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ABSTRACT: To discover novel antiviral agents, based on the
high antiviral activity of (4-oxo-4H-quinolin-1-yl)-acetic acid
hydrazide (C), a series of 4-oxo-4H-quinoline acylhydrazone
derivatives were designed, synthesized, and first evaluated for their
antiviral and fungicidal activities. Most acylhydrazone derivatives
exhibited moderate to good antiviral activities in vivo. The inactive,
curative, and protective activities of compounds 4 (51.2, 47.6, and
46.3%), 11 (49.6, 43.0, and 45.2% at 500 mg/L), and 17 (47.1,
49.2, and 44.1%) were higher than those of ribavirin (39.2, 38.0,
and 40.8%) at 500 mg/L. Molecular docking showed that
compound 4 exhibited a stronger affinity to TMV coat protein
(TMV-CP) than ribavirin, with a binding energy (−6.89 kcal/mol)
slightly lower than that of ribavirin (−6.08 kcal/mol). Microscale thermophoresis showed that compound 4 (Kd = 0.142 ± 0.060
μM) exhibited a strong binding ability to TMV-CP, superior to that of ribavirin (Kd = 0.512 ± 0.257 μM). The results of
transmission electron microscopy showed that compound 4 hindered the self-assembly and growth of TMV. The antifungal activities
of most compounds were moderate at 50 mg/L, among which compounds 12 and 21 exhibited a 72.1 and 76.5% inhibitory rate
against Physalospora piricola, respectively. Meanwhile, compound 16 exhibited a 60% inhibitory rate against Cercospora arachidicola
Hori at 50 mg/L.

■ INTRODUCTION
Plant virus diseases cause approximately 5 billion euros in
economic losses to world agriculture every year.1 As a widely
distributed virus worldwide, tobacco mosaic virus (TMV) can
infect various Solanaceae plants, and its infection is difficult to
control in the field. The actual inhibitory effect of
commercially available TMV inhibitor Ningnanmycin is
lower than 60% in the field.2 Meanwhile, its use is limited by
water stickiness and photosensitivity.3 Based on this, it is
necessary to develop efficient TMV inhibitors.
Due to their low toxicities, easy decompositions, and unique

action mechanism, more and more natural-product-based
antiviral agents have been developed and their antiviral
mechanism has been investigated in recent years,4 including
α-amino phosphonates derivatives,5,6 chalcone derivatives,7,8
dithioacetal derivatives,9−11 myricetin derivatives,12,13 ferulic
acid derivatives,14−16 indole derivatives,17,18 limonin deriva-
tives,19 and so forth. However, few antiviral drugs are used in
the field due to cost, synthetic complexity, and stability.20,21

Thus, it is still necessary to develop highly stable, easy to
synthesize, and efficient plant-based virus inhibitors.
Quinoline alkaloids are widely distributed in nature and

drugs, which exhibited broad insecticidal, antifungal, antiviral,
antimalarial, anticancer, and anti-inflammatory activities.22,23

Dictamnine (I) extracted from D. dasycarpus exhibited feeding
deterrent activity against adults and larvae of T. castaneum as
well as S. zeamais adults with EC50 values of 57.6, 47.9, and
91.7 ppm, respectively.24 Liu et al. synthesized quinoline
alkaloids II (EC50 = 0.41 μg/mL) and III (EC50 = 0.55 μg/
mL) which displayed superior in vitro fungicidal activities
against Sclerotinia sclerotiorum.25 Quinoline tricyclic derivative
IV exhibited anti-HCV (Hepacivirus) (EC50 = 3.1 μM) and
anti-BVDV (Pestivirus) (EC50 = 1.2 μM) activities.26 Wolf et
al. synthesized quinoline derivative V which exhibited
submicromolar antimalarial activity versus HB3 (chloroquine
sensitive) (IC50 = 17.5 nM) and Dd2 (chloroquine-resistant
strains of Plasmodium falciparum) (IC50 = 22.7 nM) para-
sites.27 Compound VI displayed promising cytotoxicity against
PC-3 (IC50 = 3.12 μM), DU-145, NCIH460, and 4 T1 cell
lines.28 Compound VII could inhibit TNF-α formation with an
IC50 value of 2.3 μM.29
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Acylhydrazone structure is commonly used in drug design.
In 2013, Kaplancikli et al. found that compound VIII exhibited
larvicidal activity with LD50 values of 57.4 and 4.35 ppm and
LD90 values of 297.8 and 19.1 ppm, respectively, at 24 and 48 h
post treatment.30 In 2019, Yang et al. synthesized compound
IX which exhibited higher curative, protective, and inactive
activities against TMV and CMV than those of ningnanmy-
cin.31 In 2024, Wu et al. found that arylhydrazone derivative X
exhibited anti-TMV curative activity (EC50 = 139 μg/mL),
which was similar to that of ningnanmycin32 (Figure 1).
In our previous work, we found that the inactive, curative,

