenetic functions,
including antioxidant elements (MGMT and HDAC4),
cancer (DNMT3B, DNMT3A, and EGFR), and car-
diometabolic diseases (ADCY3 and GNAS) treatments
(Supplemental Table 3).

INCIDENT CANCER PREDICTIVE ACCURACY AMONG

INDIVIDUALS WITH PRIOR CARDIOVASCULAR

EVENTS. Of 950 SHS participants who were free of
cancer at the time of incident CVD, 127 subsequently
developed cancer (accumulated follow-up time was
9,185.2 person-years). The C indexes with 95% CIs are
shown in Table 3. The baseline predictive model
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TABLE 1 Participant Characteristics in the Participating Cohorts

No Cancer and No CVD Cancer CVD Cancer and CVD

Strong Heart Study (n ¼ 944) (n ¼ 277) (n ¼ 823) (n ¼ 142)

Follow-up, y 26.1 (12.4-27.3) 14.9 (8.7-20.5) 9.9 (5.4-16.7) 17.7 (10.8-22.8)

Age, y 53 (48-60) 56 (50-64) 57 (51-64) 57 (51-63)

Female 61.1 54.2 56.5 49.3

Current smoking 34.7 46.3 40.1 47.2

BMI, kg/m2 29.2 (25.6-33.1) 29.2 (25.6-33.9) 30.1 (27.1-34.2) 30.0 (27.3-34.5)

Diabetes 32.8 37.7 52.6 45.8

LDL cholesterol, mg/dL 115 (94-137) 118 (101-138) 123 (102-144) 120 (103-140)

HDL cholesterol, mg/dL 45 (38-54) 43 (37-53) 42 (36-50) 42 (36-49)

Hypertension 14.5 16.5 27.1 21.1

SBP, mm Hg 121 (111-132) 124 (111-136) 127 (116-140) 125 (111-138)

Framingham Heart Study (n ¼ 1,017) (n ¼ 294) (n ¼ 179) (n ¼ 50)

Follow-up 11.5 (10.5-12.4) 4.8 (2.5-7.3) 5.9 (3.2-9.1) 11.4 (10.1-12.4)

Age, y 62 (57-68) 65 (60-71) 70 (63-77) 72.5 (65-78)

Female 39.5 45.1 48.5 40

Current smoking 50.9 55.8 55.9 56

BMI, kg/m2 27.0 (24.3-30.6) 27.9 (24.8-31.3) 28.9 (25.4-32.5) 30.4 (26.4-34.2)

Diabetes 8.8 11.9 18.3 22

LDL cholesterol, mg/dL 109 (88-131) 108 (88-125.25) 101 (81-127) 102.5 (80.25-125)

HDL cholesterol, mg/dL 57 (46-70) 58 (47-69) 52 (42-65) 53.5 (43.25-69.25)

Hypertension 36.3 45.3 59.8 64

SBP, mm Hg 124 (114-135) 127 (116-138.25) 131 (122-145) 127 (118-142)

Atherosclerosis Risk In Communities study
(African American)

(n ¼ 957) (n ¼ 389) (n ¼ 622) (n ¼ 244)

Follow-up 23.8 (22.4-24.8) 10.7 (6.2-15.4) 12.5 (6.7-18.7) 12.2 (6.4-17.9)

Age, y 54 (51-59) 56 (51-61) 57 (52-62) 58 (53-62)

Female 71.7 49.4 62.4 51.2

Current smoking 19.6 29.3 24.8 35.7

BMI, kg/m2 28.6 (25.7-32.5) 28.6 (25.3-32.5) 29.8 (26.6-34.0) 29.6 (25.7-33.7)

Diabetes 12.7 15.9 32.0 23.0

LDL cholesterol, mg/dL 130.8 (106.1-155.1) 129.9 (106.4-157.2) 135.9 (109.0-162.6) 132.9 (108.2-158.4)

HDL cholesterol, mg/dL 55 (44-67) 50 (42-62) 48 (39-59) 47 (39-56)

Hypertension 37.8 35.2 57.1 54.9

SBP, mm Hg 120 (110-132) 121 (110-132) 128 (116-143) 129 (119-141)

Atherosclerosis Risk In Communities study
(European American)

