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A series of landmark studies have provided conclusive evidence that the early

administration of food allergens dramatically prevents the emergence of food allergy. One

of the greatest remaining challenges is whether patients with established food allergy

can return to health. This challenge is particularly pressing in the case of allergies against

peanut, tree nuts, fish, and shellfish which are lifelong in most patients and may elicit

severe reactions. The standard of care for food allergy is allergen avoidance and the

timely administration of epinephrine upon accidental exposure. Epinephrine, and other

therapeutic options like antihistamines provide acute symptom relief but do not target

the underlying pathology of the disease. In principle, any transformative treatment for

established food allergy would require the restoration of a homeostatic immunological

state. This may be attained through either an active, non-harmful immune response

(immunological tolerance) or a lack of a harmful immune response (e.g., anergy), such

that subsequent exposures to the allergen do not elicit a clinical reaction. Importantly,

such a state must persist beyond the course of the treatment and exert its protective

effects permanently. In this review, we will discuss the immunological mechanisms that

maintain lifelong food allergies and are, consequently, those which must be dismantled

or reprogrammed to instate a clinically non-reactive state. Arguably, the restoration of

such a state in the context of an established food allergy would require a reprogramming

of the immune response against a given food allergen. We will discuss existing and

experimental therapeutic strategies to eliminate IgE reactivity and, lastly, will propose

outstanding questions to pave the road to the development of novel, transformative

therapeutics in food allergy.

Keywords: allergy (hypersensitive anaphylaxis), immunotherapy, treatment, food allergy (FA), peanut (Arachis

hypogaea), immunology

INTRODUCTION

Thirty-two million Americans over the age 18 suffer from food allergies, amounting to
approximately 11% of the population, and a similar prevalence exists in other developed countries
(1–3). The economic impact of food allergies is staggering, estimated at $25 billion in the US
annually (4). Each year 200,000 Americans attend emergency departments for food allergy-related
anaphylaxis, and a 124% increase in visits was documented between 2005 and 2014 (5, 6). In
stark contrast to the impressive social, medical, and economic impact of food allergies, there is
a concerning paucity of therapeutic options available for this disease. Indeed, the standard of care
for food allergy is allergen avoidance, although oral immunotherapy (OIT) for peanut (PN) has
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been approved by the FDA in the United States (7). The
timely administration of epinephrine upon accidental exposure
and other therapeutic options like antihistamines provide acute
symptom relief but do not target the underlying pathology of
the disease.

The greatest impact in the food allergy field was furnished
by a landmark study which provided conclusive evidence
that the administration of PN to infants 4–11 months old
dramatically reduces the incidence of PN allergy (8). Yet, this
major advancement leaves the millions of patients diagnosed
with food allergies worldwide unprotected. Clearly, one of the
greatest remaining challenges is whether established food allergy
can be fundamentally mended. This challenge becomes even
more pressing for allergies such as those to PN, tree nuts, fish,
and shellfish which are lifelong in most patients (7, 9, 10). In
this context particularly, a “disease-transformative” treatment
would require the restoration of an active non-harmful immune
response to foods, known as tolerance. We define a “disease-
transformative” treatment as one that successfully alters the
underlying disease mechanisms permanently.

In this reviewwewill focus on the immunological mechanisms
which maintain lifelong food allergies and are, consequently,
those which must be dismantled or reprogrammed to restore
health. We will also discuss allergen immunotherapy (AIT) and
approaches currently under investigation purported to deviate
the immune response against food allergens away from a
pathogenic response. A distinctive feature of food allergies is
that the clinical phenotype is largely, if not exclusively, mediated
by IgE. Therefore, the discovery of “disease-transformative”
treatments requires a comprehensive understanding of the
cellular and molecular mechanisms that underlie the lifelong
capacity to produce allergen-specific IgE. Such understanding
shall pave the road to novel therapeutics in food allergy.

THE IMMUNOBIOLOGY UNDERLYING THE
PERSISTENCE OF FOOD ALLERGY

Allergic sensitization begins with the disruption of homeostasis
at mucosal sites or the skin resulting in the release of alarmins
such as IL-33, IL-25 and TSLP (11). The mechanisms of
homeostatic disruption which underly allergic sensitization
have been thoroughly reviewed elsewhere (11). This breach of
homeostasis leads to the differentiation of allergen-specific CD4+

