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Abstract: Lichens are valuable natural resources used for centuries throughout the world 

as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous 

purposes. This study investigates the antiproliferative, antibacterial and antifungal activity 

of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its 

major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial 

activity against nine American Type Culture Collection standard and clinically isolated 
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bacterial strains, and three fungal strains. Both showed strong antibacterial activity against 

all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus 

from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the 

most sensitive. The antiproliferative effects of the extract and parietin were also 

investigated in human breast cancer cells. The extract inhibited proliferation and induced 

apoptosis, both effects being accompanied by modulation of expression of cell cycle 

regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis  

by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis  

Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and 

inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results 

indicate that Xanthoria parietina is a major potential source of antimicrobial and 

anticancer substances. 

Keywords: Xanthoria parietina; lichens; parietin; antimicrobial activity; anticancer 

activity; signal transduction; proliferation; differentiation 

 

1. Introduction 

Lichens are symbiotic organisms in which fungi and algae and/or cyanobacteria form an intimate 

biological union [1]. They are commonly found worldwide and can survive a variety of harsh 

environmental conditions. The worldwide lichen flora is estimated to include about 18,500 species that 

inhabit virtually all terrestrial ecosystems, from the arctic tundra to desert climates and from the 

lowlands to the highest mountains [1]. Lichens have long had a number of practical applications, 

including their use as a source of medicinal substances. Their flexibility in habitat occupancy enables 

them to produce numerous unique secondary metabolites that can comprise up to 30% of the dry 

weight of a lichen thallus, although 5%–10% is more common. The physiological cost in energy and 

carbon used to produce these compounds suggests that they play an important role in protection and 

defense mechanism(s); essentially, lichens produce protective secondary metabolites that serve to deter 

herbivory and colonization by pathogens [2]. To date, over 800 secondary metabolites of lichens have 

been discovered, most of which are exclusively present in lichens, and many of which exert a wide 

variety of biological actions including antibiotic, antimicrobial, antiviral, anti-inflammatory, analgesic, 

antipyretic, antiproliferative and cytotoxic effects [3–5]. Lichens have been used in the traditional 

medicines of Native Americans and Chinese, principally as expectorants, to treat a range of ailments. 

During the Middle Ages, lichens were widely used in the herbal remedies of practitioners. Accounts 

appear in herbal medicine texts of several lichens thought to have therapeutic activity, including 

species belonging to the genera Cladonia, Evernia, Lobaria, Parmelia, Peltigera, Pertusaria, Physcia, 

Roccella, Usnea and Xanthoria [6]. Specifically, the orange-yellowish species Xanthoria parietina 

(Linnaeus.) Theodor Fries has been listed in various pharmacopoeias [7]. This foliose lichen has a 

worldwide distribution, being present in Australia, Africa, Asia, North America and Europe. It can be 

found on rocks, walls (hence the epithet parietina meaning “on walls”), roofs, the bark of trees and 

shrubs, and a wide range of anthropogenic substrata [7]. Because of its color, this lichen has been used 
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against jaundice in traditional medicine since antiquity. In eastern Andalucia (Spain) Xanthoria 

parietina was used to treat menstrual complaints, kidney disorders and as an analgesic [4]. The 

particular coloring of Xanthoria parietina is due to its main secondary metabolite, parietin, an 

anthraquinone compound with an orange-yellowish color that absorbs blue light. Parietin is 

synthesized by the mycobiont, and protects the photobiont against oxidation by excessive solar 

radiation [8]. Among all the secondary metabolites reported for lichens, only a relatively small number 

(50–60) occur in non-lichenized fungi or higher plants. Parietin is one of these, being present in other 

fungi such as Aspergillus and Penicillium, as well as in the vascular plant genera Rheum, Rumex and 

Ventilago [3]. 

