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Abstract: In this work we have analyzed the pine and spruce softwood lignin fraction recovered
from a novel pressurized hot water extraction pilot process. The lignin structure was characterized
using multiple NMR techniques and the thermal properties were analyzed using thermal gravimetric
analysis. Acetylated and selectively methylated derivatives were prepared, and their structure
and properties were analyzed and compared to the unmodified lignin. The lignin had relatively
high molar weight and low PDI values and even less polydisperse fractions could be obtained by
fractionation based on solubility in i-PrOH. Condensation, especially at the 5-position, was detected in
this sulphur-free technical lignin, which had been enriched with carbon compared to the milled wood
lignin (MWL) sample of the same wood chips. An increase in phenolic and carboxylic groups was
also detected, which makes the lignin accessible to chemical modification. The lignin was determined
to be thermally stable up to (273–302 ◦C) based on its Tdst 95% value. Due to the thermal stability, low
polydispersity, and possibility to tailor its chemical properties by modification of its hydroxyl groups,
possible application areas for the lignin could be in polymeric blends, composites or in resins.

Keywords: lignin characterization; pressurized hot water extraction; biorefinery; condensed structures;
NMR analysis; thermal analysis; lignin modification

1. Introduction

As there is an uncertainty surrounding fossil-based raw materials, new alternative sources need
to be explored for fuel and platform chemicals. Lignin is the most abundant aromatic biopolymer and
could potentially be such an alternative source. The structure of lignin, in its native form, consists of
phenylpropanoic units bonded together mainly by alkyl-aryl ether bonds that are formed by radical
coupling reactions of the corresponding monolignols [1]. The monomeric units syringyl (S), guaiacyl
(G), and p-hydroxyphenyl (H) (Figure 1) will vary in occurrence based on plant species. Besides the
most abundant interconnecting alkyl-aryl ether bond (β-O-4), many other types of interconnecting
bonds between the monomeric units exist (e.g., α-O-4, β-1, β-β, β-5, 5-5, 4-O-5; see examples of such
linkages in Figure 2g). The native lignin in biomass differs greatly in properties, both physical and
chemical, compared to lignin isolated through biomass processing. These types of isolated lignins,
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called technical or industrial lignins, are available in large volumes from the pulping industry [2], but
their properties are very dependent on the isolation method [3] and on the biomass feedstock used [4].
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The largest pulping processes—Kraft, sulfite, and soda—are currently utilizing the majority of
lignin as fuel, but there are bio-refineries that are aiming to fractionate and utilize all of the biomass,
which can lead to better availability of lignin for commercialization. The Lignoboost process [5], which
allows the isolation of a lignin fraction from the Kraft process, is one such method but there are many
other biomass fractionation technologies such as organosolv, steam explosion, acid hydrolysis, hot
water extraction, and ammonia fiber expansion [6]. The different processes will yield different types of
lignin, but also the same process with different process parameters [7] could affect the structure and
properties of the lignin, therefore it is of great importance to properly characterize technical lignins
produced by novel fractionation technologies to optimize their use in different applications, as seen
from studies that compared how the chemical structure affects the product, i.e., in carbon fiber [8]
and phenol-formaldehyde resin [9]. When studying lignin as a source of fuel or chemicals, the focus
has often been to catalytically cleave the alkyl-aryl ether bonds [10,11], and thus for such an end
use, it would be preferable to have an intact lignin with large amounts of β-O-4 linkages and low
degree of condensation. There are also applications when lignin is used in its polymeric form, i.e.,
used as a copolymer, or in polymer blends, or in composites [12–15] and in these cases condensation
does not necessarily affect the properties negatively. To improve the functional properties of polymer
blends, and to increase the compatibility of lignin with other polymers, chemical modification or
derivatization is often necessary [16–19]. The compatibility [20] and the thermal stability [21] can be
tailored by altering the derivatization agent e.g., in lignin esters by increasing the length of the esters.
The innate properties of polymers can also be improved in blends with lignin as seen when poly lactic
acid (PLA) was blended with fatty acid esterified lignin [22]. These blends are often thermally treated
or processed, e.g., with temperatures around 170 ◦C for PLA [23,24] and temperatures up to 220 ◦C for
poly(ethylene oxide) blends [25]. The blending temperature can be crucial as it has been shown that
lignin enhance the degradation polymers such as PLA at elevated temperatures [26].

