
Elucidating regulatory mechanisms downstream
of a signaling pathway using informative experiments

Ewa Szczurek1,2,3,*, Irit Gat-Viks1,4, Jerzy Tiuryn3 and Martin Vingron1

1 Computational Molecular Biology Department, Max Planck Institute for Molecular Genetics, Berlin, Germany, 2 International Max Planck Research School for
Computational Biology and Scientific Computing, Berlin, Germany and 3 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
4 Present address: Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
* Corresponding author. Computational Molecular Biology Department, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany.
Tel.: þ 49 30 8413 1261; Fax: þ 49 30 8413 1152; E-mail: szczurek@molgen.mpg.de

Received 15.8.08; accepted 26.5.09

Signaling cascades are triggered by environmental stimulation and propagate the signal to regulate
transcription. Systematic reconstruction of the underlying regulatory mechanisms requires
pathway-targeted, informative experimental data. However, practical experimental design
approaches are still in their infancy. Here, we propose a framework that iterates design of
experiments and identification of regulatory relationships downstream of a given pathway. The
experimental design component, called MEED, aims to minimize the amount of laboratory effort
required in this process. To avoid ambiguity in the identification of regulatory relationships, the
choice of experiments maximizes diversity between expression profiles of genes regulated through
different mechanisms. The framework takes advantage of expert knowledge about the pathways
under study, formalized in a predictive logical model. By considering model-predicted dependencies
between experiments, MEED is able to suggest a whole set of experiments that can be carried out
simultaneously. Our framework was applied to investigate interconnected signaling pathways in
yeast. In comparison with other approaches, MEED suggested the most informative experiments for
unambiguous identification of transcriptional regulation in this system.
Molecular Systems Biology 5: 287; published online 7 July 2009; doi:10.1038/msb.2009.45
Subject Categories: metabolic and regulatory networks; signal transduction
Keywords: experimental design; logical modeling; signal transduction; transcription regulation

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence,
which permits distribution and reproduction in any medium, provided the original author and source are
credited. This licence does not permit commercial exploitation or the creation of derivative works without
specific permission.

Introduction

Revealing the mechanism of transcription regulation in the
cell, the interplay of transcription factors and the way they
influence their target genes, is a central problem in molecular
biology. Diverse approaches have been proposed for the
identification of transcriptional regulation based on high-
throughput gene expression data (e.g. Akutsu et al, 1998;
Bussemaker et al, 2001; Bolouri and Davidson, 2002; Gardner
et al, 2003; Segal et al, 2003; Nachman et al, 2004; Hartemink,
2005). All these methods heavily depend on the available
experiments and are prone to the problem of ambiguity in the
identification of regulatory relationships. For example, it is
possible that a transcription factor remains inactive in all
experiments and therefore its targets cannot be revealed.
Alternatively, consider two transcription factors located in
distinct signaling pathways with a different role, different
environmental stimulation and different target genes. In a
given set of experiments, if the target genes have similar

expression profiles, they will be falsely considered as co-
regulated. Moreover, taking any of the two transcription
factors as the common regulator of these targets will be equally
supported by the experimental data, leading to ambiguous
hypothesis about their transcriptional regulation. To avoid
such problems, the experiments must generate enough
information to draw clear conclusions about regulatory
relationships.

In this study, we introduce an algorithm called MEED
(model expansion experimental design). MEED is meant to
guide experimentalists who focus their research on a chosen
signaling pathway and are interested in the regulation of its
downstream targets. We assume the researcher has initial
qualitative knowledge about the studied pathway and wishes
to systematically perturb the pathway components to char-
acterize the gene expression response. Such experimental
studies, in which a specific signaling system is perturbed
to investigate its downstream regulation mechanisms
(rather than global mapping of cellular transcription), became
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common in the recent years (e.g., Roberts et al, 2000;
Yoshimoto et al, 2002; e.g., O’Rourke and Herskowitz, 2004).
In our framework, the researcher’s expertise about the
signaling network should be formalized in a predictive logical
model and provided as input to MEED. The model represents
biological components, such as signal transduction molecules,
environmental stimulations and transcription factors, as well
as the (possibly cyclic) logical relations among them (Gat-Viks
et al, 2004). Given this input model, the algorithm aims to
select the least number of experiments, which together allow
for unambiguous identification of target genes and the way
they are regulated by components in the model. To this end,
MEED relies only on model predictions and does not use
additional data. In particular, no initial high-throughput
transcription factor–DNA binding data are required. Our
algorithm instructs the researcher under which environmental
conditions and with what eventual perturbations the experi-
ments should be conducted. The suggested experiments are
ordered such that the researcher can choose to carry out only
the most informative ones from the list.

Experimental design (ED) in systems biology was previously
applied for the reconstruction and refinement of in-silico
models (Ideker et al, 2000; Tong and Koller, 2001; King et al,
2004; Yeang et al, 2005; Barrett and Palsson, 2006; Vatcheva
et al, 2006). The extant methods evaluate and assign a score to
each experiment independently. If the experimenter aims to
carry out several experiments simultaneously, the indepen-
dence assumption becomes critical: a set of highest scoring
experiments might provide redundant information about the
system under study. In other words, some of the highest
scoring experiments might be dispensable given other highest
scoring experiments. Therefore, all extant methods can design
efficiently only one (the highest scoring) experiment. The next
experiment can be designed only after the suggested experi-
ment has been carried out in a lab and the measurements were
processed. MEED, in contrast, scores a set of experiments
together and considers potential dependencies between
them. In this way, our algorithm is able to design a set of
informative, non-redundant experiments that can be carried
out in parallel.

We propose a general framework, in which the experiments
designed using MEED are used in a model expansion
procedure. Building on Gat-Viks and Shamir (2007), the
procedure reconciles experimental data with model predic-
tions to elucidate regulatory mechanisms downstream of a
given pathway model. Model expansion identifies target genes
together with their regulators in the model and the logic of
regulation. We utilized our framework to investigate regula-
tory relationships downstream of the interconnected osmotic
stress and pheromone pathways in Saccharomyces cerevisiae.
Using experiments chosen by MEED from available experi-
mental studies, we applied the expansion procedure and
identified regulatory modules comprising groups of genes co-
regulated by molecules in the pathway through a specific
regulatory mechanism. We iterated experimental design to
propose additional experiments for resolving the ambiguity
remained after the expansion step. In comparison with other
approaches, the experiments suggested by MEED make it
possible to draw less ambiguous conclusions about transcrip-
tional regulation. Moreover, our comparative analysis shows

the importance of considering dependencies between experi-
ments as part of the ED process.

Results

The proposed framework consists of three components:
modeling of the studied signaling network, an experimental
design algorithm MEED and an expansion procedure. The
framework aims to discover transcriptional control down-
stream of the given signaling pathway using an optimal set of
experiments. Software implementing our framework is avail-
able on our website: http://meed.molgen.mpg.de/.

