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Abstract: A new spirostannole, 1,1′,3,3′-tetrakis(5-methylthiophen-2-yl)-4,4′,5,5′,6,6′,7,7′-octahydro
-2,2′-spirobi[benzo[c]stannole] (4), is synthesised and the molecular structure is compared with the
optimised geometry from DFT calculations. The highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) are twice degenerated and show a small
HOMO–LUMO energy gap of 3.2 eV. In addition, cyclic voltammetry measurements are conducted
and three redox processes are observed. Absorption and emission spectra show maxima at λabs,max

436 nm and λem,max 533 nm, respectively. Spirostannole 4 is a strongly absorbing material, but an
extremely weak emitter in solution at 295.15 K. However, when the solution is cooled from 280 to
80 K, the emission becomes visible. The reaction of spirostannole 4 with methyllithium is monitored
by NMR spectroscopy at 238.15 K. The 119Sn{1H} NMR signal shifts from −36.0 (4) to −211.0 ppm,
which is indicative of the formation of the lithium pentaorganostannate 5. The complex is thermally
instable at 295.15 K, but insights into the molecular structure and electronic behaviour are obtained
by DFT and TD-DFT calculations.

Keywords: organometallics; stannoles; spiro compounds; density functional calculations;
main group chemistry

1. Introduction

In general, stannoles represent cyclic organotin compounds and belong to the group 14 metalloles.
Their structure is analogous to the cyclopentadienes but with a stannylene moiety instead of the
methylene moiety. Stannoles, both classical and annulated, have received increasing interest during
the last 20 to 30 years because of their unusual optoelectronic properties, their small highest occupied
molecular orbital (HOMO)—lowest unoccupied molecular orbital (LUMO) energy gap and their
potential applications in devices [1–4].

So far, only their Si and Ge congeners, the siloles and germoles, have been used as materials in
electronic devices and have been extensively studied [5,6]. Stannoles, on the other hand, have been
investigated less often. However, as different high-yielding synthetic methods have emerged,
their optical, electronic, and structural properties and use as building blocks in materials have
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become a focus of research [2–4,7–17]. Aside from their innate properties, their reactivity is also
of interest.

The tin–lithium exchange reaction is an efficient and very mild method to generate organolithium
compounds that cannot be synthesised by traditional halogen–lithium exchange reactions or only
proceed with little conversion [18–24]. Because of this, it is of interest to compare the often-used linear
organotin reagents with the cyclic stannoles concerning their reactivity with MeLi. The intermediates
in tin–lithium exchange reactions are lithium pentaorganostannates with a tin atom bearing five carbon
substituents. In almost all reported cases, these are only stable at lower temperatures or have to be
stabilised by additives [20,25,26]. So far, just one structure is known that is stable at room temperature
and that could be isolated by crystallisation with 1,2-dimethoxyethane (DME) and analysed by X-ray
crystallography [20,25,27,28].

In this report, the synthesis and experimental and theoretical characterisation of a
new spirostannole, 1,1′,3,3′-tetrakis(5-methylthiophen-2-yl)-4,4′,5,5′,6,6′,7,7′-octahydro-2,2′-spirobi
[benzo[c]stannole] (4), are presented. In addition, the reaction of stannole 4 with methyllithium
is demonstrated, leading to a pentavalent “ate” complex 5. Calculations regarding the optimised
geometry, orbital energies and absorption were also conducted for the lithium pentaorganostannate 5
to furnish insights into its interesting and unique structure.

2. Results and Discussion

The precursor molecule 1,8-bis(5-methyl-thiophen-2-yl)octa-1,7-diyne (2) was synthesised by an
electrophilic aromatic substitution of 2-methylthiophene with N-iodosuccinimide (NIS) in the first step
followed by a Sonogashira cross coupling reaction of 2-iodo-5-methylthiophene (1) with 1,7-octadiyne
in the second step [29]. Cyclisation of 1,8-bis(5-methylthiophen-2-yl)octa-1,7-diyne (2) with Rosenthal´s
zirconocene (3) produced a zirconacyclopentadiene as an intermediate, which was treated with
copper(I) chloride and tin(IV) chloride to furnish the spirostannole 4 with a yield of 28% (Scheme 1);
for experimental procedures, see the Electronic Supporting Information (ESI) [30,31].
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Scheme 1. Synthesis of spirostannole 1,1′,3,3′-tetrakis(5-methylthiophen-2-yl)-4,4′,5,5′,6,6′,7,7′

-octahydro-2,2′-spirobi[benzo[c]stannole] (4) and its precursor molecules. PTSA = p-toluenesulfonic acid,
TEA = triethylamine.