In this article we have studied the softwood lignin fraction obtained from a novel pressurized hot
water extraction (PHWE) biorefinery process [27,28]. In the first step of the process the hemicelluloses
are isolated by extraction from wood chips with hot water (max 150 ◦C) at oxygen-starved
conditions [27]. After the separation of the hemicelluloses the chips are cooked with alkali in a
second step to isolate the cellulose fraction as described by Schoultz et al. [28]. The lignin, called BLN
lignin, can then be precipitated and purified from the black liquor. The process is currently being
up-scaled for commercial applications. In our earlier work we have analyzed the structural changes
that the process caused to birch lignin and showed that the process clearly affects the structure [29].
As the process caused condensation and increased the amount of free hydroxyl groups, this lignin
may be more suitable for applications where it is used in its polymeric form. The main objective
of this study was to investigate the structural and thermal properties of the BLN lignins from the
softwoods Norway spruce and Scots pine. The lignins were also chemically modified by acetylation
and methylation of the phenolic hydroxyl groups. These modifications were performed as it has
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been shown that especially free hydroxyl groups are labile to thermal treatments [30]. These types of
reactions, or similar types of reactions, are also often used to increase the compatibility with other
polymers. The lignin was also fractionated by solvent fractionation, which illustrates that the lignin
can be further tailored into more narrow molar mass fractions by simple separation methods.

2. Results and Discussion

2.1. Analysis of the Unmodified Lignin

The structural alteration of the native lignin linkages can be seen from the HSQC spectrum of the
MWL (Figure 2a, pine, and 2c, spruce) and BLN lignin (Figure 2b, pine, and Figure 2d, spruce), and
the NMR shifts are listed in Table 1. Based on the integrals of the correlation peaks the small amount
of remaining β-O-4 (A) (From MWL 27 to BLN 5% in pine and from 32 to 4% in spruce), β-β (B) (From
MWL 7 to BLN 2% in pine and 5 to 3% in spruce), and β-5 (C) (From MWL 11 to BLN 3% in pine and
15 to 3% in spruce) only constitutes a small fraction compared to the MWL and no dibenzodioxocin
(K), cinnamyl alcohol (E), cinnamyl aldehyde (I), or γ-substituted β-O-4 (A’) could be detected in the
BLN lignins. The aryl glycerol group (J) was formed during the process and is known to be formed
during soda pulping [31,32]; however, whether the group is formed during the initial PHWE or during
the alkaline pulping was not confirmed. Both enol ethers (L) and stilbenes (M) could be detected
in the aromatic region and guaiacyl propanol (F), and secoisolariresinol (D) in the aliphatic region.
Two overlapping signals Bγ’ and Jβ, marked by * in Figure 2b,d, was detected from an unidentified
structure. This was deduced as both Bγ’ and Jβ show inconsistencies in their integrals from HSQC
compared to Bγ and Yα. The Bγ’ which should be a CH2 in the β-β resinol structure is a CH/CH3

in both of the multiplicity edited HSQC lignin spectra, due to the overlapping of signals. From the
aldehyde region (Figure 2e,f) we detected the Cγ-H from the cinnamyl aldehyde (I) moiety and a
correlation peak originating from benzylic aldehyde (N) unit in the MWL (Figure 2e), but in the BLN
lignin only the benzylic aldehyde (N) correlation peak remains (Figure 2f). There was an increase of
carboxylic groups based on 31P-NMR (Table 2), however, it seems that not all benzylic aldehydes were
oxidized to carboxylic acids during the treatment and this could be due to the oxygen removal during
the process. Only small amounts of carbohydrate impurities were detected in the HSQC spectrum of
the BLN lignin. It is evident that significant condensation of the lignin occurred as the native lignin
linkages were reduced in amount but the lignins retain a large molar mass. The lignins were also
enriched with carbon compared to the MWL as seen from the elemental analysis (Table 3).
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Table 1. Assignment of the identified 13C-1H cross-signals.