The first component, the model, formalizes prior knowledge
about regulatory relations between signaling molecules. The
model is predictive: For a given experiment (i.e., extracellular
stimulation and genetic perturbation), the model predicts the
activation states of the regulators in the network. In this study,
we assume that regulatory relations are discrete logical
functions and that the model describes the steady state of
the system after exposure to the experiment. In addition, we
predefine a repertoire of logical functions that formalize
transcriptional regulation mechanisms, such as activation or
repression (only regulation by a single molecule is considered).
By applying all predefined logical functions to the model-
predicted state of a given regulator under a given experiment,
we obtain predictions about all possible readouts of the
regulator’s target genes. This is done for all regulators and all
candidate experiments. In this way, we calculate predicted
expression profiles for all putative targets of the regulators.

The MEED algorithm aims to select from the set of candidate
experiments optimizing two objectives: (i) to minimize the
number of selected experiments and (ii) to maximize diversity
between the predicted expression profiles. The second condi-
tion aims to avoid an ambiguous situation in which two genes
with distinct regulatory mechanisms attain the same expres-
sion profile under the suggested experiments. Only in the case
in which the two genes have two distinct expression profiles,
it is possible to distinguish their regulatory mechanisms. Next,
the chosen experiments should be carried out in a lab and used
to identify regulator–target relationships. To this end, the
expansion procedure matches the model-predicted expression
profiles of putative targets for the set of experiments selected
by MEED with real expression measurements observed under
the same experiments. The introduced framework is described
in detail below.

Outline of our framework

We apply a model-based approach to design a set of
experiments that can be used for unambiguous identification
of regulatory relationships downstream of a given signaling
pathway (Box 1). First, we formalize the available information
on the pathway in a logical model with discrete variables (Gat-
Viks et al, 2004). The environmental signals, which trigger the
signaling cascade, are represented as variables called stimu-
lators. Remaining variables correspond to the signaling
molecules and can be in three possible states: 1 (activated),
�1 (deactivated) or 0 (neutral). Variables representing
proteins having transcriptional control over response of target
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genes are called regulators. The state of each variable is
determined by a discrete regulation function of its upstream
effectors’ state. The model can be visualized as a network in
which nodes are variables and edges are direct regulatory
influences (Box 1A, left). We refer to the topology of this
network as to the model’s structure.

The model can be used to predict the behavior of the
regulators in experiments that manipulate the model compo-
nents. An experiment is formalized in the model by defining:
(i) stimulation—states of the stimulators fixed according to the
levels of environmental signals applied in the experiment; (ii)
perturbed variables—the model variables that are subject
to perturbation (in this study we consider only experiments
with a single perturbed variable); and (iii) perturbation
states—fixed states of the perturbed variables, which represent
the type of experimental manipulation, such as knockout
(perturbation state is �1) or over-activation (perturbation
state is 1). The model’s regulatory functions can be utilized to
predict the states of the regulators in the pathway in a given
experiment. These calculated states are called predicted states

(Box 1A, right; for calculation of predicted states in both cyclic
and acyclic models, see Materials and methods).

With the predicted states of regulators in hand, we can also
predict the response of potential target genes to a given list of
experiments. To do this, we first predefine a set of regulation
functions that describe biologically relevant logical relation-
ships between regulators and their targets. Next, we define
regulatory programs, which correspond to particular mechan-
isms of transcriptional regulation in the studied system.
A regulatory program consists of a set of regulators from the
model and a regulation function. The regulators tell ‘who’
regulates and the regulation function tells ‘how’. In this paper,
we consider only regulatory programs with a single regulator
(e.g., Box 1B). Having a regulatory program and predicted
states of its regulators in a given experiment, we may calculate
the predicted response of this program’s potential target genes.
The predicted response specifies whether the potential target is
in state 1 (upregulated), �1 (downregulated) or 0 (neutral).
Finally, the vector of predicted responses in a given set of
experiments defines a predicted profile of the regulatory
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(A) Logical modeling. Left: a toy model. S—a stimulator variable representing the environmental signal, P—a variable representing a signaling molecule.
A, B—regulators representing transcription factors. max, not: regulation functions. A, B, and P can be perturbed in the experiment. Right: prediction of regulator
states. e—experiment, in which environmental signal is medium (stimulation S¼0) and the signaling molecule is knocked out (perturbed variable P, perturbation
state¼�1). (B) Our MEED algorithm. Right: each of the regulators A and B influences its target genes through three possible regulation functions, f1, f2 and f3.
The regulation functions are represented by truth tables, in which the first column contains the states of a regulator, and each other column i contains the
predicted responses of a target gene controlled by the regulator using fi. For example, f1 determines that activated (state¼1) regulator upregulates (state¼1) its
target, and deactivated (state¼�1) regulator downregulates (state¼�1) its target. Left: matrix of predicted responses. Rows—regulatory programs, each
represents a chosen regulator acting on a target gene through a chosen regulation function. Columns—the candidate experiments. MEED is restricted to choose
experiments only from this set. For each candidate experiment, the predicted states of regulators A and B appear below its identifier e1–e6. For example, in
experiment e3, the predicted states of A and B are 0 and 1, respectively. A matrix entry—a predicted response of a potential target gene assuming it is regulated
by its row’s regulatory program in its column’s experiment. Hence, a row of matrix entries is a predicted profile for a given regulatory program. If the predicted
profiles are different, they are referred to as distinguished. MEED aims to find the smallest subset of candidate experiments, which distinguishes between the
same pairs of regulatory programs as the full set of candidate experiments. Here, MEED chooses three out of the candidate experiments: e2, e3, and e6, which
distinguish all regulatory programs (the remaining ones are marked as deleted). (C) The expansion procedure. The experiments proposed by MEED are carried
out and the measurements are used in the expansion procedure. Left: the measurements in the chosen experiments are referred to as observed profiles. Middle:
a matrix as in B, including only experiments chosen by MEED. The expansion procedure identifies regulatory programs for the genes by matching of predicted
and observed profiles (marked as dashed gray lines). Right: genes matching identical regulatory programs constitute regulatory modules. Here, two regulatory
modules are found: the regulatory program f3(A) controls the module of g2 and g5, and regulatory program f1(B) controls g6.

Box 1 Experimental design for model expansion
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program. Assuming the model is correct, the predicted profile
reflects the transcriptional response of a potential target gene
controlled by the program in the given set of experiments (Box
1B, left).

The expansion procedure aims to find new target genes,
which are regulated by the predefined regulatory programs.
Given as input a list of experiments together with their
measurements and the logical model, the procedure applies
probabilistic matching between the observed expression
profiles of the genes and the predicted profiles of the regulatory
programs: for each gene, we find the predicted profile that
matches its observed profile with the highest probability. If the
probability exceeds a predefined cut-off threshold, we con-
clude that the gene is controlled by the regulatory program of
this predicted profile. In such case, we say that the regulatory
program matches the gene. A group of genes that match the
same regulatory program constitutes a regulatory module (Box
1C). Hence, a regulatory module corresponds to a set of genes
that are co-expressed and are predicted to be co-regulated by
the same regulator in the model and through a common
regulatory mechanism.