While the numerous activities of lichen metabolites are now recognized, their therapeutic potential 

has not been fully explored and remains pharmaceutically unexploited [9]. In particular, although 

lichens are a rich source of biologically active compounds and more than one thousand secondary 

metabolites have been identified, very few have been tested for their biological effects. For instance,  

a relatively small number (~50 species) have been screened for antibiotic activity, despite the fact that 

over 50% of the lichens tested show at least some antibiotic action [4]. Therefore, research needs to be 

expanded in this area of study, with further efforts directed towards screening the biological properties 

of lichen extracts and specific lichen secondary metabolites in order to identify the precise mechanisms 

of action of active extracts and compounds. The aim of this study was to investigate the antibacterial 

and antifungal activity of Xanthoria parietina and its main secondary metabolite parietin, as well as 

their antiproliferative and anticancer properties in cancer cell lines. 

2. Results and Discussion 

2.1. Antimicrobial Activity of Acetone Extract from Xanthoria parietina and Parietin 

Acetone extract (AE) from Xanthoria parietina and parietin were analyzed for their antimicrobial 

activity against nine bacterial strains selected as representative of the Gram (+) and Gram (−) classes, 

and against clinical isolates of the same strains, all pathogens for humans and known to cause 

respiratory, gastrointestinal, skin and urinary disorders. The results are shown in Table 1. Minimal 

inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values indicate that 

AE exerted a strong antibacterial activity against the nine American Type Culture Collection (ATCC) 

bacterial strains and the matched clinically isolated (CI) strains. Specifically, AE inhibited all the 

tested microorganisms at concentrations of 7.8–62.5 µg/mL. Parietin likewise displayed a robust 

antibacterial activity, with MICs ranging from 7.8 to 62.5 µg/mL. The Gram (+) Staphylococcus aureus 

from both standard and clinical sources showed the highest sensitivity to both AE and parietin  

(MIC = 7.8 µg/mL for standard strains and MIC = 15.6 µg/mL for clinical isolates), and also showed 

interesting MBC values (62.5 µg/mL for standard strains). Generally, among all the bacteria tested, the 

Gram (+) strains were those most strongly inhibited by AE and parietin. Both treatments demonstrated 

a significant activity against Gram (−) bacteria, particularly against P. vulgaris and P. mirabilis  

(MIC = 15.6 µg/mL for both). Among the others, S. typhi and E. aerogenes were particularly sensitive 

to AE and parietin, respectively. Interestingly, P. mirabilis, S. typhi and E. cloacae were the only 

Gram (−) bacteria for which we also observed interesting MBC values within the tested concentrations. 
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Table 1. Minimal inhibitory concentration (MIC) and minimum bactericidal concentration 

(MBC) values (μg/mL) of acetone extract (AE) from Xanthoria parietina and parietin, and 

MICs of reference antibiotics. 