and protective activities of echinopsine against TMV were
49.5, 46.1, and 42.6% at 500 mg/L, respectively.33 Further
studies indicated that the inactive, curative, and protective
activities of compound C (45.9, 31.5, and 47.8%) were also
higher than those of commercial ribavirin (39.2, 38.0, and
40.8%) at 500 mg/L. Based on the broad spectrum
bioactivities of quinoline and acylhydrazone structures, using
compound C as the leading compound, a series of 4-oxo-4H-
quinolin-1-yl acylhydrazone derivatives were designed and
synthesized (Figure 2). Their anti-TMV and fungicidal
activities were evaluated for the first time.

■ MATERIALS AND METHODS
Instruments. 1H NMR spectra were recorded at 400 MHz

using a Bruker AV400 spectrometer in a CDCl3 or DMSO-d6
solution with tetramethylsilane as the internal standard. High-
resolution mass spectrometry (HRMS) data were obtained on
a Thermo Q Exactive Focus-MS instrument. The melting

points were determined on an SWG X-4 binocular microscope
melting point apparatus without correction.

General Synthesis. Ribavirin (Topscience Co., Ltd.),
chlorothalonil (Bailing Agrochemical Co., Ltd.), carbendazim
(Bailing Agrochemical Co., Ltd.), and other reagents were
purchased from commercial sources and used as received.
Echinopsine was synthesized according to literature.34 All
anhydrous solvents were dried and purified according to the
standard techniques.

Synthesis of (4-Oxo-4H-quinolin-1-yl)-acetic Acid Ethyl
Ester (B). To a round bottomed flask was added N,N-
dimethylformamide (100 mL), compound A (4.35 g, 30
mmol), potassium carbonate (6.22 g, 45 mmol), and ethyl
bromoacetate (8.02 g, 48 mmol). The reaction mixture was
stirred for 12 h at room temperature. Water was added and the
reaction mixture was extracted with dichloromethane three
times. The organic phase was combined, washed with brine,
dried over anhydrous Na2SO4, and evaporated under reduced
pressure. The residue was subjected to column chromatog-
raphy eluted with dichloromethane/methanol (v/v, 20/1) to
give compound B as a white solid (5.36 g, 77.4%); mp 157−

Figure 1. Natural products and drugs containing a quinoline or acylhydrazone structure.

Figure 2. Design of target compounds.
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158 °C. 1H NMR (400 Hz, CDCl3): δ 8.45 (d, J = 8.0 Hz,
1H), 7.66−7.62 (m, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.40−7.37
(m, 1H), 7.19 (d, J = 8.4 Hz, 1H), 6.29 (d, J = 7.6 Hz, 1H),
4.77 (s, 2H), 4.24 (q, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H).
13C NMR (100 Hz, CDCl3): δ: 178.4, 167.2, 143.7, 140.2,
132.5, 127.3, 127.1, 124.0, 114.6, 110.8, 62.4, 54.0, 14.1. ESI-
HRMS (m/z): calcd for C13H14NO3 [M + H]+, 232.0974;
found, 232.0965.