Label δC/δH (ppm) Assignment (C-H Correlation)

Hγ 21.0/1.48 γ in G-hydroxyethyl ketone
Fα 31.2/2.51 α in G-propanol
Dα 33.9/2.53 α in secoisolariresinol
Fβ 34.4/1.70 β in G-propanol
Dβ 42.5/1.89 β in secoisolariresinol
Cβ 53.1/3.47 β in phenylcoumaran
Bβ 53.5/3.06 β in resinol (β-β)

OMe 55.5/3.76 Methoxy peaks
Aγ 59.9/3.61 γ in β-O-4
Eγ 61.5/4.10 γ in cinnamyl alcohol
Cγ 62.8/3.73 γ in phenylcoumaran
Jγ 62.8/3.47 γ in arylglycerol
Bγ 70.8/4.16 and 3.73 γ in resinol
Aα 71.06/4.76 α in β-O-4
Jα 73.5/4.45 α in arylglycerol
Jβ 75.4/3.56 β in arylglycerol
Kα 83.2/4.84 α in dibenzodioxocin
Aβ 84.0/4.30 β in β-O-4
Bα 84.9/4.64 α in resinol (β-β)
Kβ 85.4/3.89 β in dibenzodioxocin
Cα 87.0/5.47 α in phenylcoumaran
Lα 108.9/5.56 aryl enol ether
G2 110.3/6.94 2 in the guaiacyl unit
Lβ 112.1/6.17 Aryl enol ether
G5 115.2/6.85 5 in the guaiacyl unit
G6 118.9/6.83 6 in the guaiacyl unit
I6 123.2/7.22 6 in cinnamyl aldehyde
Iβ 126.3/6.77 β in cinnamyl aldehyde
M 128.3/7.12 Stillbene
Eα 128.4/6.24 α in cinnamyl alcohol
Eβ 128.5/6.46 β in cinnamyl alcohol
Lα’ 139.8/6.71 Aryl enol ether
Lβ’ 143.0/7.31 Aryl enol ether
Iα 153.7/7.61 α in cinnamyl aldehyde
Nα 190.8/9.80 Benzylic aldehyde
Iγ 193.8/9.60 γ in cinnamyl aldehyde

The fragmentation and condensation can occur during the slightly acidic PHWE phase and/or
during the alkali pulping, the mechanism can be either ionic and/or radical and will most likely occur
at the Cα, C5, or C6 position. The formation of condensed 5-substituted phenolic structures is seen
from the 31P-NMR spectrum as they are detected separately from the aliphatic and guaiacylic hydroxyl
groups (see Supporting Data). The condensation was also seen from the HSQC of the methylated
BLN lignin (Figure 3), where only the correlation peak of the methylated 4-OMe in 5-condensed
structures was shifted to δC/δH (60.1/3.72) ppm (Figure 3b,c) and all other aromatic OMe-peaks will
remain at approximately δC/δH (55.5/3.76) ppm. From our previous work on birch lignin we detected
evidence of significant 6-C condensation of the aromatic ring, this was detected as the chemical shift
of the 5-OMe in the syringylic unit was shifted in a similar manor as the 4-OMe in the 5-condensed
methylated guaiacyl unit. We did not see any such shift in the softwoods due to the fact that a
condensation on the 6-position in guaiacyl units would not yield an OMe-group which has two
neighboring substituents, which leads to the increase in the chemical shift. The broadening and slight
shift of the HSQC correlation peaks of C2-H δC/δH (110.3/6.94) to (112.0/6.79) ppm and C6-H δC/δH