Microrganism 
MIC MBC 

AE Parietin CTAX PENG TET AE Parietin 

S. aureus ATCC 13709 7.8 ± 0.1 7.8 ± 0.2 2 ± 0.1 0.03 ± 0 2 ± 0.1 62.5 ± 0.6 62.5 ± 0.8 

S. aureus CI 15.6 ± 0.3 15.6 ± 0.4 R R R >100 >100 

E. faecalis ATCC 14428 15.6 ± 0.1 7.8 ± 0.3 R 8 ± 0.2 2 ± 0.1 >100 62.5 ± 0.7 

E. faecalis CI 31.3 ± 0.2 15.6 ± 0.1 R R R >100 >100 

P. vulgaris ATCC 12454 15.6 ± 0.3 15.6 ± 0.2 2 ± 0.1 4 ± 0.3 R R R 

P. vulgaris CI 31.3 ± 0.1 31.3 ± 0.3 32 ± 0.3 R R R R 

P. mirabilis ATCC 7002 15.6 ± 0.1 15.6 ± 0.1 0.03 ± 0 4 ± 0.2 32 ± 0.6 62.5 ± 0.7 62.5 ± 0.4 

P. mirabilis CI 15.6 ± 0.1 31.3 ± 0.2 32 ± 0.6 R R R R 

S. typhi ATCC 19430 15.6 ± 0.2 31.3 ± 0.4 0.5 ± 0.1 4 ± 0.2 1 ± 0.3 62.5 ± 0.5 >100 

S. typhi CI 31.3 ± 0.2 62.5 ± 0.2 1 ± 0.1 2 ± 0.1 1 ± 0.1 >100 >100 

E. cloacae ATCC 10699 31.3 ± 0.0 31.3 ± 0.3 R 4 ± 0.4 R >100 >100 

E. cloacae CI 62.5 ± 0.1 62.5 ± 0.2 R R R >100 >100 

E. aerogenes ATCC 13048 31.3 ± 0.2 15.6 ± 0.1 R 4 ± 0.1 R R R 

E. aerogenes CI 62.5 ± 0.5 31.3 ± 0.2 R R R R R 

P. aeruginosa ATCC 27853 31.3 ± 0.1 31.3 ± 0.3 16 ± 0.3 R 32 ± 0.1 R R 

P. aeruginosa CI 62.5 ± 0.2 62.5 ± 0.1 32 ± 0.4 R R R R 

K. pneumoniae ATCC 27736 62.5 ± 0.3 31.3 ± 0.2 0.1 ± 0.0 R 16 ± 0.1 R R 

K. pneumoniae CI >100 62.5 ± 0.7 32 ± 0.4 R R R R 

CTAX = Cefotaxime; PENG = Benzyl Penicillin Sodium; TET = Tetracycline; CI = Clinically Isolated;  

R = Resistant. The values shown represent the average of three determinations ± standard deviations. 

2.2. Antifungal Activity of Acetone Extract from Xanthoria parietina and Parietin 

The activity of AE and parietin against the fungal microorganisms tested was also considerable 

(Table 2), with the highest values for Rhyzoctonia solani (MIC = 50 µg/mL for AE and MIC = 31.3 µg/mL 

for parietin). Parietin was also active against Botrytis cinerea and the clinical isolate of Candida albicans 

(MIC = 62.5 µg/mL for both), while the extract was inactive against these two fungi. Therefore, while 

AE and parietin showed a similar activity on the nine bacterial strains, parietin was more active than 

AE on the three fungi tested. 

Table 2. Antifungal activity (MIC values µg/mL) of acetone extract (AE) from  

Xanthoria parietina and parietin. 

Microrganism 
MIC MFC 

AE Parietin KCON AE Parietin 

Rhyzoctonia solani 62.5 ± 0.3 31.3 ± 0.5 0.2 ± 0.0 – – 
Botridis cinerea >100 62.5 ± 0.4 0.2 ± 0.1 – – 

Candida albicans CI >100 62.5 ± 0.7 0.4 ± 0.1 – – 

KCON = Ketoconazole; CI = Clinically Isolated; – not active; MFC = Minimum Fungicidal Concentration. 

The values shown represent the average of three determinations ± standard deviations. 
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2.3. Anticancer Action of Acetone Extract from Xanthoria parietina and Parietin 

The antiproliferative and anticancer properties of different doses of AE and parietin was assessed in 

MCF-7 and MDA-MB231 breast cancer cells, and in 3T3L1 cells (Figure 1). Using crystal violet 

staining, proliferation curve analysis revealed the antiproliferative activity of AE in two cancer cell 

lines tested. As shown in Figure 1, the antiproliferative effect was dose-dependent, with the greatest 

effect being observed upon three days of treatment using 1.5–3 mg/mL AE. To further investigate the 

anticancer action of Xanthoria parietina extract, we tested its biological effects on the cell cycle in 

MDA-MB231 cancer cells, the more susceptible of the two lines to treatment. As shown in Figure 2, 

cells were blocked in G1 phase after 48 h of treatment with 1.5 mg/mL AE. In contrast, parietin alone 

did not have any effect on cell cycle phases (Figure 2), even when doses were increased. These data 

were also supported by morphological analyses (Figure 3). 