Of course, matching of profiles in the expansion procedure
can be hampered. In a given set of experiments, some of the
predicted profiles might be identical and therefore their
regulatory programs cannot be distinguished by these experi-
ments (for a full definition in both cyclic and acyclic models,
see Materials and methods). In such a case, a single observed
profile of genes in a regulatory module could match more than
one predicted profile, making it impossible to identify a unique
regulatory program for this module. Such regulatory module
will be called an ambiguous module. As a practical remedy to
this ambiguity problem, we propose an algorithm called
MEED, which aims to minimize the number of experiments
while still maintaining the maximal number of different
predicted profiles. The algorithm is given as input a set of
candidate experiments (i.e., a full set of experiments to choose
from; for example, only experiments that can be conducted in a
lab). MEED tries to select the smallest subset of the candidate
experiments, which can distinguish all regulatory programs. In
the case in which the candidate experiments themselves
cannot distinguish all regulatory programs, the identified
subset should distinguish between the same pairs of regulatory
programs as the full candidate set (Box 1B). In our framework,
experiments suggested by MEED are used by the expansion
procedure to uniquely identify regulatory modules down-
stream of a given model (Box 1B and C). Both MEED and the
expansion procedure utilize the same model and regulatory
programs. Therefore, if the suggested experiments distinguish
between all pairs of regulatory programs, all identified
regulatory modules are unambiguous.

The experimental design problem defined above is compu-
tationally intractable (see proof in Supplementary information
S1). Therefore, MEED implements an approximation algo-
rithm, which selects the experiments greedily and returns an
ordered experiment list. MEED calculates an entropy-based
score for a list of experiments according to their joint ability to
distinguish between regulatory programs. In each greedy step,
the algorithm extends the current experiment list with one
additional experiment that gives the highest improvement to
the list’s score (i.e., contributes the most number of new

distinguished regulatory program pairs; see Materials and
methods for details). The decision is made solely based on
model predictions and the chosen experiments need not to be
carried out in a lab before the next greedy step. Proposition 2 in
Supplementary information S2 gives the approximation factor
for our algorithm (the approximation holds for both cyclic and
acyclic models).

Experimental design

To assess the performance of our algorithm, we first compare it
with alternative ED methods in four tests on 1000 cyclic
random models each. The experiments proposed by the
analyzed methods were evaluated with respect to their
efficiency in distinguishing between regulatory programs
(using the FUP score; see Materials and methods). The random
models were obtained by reshuffling of four human canonical
signaling pathways and random assignment of regulation
functions (see Supplementary information S3 for the rando-
mization procedure and Supplementary Table S1 for
details about the pathways). The regulatory programs were
defined by taking all variables that are not stimulators
as the regulators, and one regulation function representing
activation (referred to as activation both in Supplementary
Table S2).

Figure 1 presents a comparison of MEED to alternative ED
methods in a test on 1000 randomizations of the human
TNF pathway. The first compared method, called INDEP
(Supplementary information S4), applies the same measure as
MEED, but the score is assigned to each experiment
independently, ignoring potential dependencies between
experiments. In contrast to INDEP, each consecutive experi-
ment designed by MEED radically increases the number of
distinguished regulatory program pairs. With this ability,
MEED significantly outperforms INDEP, showing the impor-
tance of scoring a set of experiments together rather than each
experiment independently (Figure 1A and C; see Supplemen-
tary information S4 for a toy example). Next, MEED is
compared with network-based ED methods (Supplementary
information S5), which choose the perturbed variables
according to key topological features of the model structure
(by in- and out-degree, total number of connections, topolo-
gical and reverse topological order, referred to as IN-DEGREE,
OUT-DEGREE, CONNECTIONS, TOPOL and REV-TOPOL,
respectively). These methods are divided into two types
according to how they determine stimulation and perturbation
states for a predefined perturbed variable: either at random, or
with the use of reasoning and scoring of our MEED algorithm
(referred to as random and hybrid methods, respectively).
Figure 1B and C shows the advantage of our algorithm over all
network-based methods in application to randomizations of
the TNF pathway, indicating that MEED reduces the amount of
experimental effort required to distinguish between regulatory
programs. Notably, the hybrid methods perform better than
the random methods, but worse than MEED. Hence, even
having predetermined specific molecules to be perturbed, the
experimenter can still gain from consulting MEED regarding
the type of perturbation and the level of stimulation.
Supplementary information S6 provides a detailed description
of the analysis and Supplementary Figure S1 presents
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similar results on randomizations of the remaining three
human signaling networks, which are larger and have more
stimulators.

Next, we apply MEED to select experiments for the
investigation of the yeast cellular response to hyperosmotic
and pheromone triggers. The response is mediated by
signaling cascades that involve the PKA pathway, as well as
the HOG and mating/pseudohyphal growth pathways. The
model of the system (based on Gat-Viks and Shamir 2007; see
Figure 2) is referred to as the yeast signaling model or, in short,
the yeast model. The model contains two stimulators:
environmental osmotic concentration (EOC) and pheromone.
We assume that all variables (apart from the Hog-scaffold
variable; altogether fifteen variables) are regulators and
can be perturbed. A complete depiction of the model, including
the regulation functions of all variables, is presented in

Supplementary Figure S2. In this study, we focus on the
regulation of the immediate response, exploring only the
system state before the potential feedback mechanisms affect
the signaling network. Therefore, the model does not contain
several possible mechanisms of feedback control (e.g., Hog1
protein phosphatases whose production is stimulated after the
osmotic shock, or glycerol production that leads to restoration
of turgor pressure and stops further activation of the HOG
pathway; see Hohmann, 2002) and we utilize only data
consisting of measurements that were made shortly after
stimulation (Supplementary Table S3). We consider only
transcriptional control by single regulators. With this restric-
tion, there are 27 (33) possible regulation functions reflecting
different means of regulation. To avoid the problem of
overfitting (Gat-Viks and Shamir, 2007), we limit ourselves
to six biologically relevant regulation functions: necessary

Figure 1 Comparative performance analysis on random models. The comparison is carried out on 1000 cyclic models generated by random reshuffling of the TNF
canonical human signaling pathway. (A, B) x-axis: the number of highest priority experiments used from the compared experiment lists to distinguish between regulatory
programs, y-axis: the FUP score averaged over the 1000 random models (only the results with average FUPo0.35 are reported). The lower the averaged cumulative
FUP, the higher the performance of a given ED method. (A) Comparison with the INDEP method. Our MEED algorithm has significant advantage over independent
experiment scoring. (B) Comparison with the network-based methods. The network-based methods choose the perturbed variables according to key features of the
structure, whereas stimulations and perturbation states are chosen either at random (the random methods, R-prefixed, green shaded) or following our MEED algorithm
(the hybrid methods, M-prefixed, blue shaded). (C) Box plots of the FUP scores (y-axis) for groups of 3, 9 and 15 highest priority experiments from the experiment lists
proposed by all analyzed methods (x-axis). The results show that MEED consistently outperforms other methods on the tested random models. In general, the hybrid
methods have a better performance than the random methods. This evident tendency implies that even allowing MEED to decide only on stimulations and perturbation
states, regardless the way the perturbed variables were chosen, can still provide significant improvement.
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activation/inhibition, sufficient activation/inhibition and both
(necessary and sufficient) activation/inhibition (modified
from Yeang and Jaakkola, 2006; detailed truth tables are
provided in Supplementary Table S2). In total, we consider 90
regulatory programs (six for each of the fifteen regulators in
the pathway).