(118.9/6.83) to (120.3/6.66) ppm compared to that of the MWL is caused by, among other things, the
5-condensation of the guaiacyl units [33]. The integrals of the aromatic C2-H, C5-H and C6-H from
the HSQC correlation peaks gave us an indication of the condensation pattern and showed the least
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amount of C5-H followed by C2-H and C6-H. However, as we have a clear reduction in aliphatic
side chains there will most likely also be C1-Cα cleavage and the chemical shift of the formed C1-H
is similar to that of C6-H, as seen from model compounds [34], which would give an inflated value
of the amount of C6-H. Other issues with the aromatic signals is the broadening of the signals, and
especially as C2-H and C6-H will be more affected by changes to the side chain compared to C5-H
but also the increase of free phenolic guaiacyl units will affect the chemical shifts of C2-H, C5-H and
C6-H compared to the etherified shifts. Due to the many factors that can affect the chemical shift of the
aromatic signal, their integrals should only be considered as semi-quantitative.

Table 2. Amount of free hydroxyl groups in mmol/g based on 31P NMR analysis.

Lignin Aliphatic
(150.0–145.5 ppm) 1

5-subs
(145.1–140.5 ppm)

G-units
(140.5–136.8 ppm) Ph-OH OH

Total
COOH

(136.8–133.4 ppm)

Pine MWL 4.7 0.8 1.2 2.0 6.7 0.3
Pine BLN 2.2 2.0 1.9 3.9 6.1 0.6

Pine MTBE 0.7 1.2 2.5 3.7 4.4 1.6
Pine iPrOH insol 1.9 1.8 1.5 3.3 5.2 0.4
Pine iPrOH sol 1.7 1.8 2.3 4.0 5.7 0.8
Spruce MWL 4.6 0.8 1.3 2.1 6.7 0.2
Spruce BLN 2.2 1.9 1.9 3.9 6.1 0.6

Spruce MTBE 1.0 1.3 2.3 3.6 4.6 1.4
Spruce iPrOH insol 2.1 1.9 1.6 3.5 5.6 0.5
Spruce iPrOH sol 1.6 1.7 2.1 3.8 5.4 0.8
OMe Pine BLN 2.0 0.8 2.8 0.7

OMe Spruce BLN 1.9 0.6 2.5 0.6
OMe Birch BLN 1.3 0.5 1.8 0.7

1 150.0–145.5 ppm when c-hexanol was used as internal standard.

Table 3. The molar mass of the different lignin fractions and elemental analysis of the unmodified
lignin and the MWLs.

Lignin Mn (g/mol) Mw (g/mol) PDI

Pine MWL 1500 2700 1.7
Pine BLN 3200 6700 2.1

Pine MTBE 380 480 1.3
Pine iPrOH insol 4200 8000 1.9
Pine iPrOH sol 860 1500 1.7
Spruce MWL 2100 3000 1.5
Spruce BLN 2100 5500 2.7

Spruce MTBE 460 570 1.2
Spruce iPrOH insol 3800 7000 1.9
Spruce iPrOH sol 890 1200 1.3

C (%) H (%) N (%) O (%)

Pine MWL 60.6 5.9 0.2 33.3
Pine BLN 67.2 6.0 0.1 26.7

Spruce MWL 59.5 5.7 0.1 34.7
Spruce BLN 66.5 5.8 0.0 27.6

2.2. Acetylated and Methylated Lignin

The degree of substitution of the acetylated and methylated lignin was determined by
31P-NMR (see Supporting Data). The acetylated lignin contained no free hydroxyl groups and the
HSQC-spectrum showed characteristic correlation peaks for acetylated structures (see Supporting
Data). For the analysis of the thermal properties we used Me2SO4 in alkaline aqueous media to
selectively methylate the phenolic hydroxyl groups in the lignin and to leave the aliphatic hydroxyl
groups and carboxyl groups unmodifed (see Table 2). The small amounts of remaining free phenolic
groups seen in Table 2 seemed, based on 31P-NMR shifts of the peaks, to originate from hydroxyl
groups in 5-condensed structures. To fully methylate one lignin sample, CH3I was used as methylation
agent and NaH as base in anhydrous DMF (Figure 3c). This sample was only used to compare the
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structural differences between the unmodified (Figure 3a), methylated phenolic (Figure 3b), and fully
methylated lignin (Figure 3c). The HSQC correlation peaks in the oxygenated aliphatic area can
be seen in Figure 3. The selectively methylated lignin (Figure 3b) remained similar to the starting
material (Figure 3a), with no changes detected in the structures originating from natively occurring
lignin linkages.
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The only difference between Figure 3a,b is the slightly higher chemical shift, in the 13C-NMR
spectrum, of the 4-OMe in structures that has been condensed on the 5-position. This change in
chemical shift can also be seen in model compounds with the same type of structure [34]. In the fully
methylated derivative (Figure 3c) all the traditionally occurring C-H correlation peaks, besides the
β-β signals that lack hydroxyl groups in the structure, were shifted to a higher ppm value due to the
methylation of the aliphatic hydroxyl groups. The methyl ester group and the aliphatic methyl ether
groups were also clearly detected separately (Figure 3c). In the aromatic area of the methylated lignin
only the C5-H correlation peak was shifted to a lower 13C shift, in accordance with the fact that it will
be more affected by the methylation than the C2-H and C6-H.