Spirostannole 4 could be crystallised from toluene and gave orange-yellow single crystals.
An X-ray crystal analysis confirms the molecular structure and identity of compound 4. The Sn atom
is incorporated into two planar stannole rings (Sn1-C1-C2-C2A 1.8(3)◦), which are twisted against
each other with a torsion angle of C2-C1-Sn1-C1B −125.38(3)◦. The stannole-thiophenyl systems are
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almost planar (Sn1-C1-C10-C11 13.7(3)◦) and the annulated six-membered rings exhibit a puckered
conformation (Figure 1). Crystal data and bond lengths and bond angles are provided in the ESI in
Tables S3–S5.
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Figure 1. (a) Molecular structure of spirostannole 4, showing 50% probability ellipsoids
and the crystallographic numbering scheme. All hydrogen atoms were omitted for clarity.
(b) Optimised geometry of spirostannole 4 based on DFT calculations.

The geometry optimisation by DFT calculations (PBE1PBE-GD3BJ/6-311++G(2d,2p) with an SDD
basis for Sn) agrees with the experimental results [32–41]. This level of theory was chosen because
it showed sufficient agreement with computational data on the electronic structure and transitions
in another study of stannoles [17]. An investigation into the frontier molecular orbitals (FMOs)
revealed that both the HOMO and LUMO are twice degenerated due to the symmetry of the molecule.
Both the HOMOs and LUMOs are delocalised over the whole backbone, but the annulated cyclohexane
ring is not involved. In comparison to other stannoles, the Sn atom is not involved in the LUMOs [1].
So far, this phenomenon has only been observed twice for stannoles (see our previous reports) [15,17].
The HOMO-LUMO energy gap was calculated as 3.2 eV (Figure 2) and is still in the same range as that
for other stannoles [15,17].Molecules 2020, 25, x 4 of 11 
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To gain more insight into the electrochemical behaviour of spirostannole 4, we additionally
conducted cyclic voltammetry measurements (Figure 3). The anodic scan was in the range of −240
to +765 mV with a scan rate of 0.2 V/s. The spectrum seems to exhibit three quasi-reversible redox
processes with |∆E1

p| = 90.1 mV, |∆E2
p| = 115.6 mV and |∆E3

p| = 116.4 mV, respectively (all values were
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referenced against Fc/Fc+, Table 1). Although the cyclic voltammogram does not seem to be completely
reversible, the intensities of Epa and Epc were still stable after multiple scans when an equilibrium was
reached. The compound did not decompose. The reason for the high differences between Epa and Epc

of each redox-couple might be the existence of the double degenerated FMO´s. Furthermore, from the
first redox wave to the second and then the third, the amount of current increased strongly (Figure 3).
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Figure 3. Quasi-reversible redox processes of stannole 4 at 298 K. The conducting salt was 0.1 M 
Bu4NPF6 in dichloromethane and the scan rate was 0.2 V/s. The spectrum is referenced against F/Fc+. 
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Figure 3. Quasi-reversible redox processes of stannole 4 at 298 K. The conducting salt was 0.1 M
Bu4NPF6 in dichloromethane and the scan rate was 0.2 V/s. The spectrum is referenced against F/Fc+.

Table 1. Values of Epa, Epc, E1/2 and |∆Ep| against F/Fc+.

Epa (mV) Epc (mV) E1/2 (mV) |∆Ep|= |Epc-Epa| (mV)

93.0 2.9 48.0 90.1
359.9 244.3 302.1 115.6
556.4 440.0 498.2 116.4

The optical properties of spirostannole 4 were supported by UV–Vis and fluorescence
measurements. Furthermore, the experimental absorption data were compared with data from
TD-DFT calculations. The experimental absorption and emission maxima were at λabs,max 436 nm and
λem,max 533 nm in chloroform at 295.15 K. A second absorption maximum was in the higher energy
region of the spectrum at 257 nm. The stoke shift is therefore 4174 cm−1 (Figure 4a).

1 
 

 Figure 4. (a) Experimental absorption/emission spectra in chloroform and the calculated absorption
spectrum. (b) Emission spectra at different temperatures in 2-methyl-tetrahydrofuran and a picture of
the irradiated solution of spirostannole 4 (green luminescence) in 2-methyltetrahydrofuran at 80 K.



Molecules 2020, 25, 4993 5 of 10

The TD-DFT analysis produced a main absorption maximum at 450 nm, which is shifted about
14 nm compared with the experimentally measured absorption. This absorption maximum could
be attributed to the HOMO 2→LUMO 1, HOMO 1→LUMO 2, HOMO 2→LUMO 2, and HOMO
1→LUMO 1 transitions including the π-skeleton of the stannole ring. The lower absorption maximum
was located at 289 nm (Figure 4a).