To understand which molecular events underlie the effects of the full extract, we tested its action on 

known cell cycle regulators after 48 h of treatment with 1.5 mg/mL. As shown in Figure 4A, p27 and 

p16 were up-regulated, whereas the well-known regulators of proliferation cyclin D1 and cyclin A 

were decreased. This scenario is reminiscent of a cell cycle block regulated at molecular level. In 

addition, we found that TNF-related apoptosis-inducing ligand (TRAIL), a key apoptotic player, is 

already up-regulated at day 2 of treatment. At mitochondria cell death level, B-cell lymphoma 2  

(Bcl-2) was decreased together with increased phosphorylation of Bcl-2-associated agonist of cell 

death (BAD) (Figure 4B), thus indicating that both pathways (extrinsic and intrinsic) are activated.  

In full agreement with the cell cycle data and morphological analyses, parietin failed to modulate these 

targets even when doses were increased (Figure 4C), suggesting that multifactorial components of AE 

contribute to its anticancer action. 

 

Figure 1. Antiproliferative action of the Xanthoria parietina extract. Proliferation curves 

by crystal violet assay after 3 days of treatment at different doses in the indicated cell lines. 

Results are the average of experiments performed in triplicate. 



Int. J. Mol. Sci. 2015, 16 7866 

 

 

 

Figure 2. Cell cycle analysis in MDA-MB231 cells at 48 h after treatment with the 

Xanthoria parietina extract (1.5 mg/mL) or parietin at the indicated concentrations. 

 

Figure 3. Morphological analysis of proliferation arrest in MDA-MB231 breast cancer 

cells at 24 and 48 h after treatment with 1.5 mg/mL of the Xanthoria parietina extract (AE) 

or parietin (P) at the indicated concentrations (50-100-200 µM). Control (CTR), scale bar: 

71 μm. 

24 h                           48 h

CTR

AE

P 50

P 100

P 200
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(a) (b) (c) 

Figure 4. Western blot analysis of molecular effects of Xanthoria parietina extract (AE) 

and parietin in breast cancer cells after 48 h of treatment at the indicated concentrations. 

(a) Molecular effects of AE on cell cycle markers; (b) Molecular effects of AE on 

apoptotic markers; (c) Molecular effects of parietin on cell cycle markers. GAPDH 

expression levels indicate equal loading. 

2.4. Discussion 

In the present study, we investigated the antimicrobial, antifungal and antiproliferative activities of 

AE from the lichen Xanthoria parietina and its secondary metabolite parietin. For our research, we 

used an AE of the lichen, as it has been demonstrated that typical secondary metabolites of lichens are 

more soluble in acetone than in methanol or other solvents [10]. 

Overall, our results on the antimicrobial properties of the lichen indicated that the antibacterial 

activity of AE and parietin is stronger than their antibacterial effect. This finding is consistent  

with previous studies on the antimicrobial action of lichens [11], which showed that bacteria are  

more sensitive to antimicrobial activity than fungi due to differences in cell wall composition and 

permeability. The cell wall of fungi is in fact poorly permeable and consists of polysaccharides such as 

hitchin and glucan [11]. After all, it makes biological sense that fungal metabolites show a low toxicity 

to fungi. In terms of antibacterial activity, although parietin was more active than the extract against 

some bacterial strains, their activity was generally comparable. Both AE and the purified parietin 

exerted a strong inhibition above all against Gram (+) but also Gram (−) bacteria, unlike the majority 

of compounds from lichens, which generally inhibit mainly the growth of Gram (+) bacteria [1]. 

Noteworthy, antibiotic-resistant Gram (−) bacteria, such as Salmonella and Proteus, were also 

inhibited. In addition, we observed a significant activity against Pseudomonas aeruginosa, which is 

responsible for severe opportunistic infections and is very often resistant to conventional antibiotics. 