2.3. MTBE-Soluble and i-PrOH Fractions

The lignin precipitated from the black liquor was fractionated to MTBE insoluble lignin (BLN) and
MTBE soluble lignin (see Scheme 1). The MTBE soluble fraction, ~15 w% of the total amount isolated,
contained low molar mass compounds, mainly wood extractives and a complex mixture of phenolic
compounds. Some polymeric or oligomeric lignin was also detected from the characteristic signals
of the aromatic- and methoxyl groups in the HSQC spectrum (Figure 4). Large amounts of aliphatic,
aromatic, and olefinic correlation signals was seen, origination from various lignin degradation
products and wood extractives. The HSQC spectrum lacks all the traditional lignin structures as
seen from the oxygenated aliphatic area. Large amounts of carboxylic groups and small amounts
of aliphatic hydroxyl groups was detected in this fraction based on the 31P-NMR analysis (Table 2),
which is consistent with wood extractives and lignin degradation products. The MTBE insoluble lignin
(BLN lignin) was separated to a high and medium molar mass portion by i-PrOH solvent fractionation
(see Scheme 1 and Table 3). The method allows us to prepare lignin with a more narrow molar mass.



Molecules 2019, 24, 335 8 of 15

Solvent fractionation is a common method to separate lignin based on size and a wide array of solvents,
or solvent mixtures, has been used for this purpose [35,36].

Structurally the i-PrOH insoluble portion (~70 w%) had a larger molecular mass than the i-PrOH
soluble portion (~30 w%). It also contained a smaller amount of carboxylic groups and free phenolic
G-units compared to the i-PrOH soluble fraction. The majority of low molar mass compounds were
removed from the starting lignin during the MTBE extraction, but small amounts was still detected
in the i-PrOH soluble fraction. All of the fractions had a narrower PDI value than the BLN lignin.
Low PDI values in lignin are a favorable parameter in producing functional materials as it reduces the
complexity of the polymer [19].
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2.4. Thermal Properties