(n ¼ 404) (n ¼ 193) (n ¼ 222) (n ¼ 84)

Follow-up 24.2 (22.0-25.0) 11.5 (7.2-17.3) 14.5 (8.6-21.2) 14.0 (9.0-18.9)

Age, y 58 (54-63) 59 (56-64) 61 (57-65) 61 (58-64)

Female 68.3 51.8 51.8 41.7

Current smoking 15.1 19.7 22.5 22.6

BMI, kg/m2 25.3 (22.8-27.7) 25.7 (23.4-28.4) 26.3 (23.6-29.5) 26.5 (24.5-28.2)

Diabetes 3.0 5.2 7.2 3.6

LDL cholesterol, mg/dL 126.1 (106.2-147.8) 127.2 (107.8-145.3) 129.4 (107.0-154.4) 127.2 (108.2-145.8)

HDL cholesterol, mg/dL 52 (42-65) 47 (40-61) 46 (37-59) 46 (39-59)

Hypertension 13.6 14.5 21.6 14.3

SBP, mm Hg 111 (104-122) 112 (105-124) 118 (110-133) 115 (107-129)

Values are median (Q1-Q3) or %.

BMI ¼ body mass index; CVD ¼ cardiovascular disease; HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprotein; SBP ¼ systolic blood pressure.
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(including clinical risk factors but not blood DNAm)
had a C index of 0.618 (95% CI: 0.570-0.672) for all
cancer, with a Brier score of 0.698. The C index when
including the union set of cancer DMPs identified in
FHS, ARICb, and ARICw (858 CpGs) improved to 0.727
(95% CI: 0.651-0.789), with a Brier score of 0.116.
When including the union set of Ca-CVD DMPs iden-
tified in FHS, ARICb, and ARICw (642 CpGs), it
improved to 0.971, (95% CI: 0.963-0.978), with a Brier
score of 0.113.



TABLE 2 Meta-Analyzed HRs for Differentially Methylated Positions in

Common for All Cohorts

DMP Gene HR (95% CI)a P Value I2

CVD

cg27153400 ISOC2 1.05 (1.01-1.10) 0.015 0.00

cg05647197 KLF11 0.88 (0.79-0.97) 0.014 0.00

cg01414728 LINC01257 0.82 (0.69-0.98) 0.029 0.53

cg16055914 HLA-L 0.88 (0.77-1.01) 0.063 0.54

cg00151370 ATXN1 1.25 (0.97-1.59) 0.080 0.68

Cancer and CVD

cg22353329 CBX4 1.44 (1.12-1.84) 0.004 0.00

cg03032497 SIX1 1.11 (0.99-1.24) 0.073 0.00

All models were adjusted for age, sex, body mass index, smoking status (never, former, or cur-
rent), DNA methylation–based smoking score, and estimated cell counts. CVD and Ca-CVD models
were additionally adjusted for low-density lipoprotein cholesterol, high-density lipoprotein
cholesterol, diabetes (yes or no), hypertension treatment (yes or no) and systolic blood pressure.
SHS (Strong Heart Study) models were additionally adjusted for study center (Arizona, Oklahoma,
or North Dakota and South Dakota), 5 genetic PCs and, for CVD and Ca-CVD models, albuminuria
(normal albumin levels, microalbuminuria, and macroalbuminuria). FHS (Framingham Heart Study)
models were additionally adjusted for batch, as DNA methylation data were processed in two
different batches. ARIC (Atherosclerosis Risk in Communities) models were additionally adjusted
for five PCs to correct batch effects, and models for European American participants of ARIC were
additionally adjusted for field center (Jackson, Mississippi; Washington County, Maryland; sub-
urban Minneapolis, Minnesota; and Forsyth County, North Carolina). DMPs in common for all
cohorts in the targeted epigenome-wide association study (see Central Illustration) were included
in the meta-analysis. No cytosines followed by a guanine with a phosphate link were significant in
the meta-analysis for the cancer only endpoint. P values adjusted for false discovery rate (using
the Benjamini-Hochberg approach) were 0.18 for cg27153400, 0.18 for cg05647197, 0.23 for
cg01414728, 0.37 for cg16055914, 0.38 for cg00151370, 0.019 for cg22353329, and 0.15 for
cg03032497. aHRs (95% CIs) comparing the 90th and 10th percentiles of DNA methylation
proportions, calculated as the mean percentile across all cohorts.