To have access to experimental data for expansion, we
restricted all analyzed ED methods to choose only from
candidate experiments that are available in microarray
databases. Our candidate set of experiments consists of 25
genome-wide profiles that are reported in five publications
(Roberts et al, 2000; Hahn et al, 2004; Mnaimneh et al, 2004;
O’Rourke and Herskowitz, 2004; Chua et al, 2006; see
Supplementary Table S3 for details).

For the yeast model, MEED proposes a list of 11 out of 25
candidate experiments (Figure 2). Figure 3A and B shows that,
similar to the results obtained for random networks, MEED
distinguished regulatory programs more efficiently than
INDEP and the network-based methods. For the yeast model,
M-TOPOL performs best from the network-based approaches.
The set of all 25 candidate experiments (therefore, also the
experiments selected by MEED) cannot distinguish between
pairs of regulatory programs within five groups (listed in
Supplementary information S7). Accordingly, adding more
experiments from this candidate set to the experiment list
designed by MEED does not enable to distinguish between
more regulatory programs.

Expansion of the yeast signaling model

To test our framework in practice, we performed expansion of
the yeast model using the measurements from the 11
experiments chosen by MEED. In the expansion procedure,
genes were assigned to regulatory modules by a probabilistic
matching of the observed profiles of the genes to the predicted
profiles of the regulatory programs (Supplementary informa-
tion S8). For comparison, we repeated the expansion
procedure using experiments selected by independent experi-
ment scoring (INDEP), the best-performing network-based
method (M-TOPOL; Figure 3B), as well as two extant ED
methods, introduced by Ideker et al (2000) and by Barrett and
Palsson (2006). Unlike MEED, the two extant methods take as

input high-throughput measurements (gene expression or
binding data) to build initial network models, and apply an
‘on-line’ procedure, that is, they use the data from each chosen
experiment to propose the next one (see Supplementary Table
S4 for a detailed comparative summary of the algorithms).
INDEP, MEED and M-TOPOL were applied to choose from the
same set of 25 candidate experiments. Expansion using the
four highest priority experiments proposed by MEED is
utilized to provide initial data for the methods of Ideker et al
(2000) and Barrett and Palsson (2006), and thus these methods
choose only from the remaining 21 candidate experiments. The
information required by the methods in each ‘on-line’ step is
also provided by applying the expansion procedure (Supple-
mentary Information S9 reports how the two extant algorithms
were implemented; Supplementary Figure S3 describes the
main differences between our framework and the extant ED
frameworks). For the yeast model, MEED achieves better
performance than the extant methods in distinguishing
regulatory programs (measured with FUP score, see Materials
and methods; Figure 3A). The method of Ideker et al (2000)
reaches its stop criterion already after choosing three experi-
ments.

Using the 11 experiments proposed by MEED, the expansion
procedure identifies 26 regulatory modules controlled by the
yeast signaling network. More regulatory modules are
identified using any number of highest priority experiments
proposed by MEED than the same number of experiments
proposed by the method of Barrett and Palsson (2006).
Moreover, the eleven experiments chosen by MEED enable
lower percentage (2 out 26) of ambiguous modules (modules
that were matched to more than one regulatory program;
Figure 3C). Supplementary Figure S5 reports a similar
comparison with M-TOPOL and the method of Ideker et al
(2000).

The quality of expansion is further evaluated by an
ambiguity score, reporting the average number of regulatory
programs that were identified for each gene. Intuitively, the
more regulatory programs matching each ambiguous module,
and the more genes it contains, the higher the overall
ambiguity score. Unlike the FUP score, which evaluates a
given ED method based only on model predictions, the
ambiguity score evaluates results of expansion, which utilizes

Figure 2 Experiment list proposed using MEED for the yeast signaling model. The model is depicted on the left as a network with nodes (ovals) corresponding to
environmental conditions (dark gray) and signaling components (light gray). Arrows represent regulatory influences. The list of the experiments designed using MEED is
given in a table on the right, listing stimulation (control—YPD) and perturbation (green: knockout and red: overexpression).
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experimental data. Figure 3D indicates that MEED outper-
forms M-TOPOL and (except when the six highest priority
experiments are used) the extant methods with respect to
ambiguity scores. In Supplementary Figure S6, we use the
ambiguity score to show the specificity of the set of
experiments chosen by MEED for the particular yeast model.
Taken together, the presented results indicate practical
applicability as a strong advantage of MEED, which performs
comparably or better than the extant approaches although it
does not require the data from each chosen experiment to
propose the next one (Supplementary Table S4).

Next, we validate the expansion of the yeast network
by conducting expansion with additional experiments on
top of the eleven experiments suggested by MEED. In this way,
we test the stability of gene assignment, that is, whether
with more experiments there is a dramatic rearrangement of
genes between regulatory modules, or whether the genes
are added to or removed from the modules. Our rationale is
that a stable gene assignment provides evidence for the

correctness of expansion results. Supplementary Figure S4A
shows the total number of genes assigned to modules
across different numbers of utilized experiments. The initial
five highest priority experiments filter out majority of genes.
After the 11 experiments proposed using MEED, using
additional ones in expansion only slightly decreases the total
number of assigned genes. A large fraction of those genes,
which are assigned using the experiments proposed by
MEED and remain assigned using extended experiment
lists, is assigned to the same regulatory modules (Supplemen-
tary Figure S4B). Therefore, there is only little rearrange-
ment between the modules when more experiments are
used.