TGA was used to determine the thermal stability and decomposition of the lignin samples
(Figure 5). A birch lignin (Figure 5a) from the same process was used to compare the thermal properties
between softwood and hardwood lignin (Table 4). According to the literature the degradation of
the lignin structure starts at 230–260 ◦C with the degradation of the propanoid side chain and then
continues to cleave the linkages bonded with C-C bonds at 275–350 ◦C [37]. The relatively high Tdst 95%
values of 273–302 ◦C for the unmodified lignins indicated low amounts of phenylpropanoid side
chains and aryl ether linkages and that the lignin was bonded by more stable C-C bonds, which
is in agreement with our structural analysis of the lignin. The methylation of the phenolic groups
slightly increased the stability of all the lignin samples compared to the unmodified lignin, as seen
from the Tdst 95% values (Table 4). The acetylation decreased the stability which is contradictory to
other studies [38], this indicate that the acetyl groups were cleaved or that the decrease in mass is
due to evaporation of less volatile compounds. The cleavage could be catalyzed by some impurity,
such as minuscule amounts of acetic acid from the reaction. To study this phenomenon two samples,
unmodified pine lignin and acetylated pine lignin, were dried extensively at elevated temperature
prior to analysis. The results (see Supporting Data) showed an slight increase in the Tdst 95% value for
the acetylated sample from the initial value of 233 to 264 ◦C, which can partially be explained by the
more efficient removal of volatiles, however, the Tdst 95% value was still lower than the 284 ◦C of the
unmodified lignin, which could be due to that the cleaved acetyl groups can act as catalyst for further
deacetylation. The acetylated lignins still had high Tdst 95% values which make acetylation a viable
option to increase the compatibility of lignin with other polymers. The thermal stability can also be
increased by performing the same esterification procedure with esters with longer chains. By adjusting
the chain of the esters the chemical properties of the lignin can be tailored to increase the compatibility
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with specific polymers [14]. The use of this lignin in polymer blends could be promising, based on
the Tdst 95% values, as blend processing temperatures are considerable lower, however, it is clear that
the lignin starts to lose mass at lower temperatures and as seen from Cicala et al. [26] the processing
stability of a lignin/PLA blend was considerably decreased at 190 ◦C compared to 170 ◦C. The DTG
maxima of the different samples were between 386–411◦C with the methylated lignin slightly higher.
The unmodified lignin had a higher char residue at 600 ◦C (wt %) than the methylated lignin, which
could be due to the formation of more stable condensed structures in the unmodified lignin with free
phenolic groups, while the acetylated samples had a lower char residue.
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Figure 5. TG and DTG curves of (a) birch, (b) pine, and (c) spruce lignin and their acetylated and
selectively methylated derivative.

Table 4. Thermal properties of pine, spruce, and birch lignin and their acetylated and
methylated derivatives.

Lignin Tdst 95% (◦C) Tdmax (◦C) Char Residue at 600 ◦C (wt %)

Pine BLN 302 401 49
OAc Pine BLN 233 398 44
OMe Pine BLN 317 411 48

Spruce BLN 296 401 53
OAc Spruce BLN 198 396 46
OMe Spruce BLN 312 408 51

Birch BLN 273 386 49
OAc Birch BLN 234 391 42
OMe Birch BLN 280 392 47

3. Materials and Methods

3.1. Materials

All reagents were purchased from Sigma Aldrich (Espoo, Finland) if not stated otherwise and
used without further purification. Milled Wood Lignin (MWL) was prepared according to a previously
published procedure [39].

3.2. BLN Process

The pressurized hot water extraction process has been described elsewhere [27]. In short, wood
chips of Norway spruce (Picea abies) or Scots pine (Pinus sylvestris) were first extracted with hot water
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to remove the hemicelluloses, and then the remaining fibers were further cooked with NaOH to give
the black liquor that was separated from the pulp [28]. For the thermal analysis also birch lignin
(Betula pendula) from the same process was used and has been characterized elsewhere [29].

3.2.1. Precipitation, Purification and Fractionation

The lignin was precipitated from the black liquor by addition of 1 M HCl until the pH was 2.5.
The lignin was then collected either by careful filtration. The lignin cake was then washed and
collected five times with water acidified to pH 2.5 with HCl. After the final wash the lignin slurry was
extracted 10 times with MTBE. Both the solid BLN fraction and the MTBE-soluble fraction was dried
and analyzed.

3.2.2. iPrOH Fractionation

Purified BLN lignin (MTBE insoluble fraction, 1.0 g) was stirred with iPrOH (40 mL) for 1 h
and then centrifuged. After centrifugation the iPrOH was decanted off and the process was repeated
10 times. The iPrOH insoluble (iPrOH insol) and iPrOH soluble (iPrOH sol) fractions were collected
separately, dried, and analyzed.

3.3. Elemental Analysis

Elemental analysis was performed on a FLASH 2000 organic elemental analyzer (Thermo Fischer
Scientific, Cambridge, UK). No sulphur was detected and the oxygen content was calculated by
subtracting the sum of carbon, hydrogen and nitrogen from 100%.