Synthesis of (4-Oxo-4H-quinolin-1-yl)-acetic Acid Hydra-
zide (C). Compound B (2.31 g, 10 mmol) and hydrazine
hydrate (5 g, 80%, 100 mmol) were dissolved in methanol
(300 mL). The reaction mixture was refluxed until compound
B was completely consumed. The reaction mixture was cooled
to room temperature, and methanol was evaporated under
reduced pressure until a large amount of white solid
precipitated. The residue was filtered under reduced pressure
to afford compound C as a white solid (1.78 g, 81.8%). mp
240−241 °C. 1H NMR (400 Hz, DMSO-d6): δ 9.53 (s, 1H),
8.17 (d, J = 7.2 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.72−7.68
(m, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.39−7.35 (m, 1H), 6.07
(d, J = 7.6 Hz, 1H), 4.86 (s, 2H), 4.36 (s, 2H). 13C NMR (100
Hz, DMSO-d6): δ 176.5, 166.0, 145.7, 140.3, 132.0, 126.5,
125.7, 123.3, 116.0, 108.7, 52.8. ESI-HRMS (m/z): calcd for
C11H12N3O2 [M + H]+, 218.0930; found, 218.0924.

General Procedure for the Preparation of Com-
pounds 1−25. The mixture of methanol (50.0 mL),
compound C (1 mmol), and aldehydes D1−D25 (1 mmol)

was refluxed for 12 h. Then, the reaction mixture was cooled to
room temperature, and methanol was evaporated under
reduced pressure until a large amount of solid precipitated.
The residue was filtered under reduced pressure and the
precipitate was washed with methanol to afford compounds 1−
25. The data of compounds 1−25 are presented in the
Supporting Information.

Biological Assay. The anti-TMV and fungicidal activities
of compounds were tested according to the methods reported
in the literature,35,36 which can also be found in the Supporting
Information.

Morphological Observation via Transmission Elec-
tron Microscopy. The samples were treated according to the
method reported in the literature.37 The support membrane
was dipped in the compound solution for 10 s, then redyed
using phosphotungstic acid, dried, and then observed under a
transmission electron microscope. The details can be found in
the Supporting Information.

Molecular Docking. Molecular docking was performed on
the MOE software. The structure preparation function in the
MOE was used to prepare the protein structure. The
preparation process included assessing the quality of the
protein-structure data using defined temperature factors,
protein geometry checks, and electron-density checks; adding
hydrogen atoms and optimizing their positions; and perform-
ing the final energy minimization of the structure. Next, these
ligands were minimized by the Amber 10 force field.

Figure 3. Synthesis of 4-oxo-4H-quinolin-1-yl acylhydrazone.
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Following this, molecular docking was performed with the
dock application of the MOE, with two rounds of calculation.
A collection of poses were generated from the pool of ligand
conformations using the Triangle Matcher method and were
further refined using the rigid receptor method in MOE.
Finally, the generalized-Born/volume-integral implicit-solvent
model developed by Labute, GBVI/WSA dG, was used for
scoring each of the generated poses. For each compound, the
pose with the lowest score was retained. The compounds were
ranked lowest to highest on the basis of their scores.

Microscale Thermophoresis. TMV coat protein (TMV-
CP) was purified according to the procedure reported in a
previous study.38 The required concentration of compound 4
was mixed with 10−2 mL of the same volume of labeled protein
(TMV-CP) and incubated for 5 min. Samples were loaded into
special glass capillaries, and the dissociation constant (Kd)
values of compounds were measured at 25 °C via microscale
thermophoresis using the Monolith NT.115 software (Nano
Temper Technologies).39,40 Additional details can be found in
the Supporting Information.

■ RESULTS AND DISCUSSION
Synthesis of Target Compounds. The synthetic route of

4-oxo-4H-quinolin-1-yl acylhydrazone is given in Figure 3. The
nucleophilic substitution of compound A and ethyl bromoa-
cetate afforded compound B in 77.4% yield, which reacted
with hydrazine hydrate to afford compound C in 81.8% yield.
The condensation of compound C and aldehydes D1−D25
afford compounds 1−25 in 42.8−95.5% yields, respectively.
Compounds 1−25 precipitated from methanol, which made
the purification of these compounds easy and suitable for large-
scale production.