Th2 cells, T follicular helper (Tfh) cells, short-lived plasma cells,
and memory B cells (MBCs), all of which contribute to IgE
generation and clinically active food allergy (12, 13). Serum IgE
levels are extremely low compared to other isotypes and IgE has
a half-life of approximately 3 days in humans, a rapid turnover
rate in comparison to other immunoglobulin isotypes (14–16).
Evidence for a role of long-lived plasma cells replenishing these
IgE titres, and in the persistence of food allergy has long been
disputed (12, 17). In a mouse model of PN allergy, allergen
avoidance results in a decline in allergen specific IgE titres, which
are undetectable by 6 months post-sensitization, indicative of
a lack of long-lived antibody secreting cells (18). Instead, IgE

titres are transiently maintained following sensitization by short-
lived IgE+ plasma cells. In the peripheral blood of PN-allergic
patients, IgE+ plasma cells have an immature transcriptional
program characterized by the upregulation of MHC and low-
affinity IgE receptor (CD23) and downregulation of plasma cell
survival genes (19, 20). Further, in PN-allergic mice avoiding PN,
IgE+ plasma cells have a half-life of approximately 60 days (18).
Once bound to mast cells, IgE-mediated mast cell degranulation
upon challenge has a half-life of approximately 70 days in
mice prior to any subsequent allergen exposure, indicating that
undetectable serum IgE does not preclude clinical reactivity upon
allergen exposure (18). Similar evidence exists in humans allergic
to galactose-α-1,3-galactose, whose serum allergen-specific IgE
titres declined when avoiding the allergen (tick bites) (21). This
short-lived nature of IgE+ plasma cells is also evident in humans
suffering from seasonal allergic rhinitis, wherein the IgE titers
decline off-season and rise during on-season (22). Arguably then,
long-lived plasma cells do not retain long-lived IgE memory.
Despite the accumulation of evidence that IgE responses in both
mice and humans are transient, there are some observations
which do not yet have a conclusive explanation. In a model of
chronic house dust mite exposure, a population of long-lived IgE-
expressing cells were detected in the bone marrow, suggesting
that in some contexts long-lived IgE+ PCs may be generated
(23). Thus, to definitively rule out the role of long-lived IgE+

PCs in PN allergic individuals further research is required. This
is a technically challenging endeavor as the rate of accidental
exposure to PN is 12.4% annually and these cells would likely be
extremely rare if they do exist (24). Nonetheless, the possibility
exists that some long-lasting IgE+ PCs may reside in mucosal
sites or in the bone marrow of these allergic individuals, but
limitations in acquiring these samples for study have precluded
their detection.

IgE titres are rapidly replenished upon activation of MBCs
following a secondary allergen exposure. However, IgE+ MBCs
are extremely rare or non-existent in humans and are, therefore,
not considered relevant to the persistence of food allergy (20,
25, 26). The recent identification of IL-13-expressing Tfh cells
(Tfh13) demonstrated that Tfh13 cells promote IgE+ B cell
survival in germinal centers (GC), leading IgE+ B cells to
preferentially differentiate into plasma cells (27–29). In contrast
to IgE+ MBCs, non-IgE MBCs have been shown to maintain
long-lived food allergy, particularly IgG1+ MBCs (17, 25, 30).
Although IgE+ B cells participate transiently in GCs, IgG1+ B
cells persist within GCs and differentiate into affinity matured
MBCs (17, 30). Upon secondary allergen exposure, IgG1+

MBCs rapidly undergo class-switch recombination (CSR) and
differentiate into IgE+ plasma cells to maintain IgE responses
(30, 31). In humans, all upstream isotypes are also clonally related
to IgE, indicating that other isotypes may also be capable of
holding allergic memory (26, 32).

Assessing the requirements for secondary responses to
allergens is critical to understand the persistence of food allergy
and, consequently, to develop novel therapies. MBC reactivation
leading to IgE production is strictly dependent on CD4+ T
cells and IL-4, specifically through IL-4Rα signaling, which is
a fundamental requirement for IgE CSR (33). Studies in mice

Frontiers in Allergy | www.frontiersin.org 2 February 2022 | Volume 3 | Article 826623

https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org
https://www.frontiersin.org/journals/allergy#articles


Phelps et al. Transformative Treatments for Food Allergy

indicate that IgE CSR requires Tfh cell-derived IL-4 during
primary responses, though the source of IL-4 during secondary
responses, particularly in humans, remains unclear (34, 35).
Whether the requirement of CD4+ T cells during secondary
responses is fulfilled by Tfh cells, Tfh13 cells or Th2 cells remains
to be elucidated. IL-13 also signals through IL-4Rα and the role
of Tfh13 cells in IgE responses indicates that IL-13 may play a
non-redundant role in high-affinity, anaphylactic IgE production
(27, 29). Allergen-specific Th2 cells have also been implicated in
the pathogenesis of food allergy. Th2 cells are generally defined
by their secretion of Th2-polarized cytokines such as IL-4, IL-5,
and IL-13 and high expression of GATA3, though many diverse
subpopulations have been characterized with distinct phenotypes
(36). Their role in IgE production remains unclear, though they
do contribute to late phase inflammation (12). Although CD4+

T cells are fundamentally required to initiate secondary B cell
responses, the role of memory CD4+ T cells in this process
remains unclear.