Regulatory modules in the yeast signaling model

To assess the biological findings resulting from application of
our framework to the yeast signaling model, we focused

Figure 3 Comparative performance on the yeast signaling model: FUP scores and ambiguity of expansion. MEED (plotted in magenta) is compared with INDEP (gray),
network-based methods, as well as two extant ED approaches (Barrett and Palsson (2006)—orange; Ideker et al (2000)—red). As the two extant methods take as input
results of expansion using the first four experiments proposed by MEED, their report starts from the fifth experiment. The method of Ideker et al (2000) reaches its stop
criterion already after choosing three experiments (fifth to seventh experiment). x-axis in all plots (A–D): the number of highest priority experiments. For comparison with
MEED, we present up to eleven experiments chosen by the other methods. (A, B) FUP scores. y-axis: the FUP score, measuring the ability of the experiments to
distinguish between regulatory programs (only the results for FUPo0.35 are reported). With the lowest FUP for every number of highest priority experiments, MEED
outperforms all alternative methods. The best performing of the network-based methods is M-TOPOL. (C) Regulatory modules. y-axis: the number of modules identified
in expansion. The proportion of ambiguous modules is marked in gray. In comparison with the method of Barrett and Palsson (2006), more modules are obtained using
the same number of highest priority experiments proposed by MEED (see Supplementary Figure S5 for similar analysis for M-TOPOL and Ideker et al (2000)).
(D) Ambiguity of expansion. y-axis: ambiguity score (i.e., the average number of regulatory programs per gene; plotted in log scale). With lower ambiguity score for most
numbers of highest priority experiments, MEED outperforms M-TOPOL and the method of Barrett and Palsson (2006) on the yeast model.
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further analysis on the obtained regulatory modules. As small
modules could have been generated at random, given the large
number of potential regulatory programs, we restricted the
analysis to fourteen modules containing at least seven genes.
Figure 4 presents a map of the expansion, including the
identified regulatory modules, their regulatory programs,
predicted profiles and the expression matrices of the target
genes. The map clearly shows high agreement between
predicted profiles and observed profiles. Cases of disagree-
ment (e.g., observed and predicted responses to the second
experiment, sko1 mutant, in two regulatory modules, inhibited
by Kss1/Fus3 or Ste12, respectively) show faults in our
understanding and incompleteness of the yeast signaling
pathway model.

The expansion analysis provides detailed hypotheses
regarding the regulatory mechanisms downstream of the yeast
signaling model. To evaluate the identified regulatory modules
with respect to known mechanisms, we listed eight relevant

transcriptional mechanisms based on a comprehensive review
(Hohmann, 2002; Supplementary Table S5). The known
mechanisms include four single-regulator programs and four
combinatorial regulations (not considered in this study). All
four single-regulator mechanisms were detected by our
analysis (activation by Msn2/4, activation by Ste12, inhibition
by Sko1 and activation by Hot1—here ambiguous with Msn1
and Hog1), confirming the quality of our predictions.

In a number of cases, well-characterized target genes were
identified by the expansion analysis, thereby serving as
positive controls. For example, our analysis indicates that
CTT1 and HSP12 are activated by Msn2/4 and FUS1, FUS3
and FIG1 are activated by Ste12, both consistent with the
known transcriptional control of these target genes. As the
transcriptional network underlying the measured expression
data is not known, it is difficult to evaluate our results
systematically. We therefore used the well-characterized gene
targets reviewed by Hohmann (2002) as a repository of

Figure 4 Expansion of the yeast signaling model using the experiments proposed by MEED. The yeast model is depicted in the center of the figure. The identified
modules are presented, with additional dashed edges connecting the regulators in the pathway to their regulatory programs (nodes labeled with regulators and having a
boundary color-coded according to their regulation function). The ambiguous modules, highlighted with dashed yellow squares, are presented as gray-filled nodes,
labeled with their size and connected by edges to all their matching regulatory program nodes. The two ambiguous modules were subject to an additional MEED
iteration, which succeeds to distinguish their regulatory programs using only two additional experiments. Matrices showing the expression measurements of target genes
(rows) across the eleven experiments proposed using MEED (columns) are presented only for the modules that contain at least seven genes. The columns of the
expression matrices are ordered from left to right according to the order proposed by MEED. For clarity, only subsets of the large Ste12 and Kss1/Fus3 matrices are
shown. The predicted profiles appear as separate rows above the matrices. For most modules, the expression profiles agree well with the predicted profiles. Blue arrows
exemplify experiments in which majority of the module genes disagree with the predicted profile.
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regulatory relations (Supplementary Table S5). In total, out of
sixteen target genes, known to be regulated by a single
transcription factor, eight genes have been assigned correctly
and no gene has been assigned to a wrong regulatory module.
As combinatorial regulation was not taken into consideration
in our analysis, we expect that target genes with more than one
known regulator will not be assigned to any of the regulatory
modules. Indeed, all six combinatorially regulated target genes
did not match any of the regulatory programs (for a detailed
comparison between known regulatory relations and our
results, see Supplementary Table S5).

Interestingly, four kinases, including Kss1/Fus3, PKA, Sho1
and Ste7, were identified as gene regulators (Figure 4). The
hypothesized regulation might be explained by an indirect
influence on the target genes through alternative signaling
pathways and downstream transcription factors that are not
part of the model. Several such alternative pathways are
known but were omitted from the model. For example, PKA
regulates transcription through the transcription factors
Msn2/4 and Sko1 (part of the model) or through Adr1, Rap1
and Crz1 (not modeled; Hohmann, 2002; Yoshimoto et al,
2002), Kss1/Fus3 mediates transcription through the Far1
kinase independently of Ste12 (Nern and Arkowitz, 1999), and
the Sln1/Ypd1 kinases (which have a small module and
therefore were not included in Figure 4) regulate an alternative
hypo-osmotic stress pathway through the transcription factor
Skn7 (not modeled; Hohmann, 2002). There is no known
alternative pathway downstream the signaling molecules Sho1
and Ste7. Our results suggest that these signaling molecules
have an indirect effect on gene expression through an
additional pathway, independent of the model.

We evaluated all fourteen modules to test whether the
proteins encoded by the target genes had a related function or a
shared transcriptional regulation. To that end, we scored each
module according to its enrichment in GO annotations (using
the Ontologizer tool designed by Bauer et al, 2008) and sets of
transcription targets identified by protein–DNA binding
experiments (Harbison et al, 2004; Pokholok et al, 2006;
Zeitlinger et al, 2003, computed using a hypergeometric test).
Out of the four large modules (containing at least 100 target
genes), three modules obtained enrichments below P-value
threshold 0.001 (Bonferroni corrected; Figure 5). All
other modules did not obtain significant enrichment, probably
because of their small size (each of these modules
contains less than 26 genes, including genes that were not
annotated yet).

The enrichment analysis supports and provides insights into
the identified modules. For example, it justifies the division of
the genes downstream of the mating pathway into two
activation modules: a module activated by the transcription
factor Ste12 and a module activated by the kinases Kss1/Fus3.
According to our enrichment analysis, the genes activated by
Ste12 are characterized by several annotations, which are all
related to the known functionality of Ste12 as a key
transcription factor of the mating pathway (Figure 5). How-
ever, the Kss1/Fus3 targets are not enriched in any of these
annotations, confirming that Ste12 does not control those
targets. To provide additional evidence that the two transcrip-
tional modules are distinct, we performed promoter sequence
analysis using the Amadeus tool (Linhart et al, 2008). The

known binding motif of Ste12 was highly enriched in the
module under sufficient activation by Ste12 (P-value o10–12),
whereas the module under sufficient activation by Kss1/Fus3
was not enriched with this motif. Taken together, our analysis
provides evidence for transcriptional regulation by Kss1/Fus3,
independently of Ste12 control.