Configuration of Compounds 1−25. It is interesting
that compounds 1−25 exhibited two sets of signals in the 1H
NMR spectra at room temperature. Initially, this phenomenon
was considered to be caused by the impurities in the
compounds. Further purification of these compounds ruled
out this possibility. According to previous literature,41,42 the
condensation of hydrazide and aldehyde afforded both cis and
trans isomers (Figure 4), the mutual transformation of which

may be hindered at room temperature, resulting in two sets of
peaks on 1H NMR. The ratio of cis and trans isomers can be
determined by integral area of peaks in 1H NMR, which can be
attributed to the fact that the relative thermodynamical
stabilities of cis isomers and trans isomers were different.
The hypothesis was confirmed by variable temperature 1H
NMR studies of compound 2 in DMSO-d6 (Figure 5). The

coalescence of signals was observed in the 1H NMR spectrum
with the increase of temperature (20−40−60−80 °C).

Preliminary Structure−Activity Relationship Analysis.
In Vivo Anti-TMV Activity. The anti-TMV activities in vivo of
compounds B, C, and 1−25 are listed in Table 1. In order to
make the antiviral activity results more reliable, commercial
plant virus inhibitor ribavirin was taken as a control. All
compounds exhibited moderate to good anti-TMV activities,
especially, compound 4 (51.2, 47.6, and 46.3% at 500 mg/L;
16.8, 14.0, and 15.8% at 100 mg/L) and compound 11 (49.6,
43.0, and 45.2% at 500 mg/L; 19.8, 10.1, and 20.9% at 100
mg/L) exhibited higher inactive, curative, and protective
activities against TMV than ribavirin (39.2, 38.0, and 40.8% at
500 mg/L; 12.1, 10.1, and 13.4% at 100 mg/L) both at 500
and 100 mg/L. Compound 17 (47.1, 49.2, and 44.1%)
exhibited higher inactive, curative, and protective activities
against TMV than ribavirin at 500 mg/L, while its inactive
(7.5%) activity was lower than that of ribavirin (12.1%) at 100
mg/L. The inactive, curative, and protective activities of
compound 23 (40.1, 32.5, and 43.9%) were equivalent to those
of ribavirin at 500 mg/L, while the compound did not exhibit
any inactive and protective activities at 100 mg/L. Biphenyl-
substituted acylhydrazone derivative 11 (49.6, 43.0, and 45.2%
at 500 mg/L) exhibited equivalent antiviral activity to
corresponding 3-positon hydrazone derivative of echinopsine
(46.2, 45.0, and 41.7% at 500 mg/L).33

The inactive, curative, and protective activities of hydrazide
C (45.9, 31.5, and 47.8% at 500 mg/L) were higher than that
of compound B, which indicated that the introduction of a
hydrazide functional group increases the antiviral activity.
Substituted benzaldehydes and heterocyclic aldehydes were
selected to react with hydrazide C to investigate the effect of
phenyl rings and heterocycles. Overall, introducing the
substituted phenyl rings may increase or decrease antiviral
activities, while introducing heterocycles generally makes the
antiviral activity lower than compound C. For derivatives
containing electron-donating groups substituted phenyl (2−
11), the structure−activity relationship shows the following:
m-methoxy (4) > p-phenyl (11) > p-1-pyrazolyl (9) >
nonsubstituent (1) > p-dimethylamino (8) > p-methyl (2) >
p-tert-butyl (3) > methylthio (10). For derivatives containing
electron-withdrawing groups substituted phenyl (12−18), the
structure−activity relationship shows the following: p-trifluor-
omethyl (17) > p-methylsulfonyl (18) > p-bromo (14) >
nonsubstituent (1) > p-fluoro (12) > p-chloro (13) > p-nitro
(15). Thus, there was no obvious linear relationship between
anti-TMV activity and electron-donating and electron-with-
drawing abilities. The antiviral activities of derivatives
containing monosubstituted benzene were higher than those
containing polysubstituted benzene. For instance, compared
with the disubstituted compound 5 (inactive, 11.3%, 500 mg/
L), the monosubstituted compound 4 (inactive, 51.2%, 500
mg/L) exhibited higher activity. For derivatives containing
heterocycles, derivatives containing benzoheterocyclic rings
exhibited higher antiviral activities than that containing furan,
pyridine, thiazole, and thiophene.