The importance of memory CD4+ T cells in the recall
response may be questioned by data generated from adoptive
transfer studies suggesting that naïve CD4+ T cells and allergic B
cells are sufficient to re-establish peanut-specific IgE production
and clinical reactivity (37). It is possible that allergen-specific
MBCs may be capable of polarizing naïve CD4+ T cells toward
a Th2 phenotype during recall responses. Nonetheless, it is
important not to disregard the possible contribution of memory
CD4+ T cells to food allergy persistence, particularly in an
environment where they compete with naïve CD4+ T cells.
Given that Tfh cells are critical drivers of IgE CSR, memory Tfh
cells may also play a role in secondary IgE responses, though
this remains to be determined. Furthermore, a subpopulation
of terminally differentiated, allergen-specific “Th2A” cells has
been identified exclusively in allergic individuals which expand
upon allergen exposure, suggesting their implication in allergic
pathology (38). Thus, MBCs are likely not the only cells that
contribute to recall responses, and hence, the persistence of
food allergy.

TERMINOLOGY FOR FOOD ALLERGY
TREATMENTS

Generally, an individual is referred to as sensitized when allergen
specific IgE is detected in their serum, or they have a wheal/flare
reaction to a skin test (39) (Table 1). Sensitization does not
necessarily imply that the patient will experience an allergic
reaction upon allergen exposure. For example, patients with
severe atopic dermatitis often have high food-specific IgE titres,
but do not experience symptoms upon ingestion (40). Also, food
specific IgE may be detected in some non-allergic individuals
(8, 41). It is not yet clear, in either context, why these IgE
antibodies do not cause allergic symptoms, though one proposed
explanation is that food specific IgE in symptomatic patients may
have higher affinity for the food allergen than in non-allergic
individuals. Among those who are sensitized, individuals who
experience an allergic reaction upon ingestion of an allergen are
referred to as being clinically reactive, though this is often used

interchangeably with being “allergic.” A diagnosis of food allergy
typically requires an assessment of multiple factors, including a
history of clinical reactivity, the signs and symptoms experienced,
along with measures of sensitization.

As trials for various therapies have progressed, primarily
allergen immunotherapies, a series of terms have arisen to
define the possible outcomes for allergic patients. These terms
generally refer to clinical phenomena, where the mechanistic
immunological foundation of the terms remain elusive. The
terms outlined here are an extension of definitions provided
by Burks et al. (42). The success of a therapy is typically
assessed using an oral food challenge, feeding allergen in
increasing amounts in a controlled clinical setting. A patient
is referred to as desensitized if their threshold for allergen
consumption without clinical reactivity has increased to a dose
defined uniquely by each study. Desensitization is associated with
decreased skin test size and decreased levels of sIgE, but it is
common for a desensitized patient to retain a certain level of
sIgE over the course of therapy (43). It has become clear that
desensitization does not imply modification of the underlying
mechanism of disease for most patients. Indeed, upon cessation
of therapy, i.e., allergen consumption, most desensitized patients
relapse into clinical reactivity (44–46). The small proportion
of patients who remain unresponsive to oral food challenge
following cessation of treatment is referred to as having achieved
sustained unresponsiveness, or remission, and patients are
generally recommended to incorporate the allergen into their
diet. However, there is no consensus for how long an individual
must remain unresponsive to warrant the title. Studies have used
timeframes from 2 weeks up to 1 year (44–46). After cessation
of therapy the number of patients who relapse increases over
time. Further, the protection from clinical reactivity in patients in
remission is thought to be maintained by allergen consumption.
This has led to the hypothesis that remission may represent a
transient state of protection while the underlying mechanisms of
disease persist.

Remission is often used as an alternative to the word
“tolerance,” which is a contentious concept. In the clinical
context, drug tolerance refers to a decrease in the efficacy
of a drug over the course of repeated administrations. This
observation is similar to desensitization- the threshold of
allergen required to induce a clinical reaction is elevated. In the
immunological context, tolerance refers to the process by which
the immune system is educated into non-responsiveness to self-
proteins (e.g., central tolerance) or to innocuous environmental
antigens (e.g., foods) (47–49). The induction of immune
tolerance is achieved when antigens are ingested in the absence
of concomitant homeostatic perturbations. As far back as 1911,
Wells and Osborne made the seminal observation that guinea
pigs fed corn were protected from sensitization and anaphylaxis
against zein, a corn protein (50). Immunological tolerance is the
typical immune response to orally ingested antigens that enables
lifelong routine consumption of foods, regardless of the length of
time since food consumption. Rather than being mediated by an
elimination or anergization of food-specific cells, immunological
tolerance to foods appears to be an active immune response
characterized by the presence of T regulatory cells and circulating
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food-specific antibodies of varying isotypes, except IgE (51).
Clearly, for the majority of allergic patients, remission does
not amount to immunological tolerance. In fact, it is not clear
whether true immunological tolerance can be induced in allergic
patients and, further, it is important to question whether this
should be the objective of a treatment. Future research is needed
to understand whether there exist healthy states somewhere
between remission and immunological tolerance which confer
a lifelong absence of clinical reactivity and which may be a
more attainable goal than true immunological tolerance (52).
One such example may be the immunological state achieved in
individuals who outgrow food allergies. Outgrowth occurs in
only about 20% of PN allergic patients but is muchmore common
in milk and egg allergy which is typically outgrown early in life
(49). A detailed phenotypic characterization of outgrown allergy
compared to naturally tolerance and persistent allergy has not yet
been performed. This research is crucial to understand whether
outgrowth is a state of true tolerance or a non-reactive state
between remission and tolerance. The former would suggest that
true immunological tolerance is a reasonable goal of therapy,
while the latter could characterize a state which may be a more
suitable target for therapy.