Ca-CVD ¼ cancer and cardiovascular disease; CVD ¼ cardiovascular disease;
DMP ¼ differentially methylated position; PC ¼ principal component.
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DISCUSSION

In this multicohort study, we found common epige-
netic signatures for CVD and cancer across ethnically
diverse populations, supporting the hypothesis of a
common biological background for both diseases.
Many of the proteins encoded by those genes were
involved in known molecular pathways for cancer
and CVD. Elements related to 1-carbon metabolism
and cancer and CVD medications were identified as
potential drugs for target gene products from most
relevant nodes in the protein-interaction network.
Many DMPs identified in the cohort-specific EWAS,
however, were not common across populations,
possibly indicating that population-specific environ-
ments might also induce differential epigenetic foot-
prints. We also found a substantial increase in
predictive accuracy for incident cancer among par-
ticipants with newly diagnosed CVD using blood
DNAm at 642 CpG sites.

Some of the genes annotated to the DMPs that were
statistically significant in our meta-analysis have
biological functions relevant for CVD and cancer.
The KLF11 gene plays a role in the regulation of
pancreatic beta cells, and variants of this gene might
contribute to the development of diabetes, one of the
main risk factors for CVD.25 Also, the CBX4 gene has
been proposed as an oncogene26 and has been re-
ported to promote tumor progression and prolifera-
tion in both lung27 and gastric28 cancer. In addition,
blocking CBX4 expression showed protective effects
against drug resistance for hepatocellular
carcinoma.29

Our protein-protein interaction network further
supports the interconnection of mechanisms in com-
mon for CVD and cancer. The most connected nodes
of the network include the NKX2-5, PTPRN2, and
EGFR genes (Figure 1), among others. NKX2-5 encodes
a homeobox-containing transcription factor with
functions in heart formation and development. Ge-
netic variants of this gene have been associated with
congenital heart disease,30 and transcriptomic and
epigenomic data indicate that this gene contributes to
electrocardiographic phenotypes.31 In addition,
NKX2-5 has been associated with acute lymphoblastic
leukemia32 and colorectal cancer.33 DNAm in posi-
tions annotated to PTPRN2 was associated with
vascular and cardiac disease,34 sarcomas,35 and breast
cancer.36 Last, EGFR is a transmembrane glycoprotein
receptor for members of the epidermal growth factor
family, with functions widely associated with cancer
development and treatment37 as well as CVD.38

Regarding the most connected nodes for cancer and
Ca-CVD endpoints, the FOXA1 gene encodes a mem-
ber of the forkhead class of DNA-binding proteins,
related to several types of cancer39 and also to heart
failure.40 The protein product of PAX6 gene is a
regulator of gene transcription, and has been associ-
ated to cancer41 and CVD.42 DNMT3A is one of the
most commonly somatically mutated gene in clonal
hematopoiesis.43 These mutations increase steeply
with age. Therefore, we conducted a post hoc
sensitivity analysis for the Ca-CVD endpoint evalu-
ating the potential interaction between DNAm at
cg23009818 (annotated to DNMT3A) by age, with no
evidence of a differential association (P value for
interaction ¼ 0.78).

In addition, the network enrichment analysis
identified general pathways associated with
inflammation-related conditions and diabetes melli-
tus, and also with cancer and CVD. Alternatively, the
DrugBank search pointed to proteins encoded by
genes annotated to our identified DMPs as targets for
known cancer and cardiometabolic medications
(genes DNMT3B, DNMT3A, EGFR, ADCY3, and GNAS),
as well as proteins with zinc binding sites (genes
MGMT and HDAC4), which have a known role in the
redox balance and epigenetic regulation.44 The most
relevant drug target was EGFR, which has been pre-
viously identified as a central target in cardiotoxicity



FIGURE 1 Protein-Protein Interaction Network for Protein-Coding Genes Associated With at Least 3 Cohorts

The network was analyzed using Cytoscape and included 147 nodes and 217 interactions. The sizes of the nodes are proportional to the number of connections.