We next asked what is the regulatory pathway mediating
sufficient activation control by Kss1/Fus3 on its gene targets.
Kss1 and Fus3 have no preferential binding to the promoters of
the Kss1/Fus3 module (Pokholok et al, 2006; data not shown),
ruling out the possibility that Kss1/Fus3 have a direct effect on
their targets. One potential indirect transcriptional control by
Kss1/Fus3 is mediated through the kinase Far1, which
mediates cell-cycle arrest in response to pheromone, indepen-
dently of Ste12. However, our module is not enriched in
cell-cycle annotations (Figure 5), indicating that Far1 is
unlikely to mediate the observed gene activation downstream
of Kss1/Fus3. As more experimental investigations of the
pathway connectivity become available, the mechanisms
by which Kss1/Fus3 control its targets should be further
revealed.

Ambiguity networks and iterative experimental
design

To facilitate the inspection of ambiguous modules in a given
expanded model, we devised the concept of an ambiguity
network. Recall that an unambiguous module matches exactly
one regulatory program, and an ambiguous module matches
strictly more than one program. An ambiguity network is a
graph whose nodes represent regulatory programs that
matched one of the regulatory modules. One additional node
is added for each ambiguous module, labeled by the number of
genes it contains. There are edges between the ambiguous
module nodes and their matching regulatory program nodes.
In this way, the ambiguity network highlights the ambiguous
modules and provides details on their size and the alternative
regulation hypotheses.

Figure 6 compares two ambiguity networks for two sets of
regulatory modules that differ significantly in their ambiguity
score. The networks were generated based on the yeast model
expansion using two groups of five and six highest priority
experiments from the experiment list proposed by M-TOPOL.
Adding the sixth experiment (knockout of Pbs2 in high
osmotic stress) lowers the ambiguity of the identified
regulatory modules (compare Figure 3D). Such a strong
drop of ambiguity score can be explained by the fact that with
the added experiment, the ambiguous modules either:
(i) match fewer regulatory programs, or (ii) contain fewer
genes. As an example of the former case, using the five highest
priority experiments, the expansion procedure identifies one
of the ambiguous modules to be controlled by seven regulatory
programs. With the sixth experiment added, this module is
replaced by two, matching four and three regulatory programs,
respectively (Figure 6, red rectangles). As an example of the
latter case, consider the largest ambiguous module containing
3233 genes in expansion performed using five experiments.
With the sixth experiment added, this module is replaced by
two smaller modules. These modules match three regulatory
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programs each and contain only 307 and 677 genes (Figure 6,
blue rectangles).

Our framework can be used in iterations of the MEED
algorithm and expansion procedure. Experiments chosen by
MEED from the restricted set of 25 candidate experiments do
not distinguish all regulatory programs in the yeast model.
Five groups of regulatory modules remain undistinguished
(Supplementary information S7). Accordingly, expansion
performed using these experiments generates two ambiguous
modules (the remaining three groups of regulatory programs
are not predicted to control any modules). The ambiguous
modules match three regulatory programs each (the regulators
Hog1, Msn1 and Hot1 as sufficient inhibitors and the same
regulators as sufficient activators, shown in Figure 4). MEED
was re-applied to distinguish between pairs of regulatory
programs within these groups. In this iteration, the set of
candidate experiments was not limited to the 25 available
experiments, but included all experiments possible for the
yeast model. Choosing from this set, the algorithm proposed
two additional experiments: overexpression of Msn1 and of
Hot1, both exposed to low osmotic stress and without
pheromone treatment. Carrying out these two experiments
and using them in expansion together with the previous eleven
experiments (Figure 2) is expected to produce only unambig-
uous modules. This shows that MEED can be applied to
resolve ambiguity in an existing expanded model: First, it can
suggest additional experiments by considering experiments
that were already carried out, and second, it is able to propose
new experiments specifically for the undistinguished regula-
tory programs.

Discussion

This paper presents a general framework for discovering
regulatory modules downstream of a studied signaling path-
way. The main goal of extant systems biology frameworks is to
create and improve a model of a given system under study. Our
framework opens an opportunity to expand such an optimized
model with downstream regulatory modules. Our results

provide an indication for the good performance of MEED on
random networks and the yeast signaling model.

Experiments chosen by the MEED algorithm from a set of
candidates can be carried out in a lab and then given as input
to the expansion procedure. If the candidate experiments
distinguish all regulatory programs, using the experiments
selected by MEED in expansion will result in a set of
unambiguous modules. Ambiguous modules can be obtained
in the case when only part of the experiment list suggested by
MEED is used in expansion or when the candidate experiments
do not distinguish all regulatory programs. In such case, it is
possible to analyze the ambiguity network and specify
ambiguous modules that are subject to additional MEED
iterations (see section ‘Ambiguity networks and iterative
experimental design’). This follows the widely accepted
iterative framework for biological discovery in systems biology
(Ideker et al, 2001; Kitano, 2002), with the specific application
of experimental design for discovering transcriptional regula-
tion downstream of a given pathway.

MEED does not suggest all experiments necessary for high-
confidence assignment of genes to regulatory modules. Rather,
it tries to minimize the number of experiments required to
distinguish the input list of regulatory programs. Therefore, in
practice, model expansion will benefit not only from utilizing
extra biological and technical repeats of the suggested
experiments, but also from extending the economical list
provided by MEED with additional available experiments.
First, the new experiments will bring new evidence to refine
the assignment of genes to modules. Second, they can be used
to validate expansion results. In our study, on adding
experiments beyond the eleven proposed by MEED, the total
number of assigned genes remains of the same order of
magnitude. Moreover, only a small fraction of the genes is
rearranged between the modules (see Supplementary Figure
S4 and section ‘Expansion of the yeast signaling model’). This
provides strong support for the robustness of the assignment
of genes to modules downstream of the yeast signaling
network.

Our modeling formalism was chosen to fit the available
biological knowledge. In contrast to detailed modeling

I

I
A

A

Figure 5 Functional coherence of identified regulatory modules. Enrichment of the target genes from each of four large identified modules (rows) in various
experiments (columns). Significant enrichment (Boferroni-corrected hypergeometric P-value; indicated by shades of red) represents distinct behavior of the genes in a
module compared with the rest of the genome. Enrichment P-values in TF–DNA binding targets (Zeitlinger et al, 2003; Harbison et al, 2004; Pokholok et al, 2006) and
gene ontology annotation (GO, Ashburner et al, 2000) are reported. The different data sets and experiments’ environmental conditions are color-coded above and below
the matrix, respectively. The profiles used for the enrichment tests were not part of our original dataset. RPBc, ribonucleoprotein complex; BG, biogenesis; BS,
biosynthesis.
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approaches (e.g., ODE modeling), the logical model does not
require setting a large amount of parameters, which are
unknown for most signaling reactions. Other semiqualitative/
qualitative modeling approaches, for example, Boolean
networks (Kauffman, 1969; Glass and Kauffman, 1973), linear
dynamical systems (Roweis and Ghahramani, 1999),
s-systems (Savageau, 1969a, b, 1970), Hopfield nets (Hopfield,
1982) or qualitative differential equations (de Jong, 2002), are
dynamic modeling approaches that require time-course data.
Here, unlike these approaches, we assume that the regulatory
relations are discrete logical functions and the model describes
the steady state of the system, thereby enabling to utilize single
time-point expression measurements.