Assuming this knowledge gap, the ideal treatment for food
allergy would be one where the therapy is temporary, yet its
effects persist permanently regardless of whether allergen is
consumed. Such a therapy either eliminates the ability to produce
allergen-specific IgE, or permanently renders allergen-specific
IgE inert. Since the ability to regenerate allergen-specific IgE
is maintained by immune memory, any such therapy must
either deplete or reprogram the memory compartment such that
allergen-specific IgE is not regenerated.

CURRENT AND INVESTIGATIVE
TREATMENTS FOR FOOD ALLERGY

The only FDA-approved treatment for food allergy, particularly
PN allergy, is Palforzia, an orally administered PN OIT tablet
(53). OIT is a form of AIT that involves the daily oral
consumption of allergen. A standard dose escalation protocol
for OIT begins with an in-clinic supervised graded challenge
to determine a well-tolerated starting dose. This is followed by
gradual up dosing generally over 6–12 months until reaching
a maintenance dose (300–4,000mg) that is continued for a
year or longer. Most patients on OIT become successfully
desensitized (53–55). Sixty-seven percent of patients on Palforzia,
aged 4–17, achieved desensitization at the end of the study
period, compared to 4% on placebo treatment (53). Despite the
significant protection offered by OIT, a systematic review found
that OIT regimens for PN resulted in an increase in serious
adverse events (AEs), defined as life threatening or requiring
urgent medical intervention and/or hospitalization, as well as an
increase in epinephrine use, compared to allergen avoidance (55).
An additional layer of complexity is that approximately 30% of
patients under the age of 18 are allergic to multiple foods (56).
However, a study by Bégin et al showed that OIT for up to five
different allergens had a safety profile that is similar to single

allergen OIT with mild reactions reported in 3.4 vs. 3.7% during
updosing of multi-food and single allergen OIT respectively, and
only two severe reactions requiring epinephrine in both scenarios
(2/25 on multi-food OIT and 2/15 on single allergen OIT) (56).
While multi-food OIT required a longer dose escalation protocol,
participants in this study ultimately reached an equivalent fold
increase in dose per food.

Clinical trials have demonstrated that the risk of AEs with
AIT is in part dependent on the route of allergen administration.
Alternative routes include epicutaneous immunotherapy
(EPIT), sublingual immunotherapy (SLIT), and subcutaneous
immunotherapy (SCIT). These options result in reduced
rates of adverse reactions and, for SLIT, increased patient
compliance (57–62). However, the efficacy of desensitization
is lower, particularly for EPIT. Peptide immunotherapy is
another approach to minimize AEs by replacing whole allergens
with short allergen peptides, which have a reduced capacity
to crosslink IgE on the surface of mast cells and basophils
(63, 64). Preliminary findings from a clinical trial for PN allergy
demonstrated no serious AEs (63). Regardless of the route of
administration, the assessment of efficacy and safety of AIT
is complicated by variations in methodology. For instance,
the dose of allergen administered during the escalation and
maintenance phases is variable across clinical trials, as well as the
duration of treatment and the form of allergen (e.g., powder, pill,
cookie) (65–67). One substantive explanation for the high rate
of serious AEs may be the high dose of allergen. In this regard,
a clinical trial where a low maintenance dose of allergen (equal
or <300mg) and long updosing was used found that 74.2% of
patients were protected at the time of the oral challenge after 16
months vs. 16% placebo and no epinephrine was required for
AEs (68). To conclude, reducing the rate of serious AEs without
compromising efficacy is critical for the widespread use of AIT
as a treatment of food allergy.

The mechanism by which AIT induces desensitization
remains to be fully elucidated. Clinical studies have demonstrated
changes in the composition of the humoral response, in particular
an increase in PN-IgA and PN-IgG4 as well as a decrease in
PN-IgE (44, 69–71). Increased PN-IgA is thought to play a
role in the induction of tolerance, potentially through targeted
uptake of allergen (72, 73). IgG4 is thought to contribute to
desensitization through several mechanisms, one of which is
its role in mast cell and basophil reactivity, as basophils and
mast cells passively sensitized with plasma containing PN-IgG4
could not be activated after PN stimulation (74). PN-IgG4 has
been postulated to facilitate desensitization through its binding
to the inhibitory IgG receptor (FcγRIIb), thus suppressing IgE
signaling (75–77). Furthermore, circulating PN-IgG4 antibodies
can bind and sequester allergen decreasing the recognition by
IgE antibodies. The induction of PN-IgG4 during AIT appears
to be a result of IL-10-producing regulatory T or B cells, which
are increased in desensitized individuals (78–80). Specifically,
in vitro studies have shown that IL-10-producing FoxP3+ Treg
cells preferentially induce IgG4 secretion in B cells (80). The
expansion of Tregs may be mediated by desensitized intestinal
mast cells, which were recently found to secrete IL-2 and
induce FoxP3 expression in CD4+ T cells in a murine model
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TABLE 1 | Clinical terminology defined.