Increasingly darker solid edge lines indicate protein interactions with increasing confidence scores. The interactions and their confidence scores (0.5 or greater) were

obtained from the STRING database. The circle shape indicates that the node was common for 3 cohorts, whereas the triangle shape indicates that it was common for all

4 cohorts. Different colors are used for each outcome. CpG ¼ cytosine followed by a guanine with a phosphate link; CVD ¼ cardiovascular disease.
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induced by targeted therapy in cancer treatment.38

Interestingly, cysteine dietary supplementation was
associated with expression of the human MGMT gene.
Cysteine is a nonessential amino acid needed to form
glutathione, which also has redox regulatory func-
tions.45 Oxidative stress and glutathione play a key
role in 1-carbon metabolism, which provides methyl
groups that constitute the substrate for DNAm.46

In this study, we were also able to evaluate the
epigenetic susceptibility of patients with CVD to
develop cancer. Experimental data in mice and
humans support that CVD can predispose to cancer
development.47 Our results support that DNAm sig-
natures might be used to identify individuals at risk
for cancer after newly developing CVD, as we found a
substantial increase in predictive accuracy after
including Ca-CVD DMPs in our model. Conversely, we
could not evaluate the predictive ability of DNAm
profiles in individuals who develop CVD after cancer.
Thus, additional studies to guide treatment are



TABLE 3 C Indexes for Cancer in Participants With Cardiovascular Disease in the Strong

Heart Study

Adjustment Variable
Number
of CpGs

C Index
(95% CI)

Clinical risk factorsa 0 0.618 (0.570-0.672)

Clinical risk factors þ estimated cell counts, genetic
PCs, and smoking epigenetic score

0 0.669 (0.621-0.714)

Clinical risk factors þ estimated cell counts, genetic
PCs, and smoking epigenetic score þ cancer DMPs
in FHS, ARICw, and ARICb

858 0.727 (0.651-0.789)

Clinical risk factors þ estimated cell counts, genetic
PCs, and smoking epigenetic score þ Ca-CVD DMPs
in FHS, ARICw, and ARICb

642 0.971 (0.963-0.978)

aAge, sex, smoking status, body mass index, and study center.

ARICb ¼ African American participants of the Atherosclerosis Risk In Communities study; ARICw ¼ European
American participants of the Atherosclerosis Risk In Communities study; CpG ¼ cytosine followed by a guanine
with a phosphate link; FHS ¼ Framingham Heart Study; PC ¼ principal component; other abbreviations as in
Table 2.
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needed to prevent cardiovascular complication of
cancer therapies in patients with cancer on the basis
of their epigenetic profiles.

STUDY LIMITATIONS. Of note, we found many more
common significant DMPs across cohorts for CVD than
for cancer, and no DMPs were statistically significant
in the meta-analysis for cancer only. This might be
related to statistical power, as many more cases of
CVD than cancer were present. Another explanation
could be the heterogeneity of the cancer endpoint, as
epigenetic changes might be specific to different
types of cancer, which constitutes one of the limita-
tions of our study. We were not able, however, to
conduct separate analysis for each type of specific
cancer because of the small number of cases. Addi-
tional cardio-oncology studies that focus on specific
CVD and cancer endpoints leveraging multiple co-
horts are needed. In addition, nonfatal cancer data in
the SHS might be incomplete, as the SHS is not linked
to cancer registry data. However, FHS and ARIC do
have linkage to the cancer registry data, which adds
robustness to the identified DMPs. On the other hand
although elastic-net can deal with multicollinearity
and has shown good performance in high-
dimensional data,48 shrinkage might lead to biased
effect estimates and therefore to loss of relevant
DMPs selection, which might challenge causal dis-
covery. Nevertheless, the DMPs identified in our
study for each of the considered endpoints are robust,
given that they were identified in 4 ethnically
diverse populations.

Strengths of our study include the multicohort
approach and the ethnic diversity of the participants
included in this study, the large sample size, the
elastic-net approach that alleviates the need to apply
multiple-comparisons correction, the ability to ac-
count for a wide range of confounders, the
prospective nature and long follow-up duration of the
studies, and the combination of an EWAS with sub-
sequent in silico analyses leveraging the mechanistic
evidence available from well-established bio-
informatic datasets to assess the potential biological
plausibility of the findings.