In the proposed framework, there is a distinction between
the model-based experimental design and data-based expan-
sion procedure: The MEED algorithm selects the experiments
independent of the data and relies only on the non-stochastic

model predictions of discrete states reflecting responses of
putative regulatory targets. The stochastic nature of the data is
considered only in the expansion, once the measurements
from the experiments proposed by MEED are available.
We expect that based on the proposed framework, it will be
possible to develop techniques handling probability
model formalisms, such as a Bayesian network model,
which represent the prior belief in the logical functions
(as implemented in Gat-Viks and Shamir (2007)).

In this contribution, we considered only regulatory
programs with single regulators and experiments with
perturbations of one molecule. Our approach is general and
can be extended to investigate combinatorial control by taking
into account regulatory programs with multiple regulators and
experiments with more than one perturbed variable (analyzed
previously by, e.g., Kaufman et al, 2005; Nelander et al, 2008).
The MEED algorithm, which is linear in the number of

Figure 6 Illustrating expansion results with ambiguity networks. Ambiguity networks for regulatory modules obtained in expansion of the yeast model using the first five
(A) and six (B) experiments on the list proposed by M-TOPOL (i.e., A and B differ only by one additional sixth experiment from the list). The ambiguity network provides a
detailed insight into the ambiguous modules. Each white-filled node represents a regulatory program matching one of the identified modules. It is labeled with its
regulator, and has a boundary color-coded according to its regulation function. Unambiguous modules are presented only by their unique matching regulatory program,
without indicating their size. Ambiguous modules are presented as gray-filled nodes, labeled with their size and connected by edges to all their matching regulatory
program nodes. Exemplary modules (highlighted with dashed squares) are shown together with their predicted profile (colored vector above the square). Dashed red: an
ambiguous module controlled by seven regulatory programs containing a large set of genes in A is replaced in B by two smaller ambiguous modules controlled by four
and three regulatory programs, respectively. The two modules differ in the gene response to the additional sixth experiment. Matrices showing expression profiles of the
target genes (rows) across the experiments (columns) are plotted next to the modules. Dashed blue: A large ambiguous module whose genes did not respond in any of
the first five experiments (the corresponding predicted profile is filled with black in A). Using the sixth experiment, the large module is replaced by two smaller ones in B.
One module contains genes that were downregulated in the sixth experiment, whereas another contains genes that were upregulated (can be seen in green versus red
entries in the predicted profiles of the modules). A large group of genes, whose expression has not changed in the sixth experiment, does not match any profile and
therefore is not contained in any regulatory module.
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regulatory programs (Supplementary information S10), will
scale to the enlarged problem, with the condition that only a
small selection of a vast number of all combinatorial
possibilities is considered. For example, for two regulators
and three possible states of the variables, the number of all
possible regulation functions is 3ð3

2Þ ¼ 19683. Already in case
of single regulator programs, we choose six biologically
relevant regulation functions (out of 27 possible). Applying
the same selection criteria, one could consider only a handful
of biologically relevant combinatorial functions (e.g., adapting
the combinatorial schemas proposed by Buchler et al, 2003;
Yeang and Jaakkola, 2006).

The results of the expansion procedure must be interpreted
with caution. First, MEED and the expansion procedure rely
strongly on prior knowledge encoded in the model, and
therefore can fail when the assumed network topology or
logical relations are wrong. To overcome this obstacle, the
model of the signaling pathway should be corrected using a
refinement procedure (Gat-Viks and Shamir, 2007) before
applying our framework. Second, measurement errors may
distort the observed profiles, and consequently, the assign-
ment of genes to regulatory modules in expansion. Third, to
avoid superfluous assignment of genes, the regulatory
programs should reflect all biologically relevant means of
transcriptional control (see Supplementary Figure S4 for
details).

Lastly, our analysis is limited to the regulation of immediate
gene expression response that is secondary to signaling. We
rely on the assumption that the system state can be explored
before transcriptional feedback mechanisms are activated and
affect the pathway. Indeed, in our case study, the yeast
signaling model does not include slower temporal processes
such as feedback loops, and is integrated with expression
profiles measured shortly after stimulation, during the
immediate gene expression response. Our results (see section
‘Regulatory modules in the yeast signaling model’) suggest
that our modeling assumptions are appropriate for this
system. In the future, we hope that the methodology
can be extended to handle slower temporal processes
analogously to the construction of dynamic Bayesian networks
(DBN; Perrin et al, 2003) from steady state Bayesian networks.
As in DBN, we expect that MEED and the expansion procedure
can be generalized from the steady state model to the dynamic
model.

MEED has several important benefits: first, it builds on
qualitative knowledge formalized in a simple logical model.
Therefore, it enables to focus the experimental investigation
on any biological system with prior understanding of its
signaling pathways. Second, the algorithm has the ability to
choose experiments without access to high-throughput experi-
mental data. Third, MEED is able to take into account
dependencies between the experiments and select a whole list
of required experiments at once. Finally, MEED may consider
all possible or only a restricted set of candidate experiments
(e.g., due to experimental cost and technical limitations). Our
results show that MEED can significantly reduce the amount of
experimental effort required to elucidate regulatory mechan-
isms downstream of a given pathway. Moreover, we showed
that even having a predefined set of perturbed molecules, an
experimenter can significantly benefit from consulting MEED

with regard to possible environmental stimulations and the
type of genetic perturbations. Taken together, our approach
opens the way to practical experimental design based on well-
established qualitative biological knowledge.

Materials and methods

Predictive logical model

Our ED and expansion framework is based on a predictive model,
which formalizes the available knowledge on a given signaling
pathway. The definitions of the model are given in section ’Outline
of our framework’ (see Gat-Viks et al, 2004 for more details). In our
analysis (see sections ’Experimental design’ to ’Ambiguity networks
and iterative experimental design’), we assume that all variables may
have three possible states, and that all zero-indegree variables are
stimulators.

Recall that an experiment is given by an assignment of states to the
stimulators (called stimulation), a set of perturbed variables, and their
state assignment (perturbation state). In this study, we consider only
experiments, in which either none or exactly one variable is perturbed.
The perturbed variable cannot be a stimulator. Assuming that k
perturbation states are possible for each variable, having s stimulators
and p variables that can be perturbed in a given model, the number of
all possible experiments is ks(pkþ 1).