Term Definition

Sensitization The presence of allergen specific IgE, or reactivity

to allergen in a skin prick test.

Clinical

reactivity

Symptoms of an allergic reaction following

allergen ingestion.

Desensitization Increase in allergen consumption threshold in

allergic patients while on therapy.

Remission

(Sustained

unresponsiveness)

Absence of clinical reactivity to an ingested food

allergen at some timepoint after therapy has been

discontinued and allergen has been avoided.

Most subjects do not experience sustained

unresponsiveness following OIT, but those who do

are typically instructed to introduce allergen ad

libitum into their diet.

Immunological

tolerance

The immune response to ingested food antigens

in healthy individuals that allows for ingestion of

foods without adverse reactions.

of AIT (81). Moreover, Tregs isolated from desensitized OIT
patients significantly supressed T effector cell proliferation to
PN compared to Tregs from non-desensitized patients (82).
However, whether increases in Tregs have a causative role onOIT
beneficial clinical outcomes remains disputed (83). Despite these
immune modulating effects, analysis of PN-specific CD4+ T cells
on OIT has uncovered a subset of pathogenic Th2 cells termed
‘Th2A’ cells that also decrease but remain persistent after therapy
(38). Furthermore, recent evidence has shown that Th2A-like
cells on PN-OIT had a suppression of Th2 genes, as exhibited
in anergic states. However, Tfh cells, which may have a major
role in CSR during secondary responses, are unaffected by PN-
OIT (83). Likewise, PN-specific B cells transiently increase at the
beginning of OIT before declining as therapy continues, but are
not eliminated (26, 84). It would stand to reason to argue that
the persistence of pathogenic cells following AIT undermines the
establishment of a long-lasting non-reactive state.

Various experimental approaches are focused on the use of
biologics, either alone or as an adjunct to AIT (Table 2). For
example, anti-IgE monoclonal antibodies (such as omalizumab),
which sequester free IgE, have been investigated in food
allergy as either a monotherapy or in combination with OIT
(85–87). Omalizumab administered during the dose-escalation
phase of OIT decreased the time required to reach the
maintenance dose (88, 89). For instance, 80% of participants
pre-treated with omalizumab were able to consume 250mg
of allergen on the first day of desensitization, whereas only
one of eight participants without omalizumab tolerated this
amount (89). Other adjunct therapies to AIT aim to alter
the balance of the Th response either through shifting away
from Th2 polarization, eliminating the Th2 compartment
altogether, or inducing a tolerogenic response through the
induction of Tregs. For example, TLR4 and TLR9 both lead
to the secretion of type 1 cytokines and the development
of a Th1 immune response (90). Disarming T cells involved
in allergy is being investigated with AIT plus Abatacept, an

IgG Fc domain fused to cytotoxic T lymphocyte antigen-
4 (CTLA-4), a co-stimulatory molecule required for T cell
activation (91). Thereby, Abatacept aims to block T cell
co-stimulation during AIT, leading to T cell anergy and/or
Treg induction. Most of these approaches have demonstrated
efficacy in preclinical murine studies and those denoted by
an ∗ in Table 2 are being tested in ongoing clinical trials
for PN allergy (NCT02402231, NCT01781637, NCT04872218,
NCT03682770, NCT03463135).

The table above describes biologics that are currently under
investigation for the treatment of food allergy. The table
includes overarching strategies of treatments, examples
of biologics and their description. The fourth column
describes models in which the biologics have been tested
thus far. It includes (1): the allergen used; (2): whether
the treatment or allergic sensitization occurs first (depicted
by the arrow); and (3): the route in which treatment was
applied. Intraperitoneal injection is denoted as i.p., intravenous
injection is denoted as i.v., intranasal is denoted as i.n.,
subcutaneous injection is denoted as s.c. and sublingual is
denoted as s.l. Lastly, the fifth column describes the associated
immunological changes reported using the models in the
fourth column.

A variety of vaccine approaches currently explore their
potential to skew the Th2 allergic program toward Th1 in
PA. For instance, lyosomal-associated membrane protein-1
(LAMP-1) DNA vaccines are vectors encoding both LAMP1
and immunodominant allergens. Transcribed and translated
allergens are directed to the lysosome and internally linked to the
lysosomalmembrane. Thereby, unlike AIT, no allergen is released
into circulation, avoiding unwanted immune recognition bymast
cells and basophils (98). The LAMP-Vax platform is associated
with the induction of IFN-γ and allergen-specific IgG2a (99). A
clinical trial of amultivalent (Ara h1, h2, h3) lysosomal associated
membrane protein DNA plasmid vaccine is currently underway
(ASP0892). In addition, a virus-like particle (VLP) vaccine, which
displays single PN allergens, has shown promise in vivo (100).
Indeed, mice immunized with the VLP vaccine after sensitization
had increased levels of PN-specific IgG2a and IgG2b, and were
protected from anaphylaxis upon allergen challenge, in a manner
dependent on the inhibitory FcγRIIb. Lastly, a new vaccine
composed of nanoscale oil-in-water emulsion (nanoemulsion)
adjuvanted allergen has been tested intranasally (101). In
murine studies this vaccine suppresses the secretion of Th2-
polarizing alarmins and cytokines, while increasing IL-10 and
Tregs through an IFN-γ dependent mechanism and subsequently
decreasing reactivity upon allergen challenge (101). Clinical trials
of these vaccination strategies are ongoing or being initiated.