Spirostannole 4 is an extremely weak emitter with ΦFL < 0.1% but strongly absorbing with
ε = 31,235 L·mol−1

·cm−1. However, the photoluminescence in 2-methyltetrahydrofuran at 80 K was
stronger by a factor of 59 compared to 280 K and became visible with green luminescence (Figure 4b).
The half-life at 80 K was τ= 1.205 ns (21.59%), 3.909 ns (78.41%) but we did not observe phosphorescence.
These results are similar to our previous investigations reported recently [17].

In addition, we studied the reaction of spirostannole 4 with methyllithium [27,28]. Under inert
conditions, a solution of methyllithium was added to a solution of spirostannole 4 in tetrahydrofuran
(THF) at 195.15 K in an inert NMR tube (Scheme 2). The colour changed immediately from orange-yellow
to red.
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Scheme 2. NMR experiment: reaction of spirostannole 4 with MeLi under inert conditions.

Monitoring of the 119Sn{1H} and 7Li NMR signals at 238.15 K (this was the minimum reachable
temperature of the 600 MHz NMR device) proved the formation of the pentaorganostannate complex
5: the 119Sn{1H} signal shifted from −36.0 ppm (spirostannole 4) to −211.0 ppm (complex 5). This is
in agreement with the findings of Saito and co-workers regarding their lithium pentaorganostannate
(Figure 5) [27,28]. The 7Li NMR signal shifted from 1.8 ppm (for MeLi) to −0.4 ppm. The 1H NMR
spectrum showed a broad Sn-CH3 signal at −0.11 ppm.Molecules 2020, 25, x 7 of 11 
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Warming the reaction mixture to 298.15 K led to a decomposition of both the complex and
spirostannole 4, the 119Sn{1H} NMR signal shifted to 1.1 ppm (Figure 5).

After ~1 min at 298.15 K, the solution turned dark brown and was turbid brownish-yellow with
a slight precipitate after several hours. This means that the pentaorganostannate 5 is only stable at
lower temperatures. A possible reason could be the structural difference between classical stannoles
and annulated ring systems such as stannafluorenes, which might be associated with differences in
stability [27,28].

To obtain insight into the molecular structure and opto-electronics, we conducted DFT and TD-DFT
calculations (PBE1PBE-GD3BJ/6-311++G(2d,2p) with an SDD basis for Sn) (Figure 6a–c) [32–41].
Stannolate 5 exhibits a (distorted) trigonal bipyramidal geometry similar to the pentaorganostannate
of Saito and co-workers and other pentacoordinated stannates, but less distorted with more ideal bond
angles around the tin atom [8,25,27,28]. The C(ax)–Sn–C(ax) and C(eq)–Sn–C(eq) bond angles are
179.4◦ and 121.0◦, respectively. The bond lengths of C(ax1,2)—Sn, C(eq1,2)—Sn and C(Me)—Sn are
2.321/2.242, 2.193/ 2.216 and 2.270 Å, respectively. The thiophenyl–stannole–thiophenyl system is no
longer planar with the thiophenyl rings twisted against the central stannole ring with different torsion
angles in the range of 126.8◦ to −164.8◦. Although both stannole rings were twisted against each other,
but on the same plane in 4, the stannole rings are bent out of the plane because of the extra methyl
group on the Sn in 5 (Figures 1 and 6a).Molecules 2020, 25, x 8 of 11 
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atoms attached to carbon atoms were included in geometrically calculated positions using a riding 
model. Crystal and refinement data are shown in Table S3. Figures were created using DIAMOND. 

Crystallographic data for the structural analyses have been deposited in the Cambridge 
Crystallographic Data Centre. Copies of this information may be obtained free of charge from the 
Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (Fax: +44-1223-336033; e-mail: 
deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk). 

Figure 6. (a) Optimised geometry of pentaorganostannate 5; (b) FMOs of pentaorganostannate 5 and
energies; (c) Calculated TD-DFT absorption spectrum of pentaorganostannate 5. Direct HOMO→LUMO
transitions are highlighted in green.

As expected, the double degeneration of the frontier molecular orbitals (FMOs) of stannole 4
is cancelled by the symmetry break in pentaorganostannate 5. Though the FMOs are located over
both stannole rings in spirostannole 4, they are not in compound 5. The HOMO is mainly located on
one stannole ring and the LUMO is mainly localised on the other ring. The energy gap of 3.0 eV is
slightly smaller than that of stannole 4. The calculated absorption spectrum of 5 with all transitions is
illustrated in Figure 6c. Two maxima could be observed, one at λabs,max 317 nm and the other one at
λabs,max 405 nm. However, there are many transitions; the most significant are listed in Table S6 in the
ESI and all the involved orbitals are depicted (see ESI).