3.4. Molar Mass Distribution

Molar-mass characteristics was analysed using a Shimadzu (Shimadzu Corp., Kyoto, Japan) HPLC
system (SCL-10AVP system controller + DGU-14A on-line degasser + FCV-10ALVP low-pressure
gradient valve + LC-10ATVP HPLC pump + SIL-20AHT autosampler + CTO-10ACVP column oven)
equipped with a sequentially connected guard column (50 mm × 7.8 mm) and two Jordi Gel DVB
500A (300 mm × 7.8 mm) columns in series (Columnex LLC, New York, NY, USA). Eluent: THF
with 1% acetic acid, flow rate: 0.8 mL/min, column oven temperature 40 ◦C. Injection volume of the
autosampler was 50 µL. Detector: LT-ELSD detector (SEDEX 85 LF Low-Temperature Evaporative
Light Scattering Detector, (SEDERE, Alfortville, France). Detector parameters: HPLC nebulizer, 40 ◦C,
air pressure: 3.5 bar, gain 3, no-split mode. Columns calibration was performed using Mono-Disperse
Polystyrene Standards (Perkin-Elmer, Norwalk, CT, USA).

3.5. NMR Spectroscopy

All the NMR experiments were performed at 298 K in DMSO-d6 on an AVANCE III spectrometer
(Bruker Biospin GmbH, Rheinstetten, Germany) operating at 500.13 MHz for 1H, 125.77 MHz for
13C and 202.46 MHz for 31P. The 13C-NMR were measured with a spectral width of 35,714 Hz, 2 s
acquisition and a 10 s relaxation delay with the Bruker pulseprogram zgig. HSQC experiments
used the Bruker’s pulse program “hsqcedetgpsisp2.3 for multiplicity edited with a spectral width
of 8012 Hz (from 0–16 ppm) and 30,182 Hz (from 0–220 ppm) for the 1H- and 13C-dimensions.
A semi quantitative method was used for calculating the amounts of lignin linkages by using the
C2-H integral as internal standard (IS). A common standard protocol was used for 31P NMR sample
preparation [40]. To a solution of 20 mg lignin in a 0.4 mL mixture of pyridine and CDCl3 (1.6:1, v/v)
0.100 mL of a IS solution (0.12 M) was added. After thorough stirring, 0.1 mL of phosphitylation
reagent [2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP)] and 0.050 mL of a Cr(acac)3

solution (11.4 mg/mL) was added and the sample was stirred at room temperature before transferred
to a NMR tube. The 31P NMR measurements were collected with a 2.0 s acquisition time and a
5.0 s relaxation delay. The spectra were calibrated using the signal of the water-derivatized signal at
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132.2 ppm. For the MWLs and BLN lignin cyclohexanol was used as internal standard. For the MTBE
soluble and IPA fractionated lignin N-hydroxy-5-norbornene-2,3-dicarboxylic acid imide (e-HNDI)
was used to avoid overlapping of impurities with the IS.

3.6. Thermal Analysis

TGA was carried out using a STA 409 PG/1/G Luxx (NETZSCH-Gerätebau GmbH, Selb,
Germany) in the range of the temperature 23 to 600 ◦C at a rate of 10 ◦C/min under N2 atmosphere.
As the different samples: unmodified lignin, acetylated lignin, and lignin with methylated phenolic
groups had different workup procedures prior to drying under vacuum, the 100 wt% was set to the
value when the samples had been heated to 120 ◦C during the analysis. Any prior weight losses
correspond to the loss of moisture or volatile compounds, and it was concluded that at ~120 ◦C the
weight loss had stabilized based on DTG. To study the possible deacetylation two samples, unmodified
pine lignin and acetylated pine lignin, was dried under vacuum at 60 ◦C over one week to ensure
removal of any traces of acetic acid and then analyzed by TGA. The samples were also preheated to
100 ◦C and cooled prior to analysis to ensure removal of moisture that could have been absorbed on
the lignin during transfer to the instrument.

3.7. Acetylation

Lignin (100 mg) was dissolved in pyridine (1.0 mL) and acetic anhydride (1.0 mL) was added.
The mixture was stirred in darkness for 3 days before the reaction mixture was cooled and quenched
by addition of MeOH and evaporated under reduced pressure. The crude product was redissolved
in CHCl3, extracted three times with 0.1 M HCl, twice with water, dried with Na2SO4, and finally
concentrated under vacuum with isolated yields over 90%.