The clinical outcome of strategies that aim to repolarize or, to
an extent, suppress the immune response against food allergens
is not known. However, studies examining the immunological
impact of AIT have revealed that, at least for T cells, subsets
that seem to have a critical role in IgE regeneration are relatively
unaffected by the treatment. This would argue that any strategy
that is not able to delete these subsets or to dismantle allergen-
specific memory will have a limited, although not irrelevant,
clinical impact.
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TABLE 2 | Current treatments under investigation for food allergy.

Strategy Approach Description Model Immunological changes

Elimination of Th2

components

Dupilumab (19)* Anti-IL-4Rα

Monoclonal antibody- dually inhibits

IL-4 and IL-13

Ovalbumin (OVA) Allergy ↓

Anti-IL-4Rα (i.p.)

Decreased PN-IgE levels

Inhibited anaphylaxis

Omalizumab (92)* Anti-IgE monoclonal antibody PN Allergy ↓ Anti-IgE (i.p.)

plus OVA (oral)

Reduced anaphylactic response

Etokimab (93)* Anti-IL-33 antibody - inhibits the

alarmin IL-33

Preclinical Trial PN Allergy

↓ Anti-IL-33 (i.v.)

Decreased IL-4, IL-5, IL-9, IL-13 and ST2

CD4+ T cells

Decreased PN-IgE

Increased successful oral food

challenges

Shifting Th2 to Th1 Glucopyranosyl

Lipid A (94)*

Toll-like receptor 4

Th1 Adjuvant

PN Allergy ↓ OVA plus

GLA (s.l.)

Inhibited anaphylaxis

CpG (95) Toll-like receptor 9

Th1 Adjuvant

PN Allergy ↓ PN plus

CpG (i.n.)

Increased IL-10 and IFN-γ and

decreased IL-13

Reduced anaphylactic response

Increased PN-specific IgG2c and

mucosal IgA

Induction of T

regulatory cells

Transforming

growth factor

(TGF)-β (96)

Immunoregulatory cytokine OVA plus TGF-β (oral) ↓

OVA Allergy

Decreased OVA-IgE and OVA-IgG1levels

Abatacept (91) Fc region of IgG1 fused to

anti-Cytotoxic T lymphocyte

antigen-4

OVA Allergy ↓ OVA plus

Abatacept (s.c.)

Suppressed airway hypersensitivity

Decreased OVA-IgE levels

Decreased Th2 cells

IL-2 (97) Anti-IL-2 monoclonal antibody

IL-2/anti-IL-2Ab complex

Milk Allergy ↓ OVA (s.l.)

plus IL-2 (i.p.)

Decreased IL-5

Increased IL-10 and TGF-β

Decreased IgE levels

The * symbol denotes treatments currently in clinical trials.

FUTURE AVENUES FOR FOOD ALLERGY
TREATMENT

Adaptive immunity evolved to be long-lasting and specific,
enabling a rapid recall response to prevent any single
pathogen from eliciting malady twice. For example, primary
infection with varicella-zoster virus induces humoral and
cellular memory which protects against viral disease despite
inevitable re-exposures and the virus itself establishing latency in
ganglionic neurons; only when immunological memory becomes
compromised (e.g., aging, drug-induced immunosuppression,
etc.) will varicella-zoster virus establish secondary illness
(shingles). However, in at least two instances – allergy and
autoimmunity – immunological memory perpetuates disease,
rather than protecting against it. This inherent durability of
immunological memory is the greatest challenge faced in efforts
to therapeutically reverse, reprogram, or cure food allergy.

Perhaps the most dramatic impact on allergy in humans
is through a total factory reset of the immune system.
Following hematopoietic stem cell transplants (HSCTs) for the
treatment of malignant or non-malignant diseases unrelated
to allergy, over 90% of allergic recipients lost allergen-specific
IgE reactivity when receiving a transplant from a non-allergic
donor (102). Two years post-transplant, no recipients had
regained allergic reactivity. HSCTs are preceded by total
body irradiation or chemotherapy-based conditioning, which
depletes cells of hematopoietic origin including memory T
and B cells; however, long-lived plasma cells exhibit radiation

resistance (103). The rapid loss of allergen-specific antibody
titers following myeloablation and HSCT reaffirms observations
in animal modeling suggesting that long-lived plasma cells
do not maintain lifelong food allergies (18, 30). Thus, the
pathway which replenishes short-lived plasma cells is the critical
therapeutic target. Certainly, HSCTs are only warranted in
the most extreme scenarios, but the success in eliminating
allergic reactivity without relapse begs the question: what
strategies can be employed for the targeted removal or disruption
of pathogenic lymphocytes underlying the maintenance of
food allergy (Table 3)?