CONCLUSIONS

We reported epigenetic signatures in common for
cancer and CVD. Our bioinformatic analyses addi-
tionally support that underlying common molecular
pathways are related to cancer and CVD onset. Future
studies that experimentally evaluate the role of the
identified target genes in CVD and cancer are needed.
The epigenetic signatures reported in this study could
potentially help identify individuals with newly
diagnosed CVD at increased cancer risk, thus enabling
the prevention and control of cancer and CVD.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: We conducted

an ethnically diverse multicohort study to identify epigenetic

marks, which point to common underlying molecular mecha-

nisms for CVD and cancer and might aid in the early detection of

cancer in patients with newly diagnosed CVD.

TRANSLATIONAL OUTLOOK: Future research and experi-

mental studies are needed to confirm the role of the identified

epigenetic marks as treatment targets in cardio-oncology.

Measuring DNAm might enable the identification of candidates

for intensified cancer prevention and screening in newly diag-

nosed clinical CVD.

J A C C : C A R D I O O N C O L O G Y , V O L . 6 , N O . 5 , 2 0 2 4 Domingo-Relloso et al
O C T O B E R 2 0 2 4 : 7 3 1 – 7 4 2 Epigenetic Signatures for CVD and Cancer

741
National Institutes of Health Director’s Challenge Award (Daniel

Levy, principal investigator). Dr Belsky is a fellow of the CIFAR CBD

Network. The content of this work is solely the responsibility of the

authors and does not necessarily represent the official views of the

National Institutes of Health, the Centers for Disease Control and

Prevention, the U.S. Department of Health and Human Services, or

Instituto de Salud Carlos III. The authors have reported that they have

no relationships relevant to the contents of this paper to disclose.

ADDRESS FOR CORRESPONDENCE: Dr Arce
Domingo-Relloso, Columbia University, Mailman
School of Public Health, 722 W 168th Street, New
York, New York 10032, USA. E-mail: ad3531@cumc.
columbia.edu. X handle: @arcedomingo_. OR Dr Ma-
ria Tellez-Plaza, National Center for Epidemiology,
Instituto de Salud Carlos III, Calle Melchor Fernandez
Almagro, 5, 28029 Madrid, Spain. E-mail: m.tellez@
isciii.es.
RE F E RENCE S
1. Michel L, Schadendorf D, Rassaf T. Oncocardi-
ology: new challenges, new opportunities. Herz.
2020;45:619–625.

2. Ahmad FB, Cisewski JA, Xu J, Anderson RN.
Provisional mortality data—United States, 2022.
MMWR Morb Mortal Wkly Rep. 2023;72:488–492.

3. Koene RJ, Prizment AE, Blaes A, Konety SH.
Shared risk factors in cardiovascular disease and
cancer. Circulation. 2016;133:1104–1114.

4. Al-Kindi SG, Oliveira GH. Onco-cardiology: a
tale of interplay between 2 families of diseases.
Mayo Clin Proc. 2016;91:1675–1677.

5. Hong RA, Iimura T, Sumida KN, Eager RM. Car-
dio-oncology/onco-cardiology. Clin Cardiol.
2010;33:733–737.

6. Aleman BMP, Moser EC, Nuver J, et al. Cardio-
vascular disease after cancer therapy. EJC Suppl.
2014;12:18–28.

7. Zoghbi HY, Beaudet AL. Epigenetics and human
disease. Cold Spring Harb Perspect Biol. 2016;8:1–
28.

8. Kinnaird A, Zhao S, Wellen KE, Michelakis ED.
Metabolic control of epigenetics in cancer. Nat Rev
Cancer. 2016;16:694–707.

9. van der Harst P, de Windt LJ, Chambers JC.
Translational perspective on epigenetics in car-
diovascular disease. J Am Coll Cardiol. 2017;70:
590–606.

10. Lee ET, Welty TK, Fabsitz R, et al. The Strong
Heart Study. A study of cardiovascular disease in
American Indians: design and methods. Am J Epi-
demiol. 1990;132:1141–1155.