Given an experiment, a predicted model state is an assignment of
states to all variables in the model so that (i) the stimulators are
assigned their stimulation and the perturbed variables are assigned
their perturbation state, and (ii) the state of each other variable is
consistent with the states of its regulators. In other words, the state of
each variable equals the output of its regulation function when applied
on its regulators’ states. In this way, each predicted model state
corresponds to a steady state of the system in a given experiment. The
state assigned to each variable by a given predicted model state is
called a predicted state of the variable. In case of an acyclic model, each
experiment has exactly one possible predicted model state, giving a
unique predicted state for each variable. However, for a model whose
structure contains cycles, it is possible to obtain zero, one or several
possible predicted model states (see Gat-Viks et al (2004) for
computational analysis and Supplementary Figure S7A for an
example).

Regulatory programs and their predicted profiles

Recall that a regulatory program is defined by a regulator and a
regulation function (see section ’Outline of our framework’). Applying
the regulation function to the regulator’s predicted state in a given
experiment, we obtain a state reflecting the response of a potential
target gene to this regulatory program. This state is called predicted
response. A predicted profile for a regulatory program is a vector of
predicted responses to a list of experiments.

In a general case, one experiment may define a number of predicted
model states, giving several predicted states per regulator. Therefore,
each regulatory program might have a number of predicted profiles,
determined by the different combinations of predicted model states in
a list of experiments (exemplified in Supplementary Figure 7B top). We
assume that under a given experiment, the biological system reaches
the steady state corresponding to only one predicted model state.
Before designing and carrying out experiments, we cannot anticipate
which combination of their predicted model states will be reached.
This problem is taken into account as part of the MEED algorithm (see
section ’Distinguishing regulatory programs’ and ‘The MEED algo-
rithm’). However, the expansion procedure (described in section
’Outline of our framework’) requires as input a single predicted profile
for each of the regulatory programs. The single profile can be obtained
by choosing the predicted model states that have the best fit with the
experimental measurements (for a detailed algorithm, see Gat-Viks
et al, 2004).
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Distinguishing regulatory programs

We start by defining how a given set of regulatory programs R is
distinguished by a predicted model state, next we extend the definition
for a single experiment (which might induce several predicted model
states), and finally, we generalize by stating how R is distinguished by
a set of experiments. Recall that a predicted model state me for a given
experiment e assigns to each regulator its predicted state. From these
states we can compute the predicted responses for the regulatory
programs in R. In this way, each predicted model state induces a
natural partition of the set of regulatory programs. The partition
contains two regulatory programs in the same block if and only if they
have the same predicted response. Regulatory programs contained in
different blocks of this partition are said to be distinguished by the
predicted model state me (exemplified in Supplementary Figure 7B
middle).

An experiment may in general define a number of predicted model
states. We consider a partition T(e) of the set of regulatory programs R
induced by an experiment e as the supremum over the set of partitions
induced by its predicted model states. The regulatory programs
contained in different blocks of T(e) are called distinguished by the
experiment e (see Supplementary Figure 7B middle for an example and
Supplementary information S11 for discussion). If an experiment has
no predicted model states, this experiment is not informative and its
partition includes only one block containing all regulatory programs.

A pair of regulatory programs is distinguished by a list of
experiments E{e1,y,en} if and only if they are distinguished by at
least one of its experiments. Equivalently, we say that E distinguishes
between regulatory programs that are contained in separate blocks of a
partition S(E)¼T(e1)-y-T(en) (exemplified in Supplementary
Figure 7B, bottom). The partition for an empty set of experiments is
a full, one-block partition containing all regulatory programs.
Regulatory programs contained in the same block of the partition
S(E) are not distinguished by any of the experiments, whereas
regulatory programs in different blocks are distinguished by at least
one experiment. We say that an experiment list E distinguishes all
regulatory programs, if its corresponding partition S(E) contains only
single-element blocks. Note that if a given list of experiments E,
distinguishes between two regulatory programs, their predicted
profiles will be different (i.e., have at least one different predicted
response, see Supplementary information S11) in all possible
combinations of predicted model states for E. In particular, they will
be different for the steady states the biological system has reached
under the experiments. This feature is crucial for our framework. It
assures that by maximizing the number of distinguished regulatory
programs MEED maximizes also the diversity of predicted profiles
used in the expansion procedure.

The MEED algorithm

The MEED algorithm aims to select an economical subset of given
candidate experiments that can be used for unambiguous expansion of
a given model. First, MEED calculates the set of pairs of regulatory
programs, which are distinguished by the candidate experiments.
Next, it tries to select the smallest subset of the candidate experiments,
which distinguishes between the same regulatory programs. The
decision version of this problem is NP-complete (proposition 1 in
Supplementary information S1). To obtain a practical solution, MEED
implements a greedy approximation algorithm for this problem, as
detailed below.

MEED evaluates the ability of a list of experiments to distinguish
regulatory programs using an entropy score. Assume that a given list of
experiments E induces a partition S(E) of a set of r regulatory programs
into C disjoint blocks. The score is defined as

HðEÞ ¼ �
XC

c¼1

nc

r
log

nc

r

� �

where nc is the number of regulatory programs in block c, 1pcpC. If
all regulatory programs are distinguished by the list of experiments E,
then C¼r and the corresponding score is H(E)¼log(r). If all regulatory
programs are undistinguished by E, there is only one block in the
partition, C¼1 and H(E)¼0. Intuitively, the higher the entropy score,

the higher the ability of the list of experiments to distinguish between
the regulatory programs. Accordingly, entropy gain is given by
H(E,e)�H(E), where S(E,e)¼S(E)-T(e) (i.e., the additional experi-
ment introduces a finer partition of the set of regulatory programs).
Entropy gain evaluates how much the joint ability to distinguish
between regulatory programs will improve when the experiment e is
added to the list of experiments E.

MEED outputs an ordered list of chosen experiments. In each greedy
step, the algorithm extends the current experiment list E (identified in
the previous steps) with one additional experiment e, which provides
the highest entropy gain (Supplementary information S10). In this way,
the chosen experiment results in the most ‘uniform’ partition of the set
of regulatory programs. The algorithm approximates the size of the
optimal solution (i.e. the number of proposed experiments) by the
factor 1þ ln(r)þ ln(log(k)), where r is the number of regulatory
programs and k is the number of states each model variable can have
(proposition 2 in Supplementary information S2). The approximation
holds for both cyclic and acyclic models.

The FUP score

We report the performance of a list of experiments E with the fraction of
undistinguished pairs (FUP). The score is given by the proportion of
regulatory program pairs undistinguished by E out of all possible pairs
of regulatory programs:

FUPðEÞ ¼

P
c

ncðnc � 1Þ

rðr � 1Þ

where nc is the size of the c-th block of the corresponding partition S(E)
of the set of r regulatory programs. FUP(E) attains values between 0 (all
regulatory programs are distinguished) and 1 (no pair of regulatory
programs is distinguished). The more pairs of regulatory programs are
distinguished by a given list of experiments, the smaller its FUP score.
Unlike the ambiguity score (see section ’Expansion of the yeast
signaling model’), which evaluates the results of expansion utilizing
experimental data, FUP evaluates a given ED method based only on
model predictions.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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