Furthermore, comparing the activities against ATCC and CI strains, we found similar effects, although 

almost all the CI bacteria were resistant to more than one reference antibiotic. Interestingly, bacteria 

isolated from antibiotic-resistant patients proved to be highly sensitive to both AE and parietin. Their 

activity against the fungal microorganisms tested was also considerable. Our findings are consistent 

with previous studies investigating the activity of parietin against different bacterial strains and  

fungi [12–14]. However, this is the first time that the antimicrobial and antifungal properties of the 

extract of Xanthoria parietina have been demonstrated. 

Antibiotic properties of lichens are of special interest to scientists and their biological role has  

been relatively well studied [15]. Some lichen compounds inhibit bacterial growth at much lower 
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concentrations compared to other sources of antibiotic therapies. Moreover, they have been shown to 

be potent not only against sensitive strains of bacteria, but also against various multi-drug resistant 

bacterial strains. Usnic acid, a phenolic secondary metabolite in lichens, is currently employed as  

a wide-spectrum antibiotic: its sodium salt is used for treating wounds, burns and fissures [16]. Both  

the (+) and (−) enantiomers of usnic acid are effective against a large variety of bacterial strains, 

including strains from clinical isolates. Of particular significance is the inhibition of the growth of 

multiresistant strains of Streptococcus aureus, enterococci and mycobacteria. Usnic acid, together  

with evernic acid and vulpinic acid, inhibits the growth of the resistant Staphylococcus aureus,  

Bacillus subtilis and Bacillus megaterium [1], and, interestingly, usnic acid and atranorin showed 

antimicrobial and antibiofilm activity against methicillin-resistant Staphylococcus aureus from cystic 

fibrosis patients [17]. Another interesting antimicrobial compound from lichens is pannarin, which has 

been shown to be active against multi-drug methicillin-resistant Staphylococcus aureus clinical 

isolates [18]. In terms of antifungal activity, extracts of different lichens such as Protousnea poeppigii 

and Usnea florida exhibited antimicrobial activity against different pathogenic fungi, with 

isodivaricatic acid, 5-propylresorcinol, divaricatinic acid and usnic acid identified as antifungal  

agents [19], while the lichen Parmelia reticulate, along with its metabolites protolichesterinic acid and 

atranorin, were active against soilborne pathogenic fungi [20]. Our results therefore confirm the 

importance of lichens as a source of antimicrobial metabolites. 

We also assessed the efficacy of different doses of Xanthoria parietina extract and parietin in breast 

cancer cell lines. Lichen secondary products began to be used as anti-cancer drugs in the late 1960s 

when the activity of lichen polysaccharides against tumor cells was initially explored; similarly, 

Kupchan and Kopperman [21] first reported the tumor inhibitor activity of usnic acid extracted from 

Cladonia sp. against Lewis lung carcinoma. Since these early studies, many other lichen compounds, 

either in crude extract or purified form, have been screened against various malignant cell lines, often 

demonstrating significant inhibitory activity even at very low concentrations [5]. Some of the most 

promising metabolites are usnic acid, found to be effective against Lewis lung carcinoma, murine P388 

leukemia and many other forms of cancer, pannarin, found to inhibit cell growth and to induce cell 

death in human prostate carcinoma DU-145 cells [22] and human melanoma cells [23], and atranorin, 

an activator of programmed cell death in A2780 and HT-29 cell lines, probably through the 

mitochondrial pathway [10,24]. Various lichen metabolites have been found to block cancer cell 

growth at the sub-G1 or S-phase of the cell cycle. The mechanism of cell death in various cancer cell 

lines induced by these compounds includes apoptosis [22–24], both caspase dependent and caspase 

independent [23]. However, until now there are no studies documenting caspase activation though the 

death receptor pathway, although there is evidence of mitochondria-mediated caspase activation [5]. 