11. Tsao CW, Vasan RS. Cohort Profile: The Fra-
mingham Heart Study (FHS): overview of mile-
stones in cardiovascular epidemiology. Int J
Epidemiol. 2015;44:1800–1813.

12. Wright JD, Folsom AR, Coresh J, et al. The
Atherosclerosis Risk in Communities (ARIC) study:
JACC focus seminar 3/8. J Am Coll Cardiol.
2021;77:2939.
13. D’Agostino RB, Vasan RS, Pencina MJ, et al.
General cardiovascular risk profile for use in pri-
mary care: the Framingham Heart Study. Circula-
tion. 2008;117:743–753.

14. Kreger BE, Splansky GL, Schatzkin A. The
cancer experience in the Framingham Heart Study
cohort. Cancer. 1991;67(1):1–6.

15. Almuwaqqat Z, Jokhadar M, Norby FL, et al.
Association of antidepressant medication type
with the incidence of cardiovascular disease in the
ARIC study. J Am Heart Assoc. 2019;8(11):
e012503.

16. Joshu CE, Barber JR, Coresh J, et al. Enhancing
the infrastructure of the Atherosclerosis Risk in
Communities (ARIC) study for cancer epidemi-
ology research: ARIC Cancer. Cancer Epidemiol
Biomarkers Prev. 2018;27:295.

17. Domingo-Relloso A, Feng Y, Rodriguez-
Hernandez Z, et al. Omics feature selection with
the extended SIS R package: identification of a
body mass index epigenetic multi-marker in the
Strong Heart Study. Am J Epidemiol. 2024;193(7):
1010–1018.

18. Simon N, Friedman J, Hastie T, Tibshirani R.
Regularization paths for Cox’s proportional haz-
ards model via coordinate descent. J Stat Softw.
2011;39:1–13.

19. Schwarzer G, Carpenter JR, Rücker G. Meta-
Analysis With R. Cham, Switzerland: Springer;
2015.

20. Joehanes R, Just AC, Marioni RE, et al.
Epigenetic signatures of cigarette smoking. Circ
Cardiovasc Genet. 2016;9:436–447.

21. van Lissa C. Heterogeneity statistics. In: Doing
Meta-Analysis in R and Exploring Heterogeneity
Using metaforest. Accessed April 30, 2023.
https://cjvanlissa.github.io/Doing-Meta-Analysis-
in-R/heterogeneity-statistics.html.

22. Szklarczyk D, Gable AL, Lyon D, et al. STRING
v11: protein–protein association networks with
increased coverage, supporting functional
discovery in genome-wide experimental datasets.
Nucleic Acids Res. 2019;47:D607–D613.

23. Knox C, Law V, Jewison T, et al. DrugBank 3.0:
a comprehensive resource for “omics” research on
drugs. Nucleic Acids Res. 2011;39:D1035–D1041.

24. Huang C, Li SX, Caraballo C, et al. Performance
metrics for the comparative analysis of clinical risk
prediction models employing machine learning.
Circ Cardiovasc Qual Outcomes. 2021;14:E007526.

25. Neve B, Fernandez-Zapico ME, Ashkenazi-
Katalan V, et al. Role of transcription factor KLF11
and its diabetes-associated gene variants in
pancreatic beta cell function. Proc Natl Acad Sci U
S A. 2005;102:4807–4812.

26. Jiang N, Niu G, Pan YH, et al. CBX4 tran-
scriptionally suppresses KLF6 via interaction with
HDAC1 to exert oncogenic activities in clear cell
renal cell carcinoma. EBioMedicine. 2020;53:
102692.

27. Hu C, Zhang Q, Tang Q, et al. CBX4 promotes
the proliferation and metastasis via regulating
BMI-1 in lung cancer. J Cell Mol Med. 2020;24:
618–631.

28. Li W, Chen H, Wang Z, Liu J, Lei X, Chen W.
Chromobox 4 (CBX4) promotes tumor progression
and stemness via activating CDC20 in gastric
cancer. J Gastrointest Oncol. 2022;13:1058–1072.

29. Zhao W, Ma B, Tian Z, et al. Inhibiting CBX4
efficiently protects hepatocellular carcinoma cells
against sorafenib resistance. Br J Cancer.
2021;124:1237.