TEM Analysis. The inhibitory effect of compound 4 and
ribavirin (500 mg/L) on the morphology of TMV particles was
observed by transmission electron microscopy (TEM) (Figure
6). TMV particles in the blank control exhibited a relatively
complete rod shape, while TMV particles treated with a
compound 4 solution with a concentration of 500 mg/L
fragmented into shorter rods, similar to the effect of the 500

Figure 4. Structure of compound 2.
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mg/L ribavirin control. It was speculated that compound 4
inhibited the assembly of TMV particles.

Molecular Docking. The molecular docking diagrams of
ribavirin and compound 4 with TMV-CP are shown in Figure
7. Both compound 4 and ribavirin can be docked into the

pocket of TMV-CP. Compound 4 was larger than ribavirin so
that it bonded more tightly to the protein pocket than
ribavirin. Thus, the docking pocket between compound 4 and
TMV-CP was more in line with the lock-key principle than
that between ribavirin.

Figure 5. Variable-temperature 1H NMR of compound 2 in DMSO-d6.
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Table 1. In Vivo Antiviral Activities of Compounds B, C, and 1−25 against TMVa

relative inhibition rate (%)

compd concentration (mg/L) inactive effect curative effect protective effect

500 32.1 ± 1.6 g−j
100 0

C 500 45.9 ± 3.3 b−d 31.5 ± 2.0 f 47.8 ± 4.8 b
100 17.2 ± 1.1 8.2 ± 0.5 11.4 ± 2.9

1 500 29.3 ± 1.4 h−k
100 0

2 500 26.7 ± 3.0 j−l
100 0

3 500 24.1 ± 1.0 k−m
100 0

4 500 51.2 ± 1.9 b 47.6 ± 2.5 b 46.3 ± 1.8 bc
100 16.8 ± 0.3 14.0 ± 0.5 15.8 ± 2.5

5 500 11.3 ± 3.2 op
100 0

6 500 7.4 ± 2.1 p
100 0

7 500 23.8 ± 2.5 k−m
100 0

8 500 28.1 ± 1.3 ijk
100 0

9 500 38.1 ± 3.2 e−g
100 5.1 ± 0.8

10 500 15.4 ± 2.0 no
100 0

11 500 49.6 ± 3.9 bc 43.0 ± 2.7 bc 45.2 ± 1.1 bc
100 19.8 ± 2.8 10.1 ± 2.0 20.9 ± 0.4

12 500 27.4 ± 3.9 i−k
100 0

13 500 18.6 ± 0.7 mn
100 0

14 500 31.7 ± 2.5 h−j
100 0

15 500 16.1 ± 4.8 no
100 0

16 500 14.6 ± 4.0 no
100 0

17 500 47.1 ± 1.9 bc 49.2 ± 3.0 b 44.1 ± 1.4 bc
100 7.5 ± 0.2 17.7 ± 1.5 19.0 ± 1.8