Innovative food allergy treatments may be inspired by the
successes of targeted cancer immunotherapies. Treatment of food
allergy and cancer possess a common goal of eliminating cells of
a certain specificity/phenotype. The advent of antigen receptor
engineering has enabled the delivery of T cells or NK cells that
express antibody-like receptors called chimeric antigen receptors
(CARs) which are specific to neoantigens or tumor-associated
antigens (104, 105). The inclusion of costimulatory domains in
the CARs overrides the need for secondary signals provided by
antigen-presenting cells (106). Upon recognition of cell surface
antigen through their engineered receptors, the cells execute
their intrinsic cytotoxic functions resulting in destruction of
malignant cells. Theoretically, CAR-T cells could be engineered
to interact with allergy-associated cell surface molecules on T and
B cells. A potential T cell target is the prostaglandin D2 receptor,
CRTH2, which is expressed by allergen-reactive Th2 cells (38).
An equivalent marker unique to allergen-specific B cells has not
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TABLE 3 | Potential strategies for the design of novel therapeutics for food allergy.

This table describes potential strategies to develop novel therapeutic for the treatment of food allergy, the knowledge gaps that must be addressed as well as some approaches that

require further investigation.

yet been defined. Although CRTH2 and other molecules can
be upregulated by allergic cells, the inherent redundancy of the
immune system makes it unlikely that these markers are unique
to allergen-specific cells. Therefore, one consequence of using
CARs built for allergy- “associated” molecules may be adverse
off-target effects, such as excessive cytokine production and tissue
damage (107).

An optimal approach for targeted allergy immunotherapy
would exploit antigen receptors (TCRs and BCRs) specific
to the allergen(s) of interest. Proof-of-concept studies have
demonstrated success in engineering CAR-T cells to express B
cell antigens (in place of the antibody-like binding domain)
upstream to costimulatory domains. This construct was termed
B cell-targeting antibody receptors (BARs) (108). Delivery of
OVA-specific BAR-Treg cells to OVA-allergic mice reduced the
severity of anaphylaxis upon systemic challenge (109). While
promising, the mechanism by which this protection is achieved
and its longevity remain unknown. Targeting allergen-specific
T cells in this manner would be far more challenging, as it
would require expression of multiple different MHC:peptide
complexes to encompass each of the immunodominant peptides
for a given allergen. As opposed to cellular engineering,
drug conjugation may be an alternative approach to target
allergen-specific cells. Some cancer therapies utilize a “warhead”
strategy wherein chemotherapeutic drugs are conjugated to
monoclonal antibodies, promoting targeted drug delivery (110).
This strategy could be adopted to allergy whereby whole allergens
or allergen peptides are conjugated to cytotoxic drugs. One
potential limitation of approaches involving engineered allergen
expression or delivery of allergen-drug conjugates is that there
are often high levels of circulating allergen-specific antibodies

in allergic patients, which may severely limit bioavailability. As
well, delivery of whole allergen proteins may cross-link IgE
on mast cells or basophils, resulting in unintended allergic
reactions, though this may be ameliorated by co-administration
of omalizumab.

Furthermore, it may be possible to alter or reprogram
the phenotype of allergen-specific cells in lieu of their
physical elimination. The potential ability to induce cellular
reprogramming originates from the concept of plasticity.
Beyond the description of a terminally-differentiated Th2A
cell phenotype, the plasticity of allergen-specific cells is not
well understood (38). The ability for allergy outgrowth implies
some degree of functional plasticity, though it is unclear why
outgrowth occurs so infrequently in peanut, tree nut, fish,
and shellfish allergies in comparison to milk and egg allergies
(9, 111, 112). If allergen-specific cells are functionally plastic,
therapeutics could be designed to deprive cells of signals
that maintain pathogenicity. For example, IL-4 is critical for
the induction of allergy, including Th2 polarization and IgE
production (113, 114). In recent work with PBMCs from peanut-
allergic patients, we have shown that IL-4 deprivation through
therapeutic IL-4Rα blockade dampens the IL-4-responsive
phenotype in allergen-reactive MBCs and upregulates IFN-γ
production (19). Similarly, in a murine asthma model, use of
a small molecule inhibitor of STAT6 (involved in IL-4/IL-13
signaling) reversed airway hyperreactivity (115). Alternatively,
it may be possible to design therapeutics which deliver signals
to actively upregulate tolerogenic or non-Th2 phenotypes. The
use of a DNA vaccine is one such example, as previously
mentioned. Delivery of allergen-encoding plasmidDNAprovides
strong Th1 signals (IFN-γ and IgG2a) which may aid to
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counteract the Th2 dominant signature (116). An ideal “disease-
transformative” DNA vaccine would consist of a single dose
that could reprogram the immune response, though it is
not clear at this early stage whether this is possible with
this strategy.