3.8. Methylation

A previously reported method for methylation of the phenolic hydroxyl groups was used [41].
In short, the lignin (1.0 g) was dissolved in 0.7 M NaOH (15 mL) and Me2SO4 (0.95 mL, 10.0 mmol) was
added. The mixture was stirred for 30 min at room temperature followed by 2 h at 80 ◦C while 0.7 M
NaOH was continuously added to keep the solution alkaline according to the procedure. The amounts
of Me2SO4 was calculated from the total amount of free phenolic groups from the 31P NMR analysis,
approximately 2.5–3.0 equivalents of Me2SO4 per phenolic hydroxyl group was used in this work.

For the complete methylation the lignin (2.0 g) was dissolved in dry DMF (30 mL). An appropriate
amount of 60% NaH in mineral oil (5 equivalents with respect to the total amount of free hydroxyl
groups) was measured and washed three times with hexane. The NaH was then stirred to a suspension
with 10 mL dry DMF and added dropwise to the lignin solution on ice bath. The methylation agent
CH3I (5 equivalents) was then added dropwise. After 16 h the reaction was cooled on an ice bath
and the excess NaH was quenched by addition of MeOH. The solution was then poured into a large
volume of water and acidified to pH 2.5 with 1M HCl. The lignin was collected by filtration and was
purified twice by stirring the mixture in acidified water (pH 2.5) and filtering in between. After the
final filtration the cake was thoroughly washed with distilled water and freeze dried prior to analysis.

4. Conclusions

In this study we have determined the structural characteristics and thermal properties of softwood
lignins obtained from a novel PHWE process and their acetylated and methylated derivatives. It was
found that the lignin from the process, which is optimized for obtaining the carbohydrate fraction
from wood, clearly altered the lignin structure when compared to MWL from the same wood chips.
The sulphur-free lignin shared many common traits shared among technical lignin [42] such as the
reduction of the aliphatic chains and natively occurring lignin linkages. Condensed structures that
had formed during the process were detected, mainly at the C5-H position of the aromatic ring.
The polymeric lignin had larger amounts of carboxylic groups and free phenolic groups compared
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to MWL. The lignin from the two different softwood species showed very little differences, both
structurally and in thermal properties, and can as such be used as mixtures for potential applications.
The thermal properties of the softwood lignins were compared to hardwood birch lignin from the same
process and the properties were similar, for both unmodified and modified lignin. It was also shown
that the BLN lignin could easily be separated by solvent fractionation to prepare narrower molar
mass portions with slightly different functional group compositions. The lignins had high Tdst 95%
values (273–302 ◦C) and the free phenolic groups could easily be chemically modified to tailor the
chemical properties, which make this lignin and its derivatives promising candidates for the use in
polymer blends.

Supplementary Materials: The following are available online. Figure S1: HSQC of acetylated birch lignin,
Figure S2: HSQC of acetylated pine lignin, Figure S3: HSQC of acetylated spruce lignin, Figure S4: HSQC of
partially methylated birch lignin, Figure S5: HSQC of partially methylated pine lignin, Figure S6: HSQC of
partially methylated spruce lignin, Figure S7: HSQC of fully methylated pine lignin, Figure S8: 31P-NMR of the
BLN softwood lignin and MWL, Figure S9: 31P-NMR of the partially methylated BLN lignin, Figure S10: 31P-NMR
of the fully methylated BLN pine lignin, Figure S11: 31P-NMR of the acetylated BLN lignin, Figure S12: 31P-NMR
of the softwood lignin fractions besides the BLN lignin (MTBE insoluble), Figure S13: 13C-NMR of pine BLN and
MWL, Figure S14: 13C-NMR of spruce BLN and MWL, Figure S15: 13C-NMR of acetylated spruce and pine BLN
lignin, Figure S16: TGA of unmodified pine lignin and acetylated pine lignin.
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