18 500 32.7 ± 3.8 g−j
100 7.0 ± 1.9

19 500 20.5 ± 3.6 l−n
100 0

20 500 29.7 ± 3.6 h−k
100 0

21 500 12.3 ± 1.7 op
100 0

22 500 23.9 ± 1.1 k−m
100 0

23 500 40.1 ± 2.7 c−e 32.5 ± 4.1 de 43.9 ± 1.0 bc
100 0 6.6 ± 1.9 0

24 500 33.5 ± 0.6 g−i
100 0

25 500 35.2 ± 4.8 f−h
100 0

Ribavirinb 500 39.2 ± 3.5 d−f 38.0 ± 2.2 cd 40.8 ± 1.0 c
100 12.1 ± 1.4 10.1 ± 1.6 13.4 ± 0.7

aA one-way analysis of variance followed by Duncan’s test was used for significant differences at p < 0.05, marking with the letters. Different letters
indicate significant differences. bRibavirin was used as the control.
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As shown in Figure 7C,D, the carbonyl group of the
quinolone structure of compound 4 can form hydrogen
bonding with amino acids Asn73, Tyr139, and Gln257. The
benzene ring of compound 4 formed a Pi−cation interaction
with Lys268. Compound 4 also had hydrophobic interactions
with amino acids Glu131, Arg134, Glu222, and Lys253.
Hydrogen bonding interactions, charge interactions, and
hydrophobic interactions all played important roles in the
binding of compound 4 and TMV-CP. Ribavirin formed
hydrogen bonds with amino acids Arg134, Glu222, Ser255,

Asp266, and Lys268 and also formed Pi−anion interactions
with amino acid Glu131.
Although compound 4 exhibited slightly fewer hydrogen

bonding interactions with TMV-CP than ribavirin, the
nonpolar interactions (van der Waals forces and hydrophobic
interactions) between compound 4 and TMV-CP were
superior to ribavirin. Compound 4 was more compatible
with the binding pocket of TMV-CP and exhibited antiviral
activities that were better than those of ribavirin. According to
molecular simulation data in our previous work,43 the TMV-
CP and compound 4 complex was stable.

Microscale Thermophoresis Analysis. Microscale ther-
mophoresis results of compound 4 and ribavirin with TMV-CP
are shown in Figure 8, which indicated that compound 4 (Kd =
0.142 ± 0.060 μM) showed stronger binding affinities toward
TMV-CP than ribavirin (Kd = 0.512 ± 0.257 μM). These
results were consistent with the molecular docking and anti-
TMV inactivation activity results.

Fungicidal Activity. The fungicidal activities of com-
pounds 1−25 were also evaluated and commercial fungicides
carbendazim and chlorothalonil were used as the positive
control (Table 2). All compounds exhibited moderate
bactericidal activities against 14 kinds of phytopathogenic
fungi, which were attributed to their poor solubilities.
Compound 4 exhibited more than 40% inhibitory rate against
three fungi at 50 mg/L. Compounds 15 and 16 exhibited 72.1
and 76.5% inhibitory rate against Physalospora piricola at 50
mg/L, respectively. Compound 19 exhibited a 60% inhibitory
rate against Cercospora arachidicola Hori at 50 mg/L.

■ CONCLUSIONS
In summary, a series of 4-oxo-4H-quinolin-1-yl acylhydrazone
derivatives were synthesized. Their anti-TMV activities and
fungicidal activities were investigated. The bioassays results

Figure 6. TEM images of TMV particles at 200 nm: (A) blank control, (B) compound 4, and (C) ribavirin.

Figure 7. Molecular docking diagrams of ribavirin with TMV-CP
(A,C) and compound 4 with TMV-CP (B,D).

Figure 8. Microscale thermophoresis results for compounds 4 (A) and ribavirin (B) with TMV-CP.
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showed that compounds 4 and 11 exhibited higher inactive,
curative, and protective activities than ribavirin both at 500 and
100 mg/L. The inactive, curative, and protective activities of
compound 17 against TMV were higher than those of ribavirin
at 500 mg/L, while its inactive activities were lower than those
of ribavirin at 100 mg/L. Molecular docking, TEM, and
microscale thermophoresis experiments showed that com-
pound 4 hindered the self-assembly of TMV-CP and thus
prevented TMV from infecting tobacco plants. Compounds 15
and 16 exhibited 72.1 and 76.5% inhibitory rate against P.
piricola at 50 mg/L, respectively. Compound 19 exhibited a
60% inhibitory rate against C. arachidicola Hori at 50 mg/L.
Further studies on structural optimization are in progress in
our laboratory.
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