Lastly, it is evident that we have reached a ceiling as
to what AIT can achieve as a monotherapy (117); however,
the exhaustive number of AIT studies have provided a well-
defined regimen for supervised allergen exposure, which may be
applicable in combination therapies. Biologics for the treatment
of allergic diseases have shown efficacy when administered
as a monotherapy. For example, dupilumab monotherapy in
atopic dermatitis, asthma, and chronic rhinosinusitis with nasal
polyposis is highly effective in ameliorating disease score and IgE
titers (118–120). These conditions, however, are distinct from
allergy in that IgE specificity is broad and production is perpetual.
This is in contrast to food allergy wherein IgE titers are highly
specific to the eliciting allergen(s) and is only produced upon
allergen exposure. Thus, dupilumab monotherapy in food allergy
will likely prevent IgE production upon accidental exposures but
will forgo the benefit of allergen-specific cell reprogramming. In
those that attained clinical remission from atopic dermatitis via
dupilumab, skin-resident Th2A cells persisted (121). Deliberate
activation of allergen-specific cells in a tolerogenic or non-Th2
context (via biologics or other therapeutics) is more likely to
facilitate reprogramming.

Currently, the development of novel, efficacious therapies
is limited by an incomplete understanding of the underlying
immunological mechanisms. To rationally design novel
therapeutics, we propose that the following three questions must
be addressed from a basic immunological standpoint:

1)What are the fundamental requirements for the perpetuation
of allergic disease? It remains unclear whether allergen-specific
memory T or B cells can independently maintain allergic disease.
Likewise, the relative contributions of Th2A, conventional
TFh, and TFh13 cells in the regeneration of IgE responses
remains unknown. Investigation of these issues will be critical
to determine whether future therapies should target one or
more cell types. For example, if Th2-polarized T cells are
the minimal requirement, then therapeutic targeting of MBCs
would be insufficient. These investigations should extend even
beyond adaptive immunity, to address whether conditioning of
innate cells (trained immunity) is capable of re-establishing IgE
responses (122, 123).

2) What molecular cues are necessary to replenish the
short-lived IgE PC pool? B cell activation occurs through
intricate interactions with secreted and membrane-bound
molecules. The interactions involved in MBC reactivation and
PC differentiation, however, remain elusive. A more complete
understanding of these processes is critical for the development
and use of biologics. As of 2012, clinical trials employing biologics
for eight different targets (IgE, IL-5, IL-4, IL-13, IL-17, IL-9, GM-
CSF, TNFα) were already underway for the treatment of asthma
(124). Nearly 10 years later, biologics are being trialed for only
four targets (IgE, IL-4R, IL-33 and Glucopyranosyl Lipid A) in
food allergy.

3) Is the allergic phenotype plastic? Despite several indications
that the allergic response may be reprogrammed, it has
not been well established whether the induction of non-Th2
phenotypes arise from de novo responses or a reprogramming
of the existing allergen-specific memory cells. This distinction
will help to inform whether a non-Th2 population can
effectively outcompete pathogenic allergen-specific cells or if
persisting pathogenic cells will eventually undermine therapeutic
reprogramming. If it is possible to reprogram cells out of a
pathogenic phenotype, it will be critical to determine if there
is a risk of relapse. Without the ability to reprogram cells,
lifelong treatments may be required, as appears to be the case for
AIT monotherapy.

CONCLUDING REMARKS

In contrast to cancer and chronic inflammatory diseases such as
rheumatoid arthritis and inflammatory bowel disease and, even,
asthma, the advent of novel treatments for food allergy has lacked
appallingly behind. Indeed, the latest FDA-approved treatment
for food allergy is an old friend, namely oral immunotherapy,
which is clearly not a “transformative” therapy for most patients.
The reason for this state-of-affairs is seemingly clear: the
development of novel therapeutics is directly related to the
state of fundamental knowledge of a given disease process.
In this regard, the last decade has unearthed consequential
advances in our understanding of the basic cellular andmolecular
mechanisms underlying IgE biology and the persistence of
food allergy. Particularly, whether the long-lived capacity to
generate IgE entirely lies within the IgG1 memory compartment.
Expectedly, a number of biologics and novel approaches are
currently being trialed, and there is little doubt that more
will emerge during the present decade. Still, as intimated in
the previous section, much remains to be learned to develop
treatments that are precise and specific, i.e., target-precise
and allergen-specific. As we have noted elsewhere, the ever-
increasing application of technologies that deliver formidable
datasets in both human tissues and mouse systems will help
to delineate complex inter- and intracellular pathways, thus
revealing the astounding phenotypic diversity and plasticity
of the food allergic response. This will lead to a greater
appreciation of the genetic signatures and subpopulations that
define disease states and, as a result, usher the discovery of
personalized therapeutics.
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