30. González-Castro TB, Tovilla-Zárate CA, López-
Narvaez ML, et al. Association between congenital
heart disease and NKX2.5 gene polymorphisms:
systematic review and meta-analysis. Biomark
Med. 2020;14:1747–1757.

31. Benaglio P, D’Antonio-Chronowska A, Ma W,
et al. Allele-specific NKX2-5 binding underlies
multiple genetic associations with human elec-
trocardiographic traits. Nat Genet. 2019;51:1506–
1517.

mailto:ad3531@cumc.columbia.edu
mailto:ad3531@cumc.columbia.edu
https://twitter.com/arcedomingo_
mailto:m.tellez@isciii.es
mailto:m.tellez@isciii.es
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref1
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref1
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref1
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref2
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref2
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref2
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref3
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref3
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref3
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref4
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref4
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref4
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref5
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref5
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref5
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref6
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref6
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref6
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref7
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref7
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref7
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref8
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref8
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref8
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref9
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref9
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref9
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref9
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref10
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref10
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref10
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref10
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref11
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref11
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref11
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref11
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref12
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref12
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref12
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref12
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref13
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref13
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref13
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref13
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref14
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref14
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref14
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref15
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref15
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref15
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref15
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref15
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref16
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref16
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref16
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref16
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref16
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref17
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref17
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref17
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref17
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref17
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref17
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref18
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref18
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref18
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref18
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref19
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref19
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref19
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref20
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref20
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref20
https://cjvanlissa.github.io/Doing-Meta-Analysis-in-R/heterogeneity-statistics.html
https://cjvanlissa.github.io/Doing-Meta-Analysis-in-R/heterogeneity-statistics.html
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref22
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref22
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref22
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref22
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref22
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref23
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref23
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref23
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref24
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref24
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref24
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref24
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref25
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref25
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref25
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref25
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref25
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref26
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref26
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref26
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref26
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref26
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref27
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref27
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref27
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref27
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref28
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref28
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref28
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref28
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref29
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref29
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref29
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref29
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref30
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref30
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref30
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref30
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref30
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref31
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref31
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref31
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref31
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref31


Domingo-Relloso et al J A C C : C A R D I O O N C O L O G Y , V O L . 6 , N O . 5 , 2 0 2 4

Epigenetic Signatures for CVD and Cancer O C T O B E R 2 0 2 4 : 7 3 1 – 7 4 2

742
32. Nagel S, Scherr M, Kel A, et al. Activation of
TLX3 and NKX2-5 in t(5;14)(q35;q32) T-cell acute
lymphoblastic leukemia by remote 30-BCL11B en-
hancers and coregulation by PU.1 and HMGA1.
Cancer Res. 2007;67:1461–1471.

33. Li H, Wang J, Huang K, et al. Nkx2.5 functions
as a conditional tumor suppressor gene in colo-
rectal cancer cells via acting as a transcriptional
coactivator in p53-mediated p21 expression. Front
Oncol. 2021;11:648045.

34. Krolevets M, ten Cate V, Prochaska JH, et al.
DNA methylation and cardiovascular disease in
humans: a systematic review and database of known
CpG methylation sites. Clin Epigenet. 2023;15:1–16.

35. Vargas AC, Gray LA, White CL, et al. Genome
wide methylation profiling of selected matched
soft tissue sarcomas identifies methylation
changes in metastatic and recurrent disease. Sci
Rep. 2021;11:1–17.

36. Sengelaub CA, Navrazhina K, Ross JB,
Halberg N, Tavazoie SF. PTPRN2 and PLCb1 pro-
mote metastatic breast cancer cell migration
through PI(4,5)P2-dependent actin remodeling.
EMBO J. 2016;35:62–76.