3. Materials and Methods

Reactions under inert conditions were carried out using standard Schlenk techniques under a dry,
inert N2 or Ar atmosphere or in a N2-filled glovebox from Inert (Inert technology, Amesbury, MA, USA).
All anhydrous solvents were taken from the solvent purification system (SPS), degassed by four
freeze-pump-thaw cycles and stored under a N2 atmosphere. All chemicals were commercially
available and were used without further purification unless noted otherwise. 1H, 13C{1H}, 7Li and
119Sn{1H} NMR spectra were recorded on a Bruker Avance Neo 600 or Bruker DRX 500 (Bruker, Billerica,
MA, USA) at 25 ◦C unless noted otherwise. Electron impact (EI) ionisation mass spectra were obtained
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on the double-focusing mass spectrometer MAT 95XL from Finnigan MAT (Thermo Fisher Scientific,
Waltham, MA, USA). IR spectra were recorded on a Nicolet Thermo IS10 SCIENTIFIC spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) with a diamond ATR unit. All melting points were
measured with a Büchi Melting Point M-560 apparatus (Büchi Labortechnik GmbH, Essen, Germany)
and are uncorrected.

UV-Vis spectra were recorded at a resolution of 0.1 nm on a UV-2700 spectrometer from Shimadzu
(Shimadzu, Kyoto, Japan).

Emission spectra were recorded on an Edinburgh Instruments FLS 1000 photoluminescence
spectrometer (Edinburgh Instruments Ltd, Livingston, Scotland). Absolute quantum yields
(QYs) were measured with an Edinburgh Instruments integrating sphere (Edinburgh Instruments
Ltd, Livingston, Scotland). All emission spectra are corrected spectra. Cyclic voltammetry
measurements were recorded using the potentiostat Autolab PGSTAT101 Metrohm (Methrom AG,
Herisau, Switzerland). The working electrode and the counter electrode were platinum. The material
of the reference electrode was silver; all spectra were referenced against ferrocene. The scan rate
was 0.2 V/s. The solvent was dichloromethane and the conducting salt was tetrabutylammonium
hexafluorophosphate (TBA[PF6] 0.1 M).

The intensity data of 4 were collected on a Bruker Venture D8 diffractometer (Bruker, Billerica,
MA, USA) at 100 K with Mo-Kα (0.7107 Å) radiation. All structures were solved by direct methods and
refined based on F2 by use of the ShelX [42,43] program package as implemented in OLex2 1.2 [44].
All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms
attached to carbon atoms were included in geometrically calculated positions using a riding model.
Crystal and refinement data are shown in Table S3. Figures were created using Diamond.

Crystallographic data for the structural analyses have been deposited in the Cambridge
Crystallographic Data Centre. Copies of this information may be obtained free of charge
from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (Fax: +44-1223-336033;
e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Optimised equilibrium geometries were calculated on a DFT level with the Gaussian 16
revision A.03 [45] quantum software package for a single molecule in the gas phase using
the PBE1PBE/6-311++G(2d,2p) [32–37] level of theory including empirical dispersion corrections
according to Grimme’s D3 [38,39] method involving Becke–Johnson damping (GD3BJ). For the
Sn atom, we used the Stuttgart/Dresden (SDD) pseudo-potential [40,41]. The orbital energies of
HOMO and LUMO and their energy differences were calculated for these optimised molecules.
Frequency analyses were performed in all cases to confirm the absence of imaginary frequencies
and thus prove that the obtained geometries corresponded to minima on the potential energy
surface. The isodensity value for the molecular orbital isosurface representations was set to
0.02 a.u. in all cases. Absorption data were calculated using time-dependent DFT (TD-DFT)
levels on the optimised ground state geometries with the same functional and basis set as described
above, i.e., TD-PBE1PBE-GD3BJ/6-311++G(2d,2p)//PBE1PBE-GD3BJ/6-311++G(2d,2p) using SDD
pseudo-potentials for Sn [32–41].

Detailed information on all the materials and methods can be found in the ESI.

4. Conclusions

In conclusion, we synthesised and fully characterised the new spirostannole 4. Unusually, our DFT
calculations showed that there is no lobe on the Sn in the LUMO, which means the Sn is not involved
in the LUMO. Nevertheless, the HOMO-LUMO energy gap is low and the optical properties agree
with previous results. Cyclic voltammetry measurements showed a quasi-reversible process with three
redox pairs.

We also investigated the reaction of this spirostannole with methyllithium in NMR experiments
and studied the molecular structure and optoelectronic properties of the reaction product 5 by DFT
and TD-DFT calculations. The symmetry of the molecule was broken and the localisation of the

http://www.ccdc.cam.ac.uk
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orbitals changed in comparison to those of stannole 4. The HOMO-LUMO energy gap of stannolate 5
is narrower than that of spirostannole 4 and the distribution of the transitions is different.

Supplementary Materials: The following are available online, the Supplementary Materials are Materials and
Methods, Experimental Procedures, Analytical Data, Images, CIF Files, and XYZ Files.
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