We therefore investigated the antiproliferative effects of both Xanthoria parietina extract and parietin 

on other cell lines, examining the specific mechanism of action against cancer cells. Previously, 

Triggiani et al. [25] showed that Xanthoria parietina extract exerts antiproliferative activity on murine 

myeloma cells (P3X63Ag8.653) and significantly reduces cell proliferation by up to 75%. In two 

different studies a slight sensitivity of nine human cancer cell lines to the antiproliferative/cytotoxic 

effect of parietin was also described [10,24]. Here, we extend the investigation on the antiproliferative 

effects of both Xanthoria parietina extract and parietin on other mammalian cell lines, examining also 

the specific mechanism of action against cancer cell lines. 
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Xanthoria parietina AE showed a dose-dependent antiproliferative activity in MCF-7 and  

MDA-MB231 cells, with the greatest effect being obtained using 1.5–3 mg/mL of the extract.  

To investigate the anticancer potential of AE, we tested its biological effects on cell cycle and 

apoptosis. The cells were blocked in G1 phase after 48 h of treatment with 1.5 mg/mL of the  

extract. Interestingly, we demonstrated the presence of cell cycle block and death, occurring with  

Xanthoria parietina treatment, with induction of p27 and p16, whereas cyclin D1 and cyclin A,  

known to modulate proliferation, were decreased. Notably, under similar experimental conditions,  

the expression level analysis of pro- and anti-apoptotic proteins showed that Bcl-2 was decreased, 

while TRAIL and pBAD were induced after treatment with the extract, thus validating its  

pro-apoptotic action. These lines of evidence strongly suggest the involvement of death receptors and 

mitochondrial-mediated death pathways in the regulation of apoptosis induced by the extract. In full 

agreement with cell cycle progression effects and morphological characterizations, parietin alone 

failed to modulate these targets even when doses were increased. Indeed, previous papers [10,24] 

showed that other bioactive secondary metabolites isolated from lichens (such as usnic acid and 

atranorin) were more effective anticancer compounds than parietin. The fact that treatment with 

parietin alone did not induce any antiproliferative effect clearly indicates that the biological activity of 

the extract cannot be correlated to parietin alone, but it is probably a result of the synergic action of 

different components present in the lichen thallus, which together contribute to the overall anticancer 

effect. Our results highlight the need for continued efforts in screening to explore putative anticancer 

properties and the pharmaceutical potential of both lichen extracts and specific lichen metabolites 

using different cell lines. Further studies will be necessary to identify the compounds that are 

responsible for the observed antitumour effect of the total Xanthoria parietina AE. 

3. Experimental Section 

3.1. Plant Material and Extraction Procedures 

Samples of Xanthoria parietina were collected in September 2011 at a remote locality in Tuscany 

(Pian del Lago, Siena: 11°15'05''E, 43°20'20''N, 230 m a.s.l.), from sun-exposed Prunus shrubs. The 

voucher specimen of the lichen (Voucher No. 187) was deposited at the Department of Biological 

Sciences, University of Naples “Federico II”, Naples, Italy. 

After collection, the samples were brought to the laboratory within 1 h, air-dried at room 

temperature and at low light intensity for 3 days and subsequently stored at −20 °C until use, according 

to the recommended method of long-term storage of lichens for later studies [26]. 

The whole sample was then blended and then extracted over 3 days with 100% acetone at room 

temperature (3 × 5 L). Following filtration, the solvent was evaporated under reduced pressure and 

moderate temperature (35 °C) to give a gum (48 g) that was then filtered through a 0.45 µm filter. One 

part was successively assayed for its biological activity, while another portion was dissolved in CHCl3 

and then subjected to silica gel column chromatography (30 × 6 cm; silica gel 60 Merck 70–230 mesh, 

deactivated with 15% H2O), eluting with n-hexane/EtOAc (from 100:0 to 0:100 gradient), to afford  

40 fractions of 200 mL each. The fractions, analyzed by Thyn-Layer Chromatography (eluent system 

petrol/EtOAc (1:1, v/v), spray reagent Ce(SO4)2 in H2SO4), were opportunely gathered giving  
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5 fractions (A–E). Fraction C, which was found to be the most active, was further purified by  

normal-phase semi-preparative HPLC (high-performance liquid chromatography) as described by Dias 

and Urban [27] to yield parietin (0.05% dry wt.), as resulting by comparison of its spectroscopic data 

(UV, NMR and MS) with data previously reported [27]. 