37. Uribe ML, Marrocco I, Yarden Y. EGFR in can-
cer: signaling mechanisms, drugs, and acquired
resistance. Cancers (Basel). 2021;13:2748.
38. Chitturi KR, Burns EA, Muhsen IN, Anand K,
Trachtenberg BH. Cardiovascular risks with
epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitors and monoclonal antibody ther-
apy. Curr Oncol Rep. 2022;24:475–491.

39. Augello MA, Hickey TE, Knudsen KE. FOXA1:
master of steroid receptor function in cancer.
EMBO J. 2011;30:3885–3894.

40. Hannenhalli S, Putt ME, Gilmore JM, et al.
Transcriptional genomics associates FOX tran-
scription factors with human heart failure. Circu-
lation. 2006;114:1269–1276.

41. Birknerová N, Kova?íková H, Baranová I, et al.
DNA hypermethylation of CADM1, PAX5, WT1,
RARb, and PAX6 genes in oropharyngeal cancer
associated with human papillomavirus. Epige-
netics. 2022;17:1301–1310.

42. Kim DJ, Lee MJ, Cho HB, et al. Differential
expression of Pax6 following bilateral common
carotid artery occlusion. In Vivo. 2023;37:655–
660.

43. Scheller M, Ludwig AK, Göllner S, et al. Hot-
spot DNMT3A mutations in clonal hematopoiesis
and acute myeloid leukemia sensitize cells to
azacytidine via viral mimicry response. Nat Cancer.
2021;2:527–544.
44. Oteiza PI. Zinc and the modulation of redox
homeostasis. Free Radic Biol Med. 2012;53:1748–
1759.

45. Fra A, Yoboue ED, Sitia R. Cysteines as redox
molecular switches and targets of disease. Front
Mol Neurosci. 2017;10:167.

46. Lionaki E, Ploumi C, Tavernarakis N. One-
carbon metabolism: pulling the strings behind
aging and neurodegeneration. Cells. 2022;11(2):
214.

47. Meijers WC, Maglione M, Bakker SJL, et al.
Heart failure stimulates tumor growth by circu-
lating factors. Circulation. 2018;138:678–691.

48. Zou H, Hastie T. Regularization and variable
selection via the elastic net. J R Stat Soc B Stat
Methodol. 2005;67(2):301–320.
KEY WORDS cancer, cardio-oncology,
cardiovascular disease, DNA methylation,
multicohort
APPENDIX For supplemental methods,
references, tables, and figures, please see the
online version of this paper.

http://refhub.elsevier.com/S2666-0873(24)00273-4/sref32
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref32
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref32
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref32
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref32
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref32
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref33
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref33
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref33
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref33
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref33
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref34
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref34
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref34
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref34
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref35
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref35
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref35
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref35
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref35
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref36
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref36
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref36
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref36
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref36
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref37
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref37
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref37
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref38
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref38
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref38
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref38
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref38
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref39
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref39
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref39
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref40
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref40
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref40
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref40
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref41
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref41
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref41
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref41
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref41
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref42
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref42
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref42
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref42
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref43
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref43
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref43
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref43
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref43
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref44
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref44
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref44
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref45
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref45
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref45
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref46
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref46
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref46
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref46
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref47
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref47
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref47
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref48
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref48
http://refhub.elsevier.com/S2666-0873(24)00273-4/sref48

	Multicohort Epigenome-Wide Association Study of All-Cause Cardiovascular Disease and Cancer Incidence
	Methods
	Study populations
	The SHS
	The FHS
	The ARIC

	Cancer and CVD incidence ascertainment and follow-up definition
	Statistical analysis
	Multicohort 2-stage epigenome-wide association approach and meta-analysis
	Molecular pathway analyses
	Predictive models of incident cancer in participants who developed CVD first


	Results
	Descriptive analysis
	Multicohort 2-stage approach and meta-analysis
	Molecular pathways analyses
	Network enrichment analysis
	Incident cancer predictive accuracy among individuals with prior cardiovascular events

	Discussion
	Study limitations

	Conclusions
	Acknowledgments
	Funding Support and Author Disclosures
	References