3.2. Microorganisms and Media 

Nine bacterial strains from the ATTC (Rockville, MD, USA) were employed. They included the 

Gram-positive (+) bacteria, Staphylococcus aureus (ATCC 13709) and Enterococcus faecalis  

(ATCC 14428), and the following Gram-negative (−) bacteria: Proteus mirabilis (ATCC 7002),  

Proteus vulgaris (ATCC 12454), Pseudomonas aeruginosa (ATCC 27853), Salmonella typhi  

(ATCC 19430), Enterobacter aerogenes (ATCC 13048), Enterobacter cloacae (ATCC 10699), and 

Klebsiella pneumoniae (ATCC 27736). The same bacterial strains, clinically isolated, were used to 

compare sensitivity to the extract. 

For antimicrobial assays, the extract was added with 5 × 10−2 M stock solution in DMSO, and 

diluted from 0.01 to 1000 µg/mL concentrations in sterile physiological Tris buffer (pH 7.4, 0.05 M) [28] 

immediately before being used. 

3.3. Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration  

(MBC) Determination 

Bacterial strains were grown on MH (Mueller Hinton) agar plates (DIFCO, Detroit, MI, USA) and 

suspended in MH broth (DIFCO). The MIC values against bacterial strains were determined using  

the Ericcson and Sherris [29] broth-dilution method (MH broth) as previously described [30]. The 

inoculum suspensions were prepared from 6-h broth cultures and adjusted to obtain a 0.5 McFarland 

standard turbidity. The extract was sterilized by filtration through Millipore filters (0.45 µm) 

(Heidelberg, Germany) and added to MH broth medium. Serial 10-fold dilutions were made for a 

concentration range between 0.01 and 1000 µg/mL. Two-fold dilutions were tested to obtain a more 

precise measurement of the MIC. The bacterial suspensions were aerobically incubated for 24 h at  

37 °C. The MIC was defined as the lowest concentration able to inhibit any visible bacterial growth. 

Cultures containing only sterile physiological Tris buffer (pH 7.4, 0.05 M), which did not influence 

bacterial growth, were used as controls. The MIC values were also determined for tetracycline 

hydrochloride (Pharmacia, Milan, Italy), benzyl penicillin sodium (Cynamid, Catania, Italy) and 

cefotaxime sodium (Roussel Pharma, Milan, Italy) in MH broth using standard method. 

The MBC determination was carried out by transferring aliquots of bacterial suspensions from the 

test tubes containing oil concentrations equal or higher (up to 1000 µg/mL) than the MIC to the fresh 

MH broth. The extract was tested in triplicate and the experiment was run four times. 

3.4. Antifungal Activity 

Antifungal tests were performed against three fungal strains: the CI yeast Candida albicans, 

potentially pathogenic for humans, and the two filamentous phytopathogenic fungi Botrytis cinerea 
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and Rhyzoctonia solani, kindly provided by the Plant Pathology Department of the University of 

Naples “Federico II” (Italy). 

The fungi were maintained on Sabouraud glucose agar (SGA) medium (Sanofi Diagnostic Pasteur, 

Chaska, MN, USA). 

Two techniques were used for the in vitro assays: (1) the agar incorporation method (dilution on a 

solid medium) and (2) the minimal inhibitory concentration (MIC), which inhibits the visible growth 

of fungi. Both methods are fully described in a previous report [31]. Positive control cultures were 

made by culturing the fungi with and without ketoconazole (Sigma, Milan, Italy). 

3.5. Cancer Cell Lines and Materials 

MCF-7 and MDA-MB231 cell lines were obtained from ATCC and routinely cultured. MCF-7 cells 

were grown at 37 °C in 5% CO2 atmosphere in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, 

New York, NY, USA), supplemented with 5% fetal bovine serum (FBS, Gibco), 1% L-glutamine, 1% 

ampicillin/streptomycin and 0.1% gentamicin. MDA-MB231 cells, were grown at 37 °C in 5% CO2 

atmosphere in RPMI-1640 medium (Gibco, NY, USA), supplemented with 10% heat-inactivated FBS, 

1% L-glutamine, 1% ampicillin/streptomycin and 0.1% gentamicin. 3T3L1 cells were obtained from 

ATCC and routinely cultured as previously reported [32]. 

3.6. Crystal Violet Assays 

In a 96 multiwell plate (BD), about 1200 cells/well were suspended in 200 µL of cell culture 

medium. After treatment with extract, cells were fixed in 25 µL of 11% glutaraldehyde in PBS 

(Sigma) for 15 min, washed in deionized water and dried. Wells were incubated for 20 min in 100 µL 

of crystal violet (CV; Sigma), 1 mg/mL in 20% methanol, and then washed again. Wells were 

incubated immediately for 20 min in 100 µL acetic acid (10%). The colorimetric assay carried out in 

triplicate was quantified by measuring the O.D.595. 

3.7. Cell Cycle Analysis 

Cells (2.5 × 105) were collected and suspended in 500 µL of a hypotonic buffer (0.1% Triton  

X-100, 0.1% sodium citrate, 50 µg/mL propidium iodide, RNAse A). Cells were incubated in the dark 

for 30 min. Samples were acquired on a FACS-Calibur flow cytometer and analyzed with standard 

procedures using Cell Quest software (Becton Dickinson, Milan, Italy) [33] and ModFit LT version 3 

software (Verity Software House, Topsham, ME, USA) as previously reported [34–36]. All the 

experiments were run in triplicate. 

3.8. Western Blot Analyses 

Forty micrograms of total protein extracts were separated on a 12% polyacrylamide gel and blotted 

as previously described [37]. Western blots were performed for p16, p27, cyclin A, cyclin D1 and  

Bcl-2 (dilution 1:500; Santa Cruz, Santa Cruz, CA, USA). GAPDH (Santa Cruz, dilution 1:500) was 

used to normalize for equal loading. 
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To quantify TRAIL, 100 µg total protein extract was separated on 10% polyacrylamide gel and 

blotted. Western blots were performed on TRAIL (dilution 1:200; Abcam, Cambridge, UK), and 

GAPDH (dilution 1:1000; Santa Cruz) was used to normalize for equal loading. To determine p-BAD, 

40 µg of total protein extract was separated on 12% polyacrylamide gel and blotted. Antibodies used 

were: anti-BAD, (dilution 1:500; Millipore); GAPDH (dilution 1:500, Santa Cruz), which was used to 

normalize for equal loading. 

3.9. Statistical Analysis 

One-way analysis of variance and Tukey’s pairwise comparisons (MINITAB Release 11, 1996) 

were applied to determine the significance of differences in all measured parameters. All data are 

expressed as means ± standard deviation (SD) of three independent experiments. Statistical 

significance is identified as follows: p < 0.05, p < 0.01, p < 0.001. 

4. Conclusions 

Results here described show that Xanthoria parietina and the metabolites extracted from it could 

represent a valuable tool in the treatment of cancer and infections, and may contribute to the 

development of new and safe agents for inclusion in antimicrobial, antifungal and anticancer regimens. 

However, our findings show that the overall anticancer effect of lichen extract cannot be attributed to 

its main secondary metabolite parietin, but is probably a result of the synergic action of different 

components present in the lichen thallus. Hence, further screening of other metabolites from  

Xanthoria parietina lichen will be necessary. With recent advances in technology, the development of 

cost-effective options for growing and harvesting lichen metabolites commercially as a source of 

effective drugs against pathogenic bacteria and various forms of cancer is a highly promising avenue 

to explore. 
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