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Abstract

Uridine phosphorylase (UPP) is a central enzyme in the pyrimidine salvage pathway, catalyzing the reversible phosphorolysis
of uridine to uracil and ribose-1-phosphate. Human UPP activity has been a focus of cancer research due to its role in
activating fluoropyrimidine nucleoside chemotherapeutic agents such as 5-fluorouracil (5-FU) and capecitabine.
Additionally, specific molecular inhibitors of this enzyme have been found to raise endogenous uridine concentrations,
which can produce a cytoprotective effect on normal tissues exposed to these drugs. Here we report the structure of hUPP1
bound to 5-FU at 2.3 Å resolution. Analysis of this structure reveals new insights as to the conformational motions the
enzyme undergoes in the course of substrate binding and catalysis. The dimeric enzyme is capable of a large hinge motion
between its two domains, facilitating ligand exchange and explaining observed cooperativity between the two active sites
in binding phosphate-bearing substrates. Further, a loop toward the back end of the uracil binding pocket is shown to
flexibly adjust to the varying chemistry of different compounds through an ‘‘induced-fit’’ association mechanism that was
not observed in earlier hUPP1 structures. The details surrounding these dynamic aspects of hUPP1 structure and function
provide unexplored avenues to develop novel inhibitors of this protein with improved specificity and increased affinity.
Given the recent emergence of new roles for uridine as a neuron protective compound in ischemia and degenerative
diseases, such as Alzheimer’s and Parkinson’s, inhibitors of hUPP1 with greater efficacy, which are able to boost cellular
uridine levels without adverse side-effects, may have a wide range of therapeutic applications.
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Introduction

Uridine phosphorylase (UPP; EC 2.4.2.3) is a ubiquitous

enzyme that catalyzes the reversible phosphorolysis of uridine

and analogous compounds to uracil and ribose-1-phosphate,

playing an important role in pyrimidine salvage and regulation of

uridine homeostasis [1–3]. Most mammals, including humans,

possess two isoforms of the enzyme, UPP1 [4] and UPP2 [5], of

which UPP1 has been much more extensively studied. Interest in

understanding the activity of human uridine phosphorylase

(hUPP) stems from its role in the activation of pyrimidine

nucleoside analogues used in chemotherapy, such as 5-fluorouracil

(5-FU) [6] and its prodrug, capecitabine. In this case, the enzyme

converts 5-FU to 5-fluorouridine, which is subsequently further

activated by uridine kinase to create 5-fluorouridine monophos-

phate. Multiple further downstream metabolites of 5-FU exert

anti-cancer activity through disruption of RNA synthesis,

misincorporation into DNA, or inhibition of thymidylate synthase,

the activity of which is essential for DNA synthesis and repair.

Other research has shown that some tumours have increased levels

of hUPP activity, a finding that may partly explain the tissue

selectivity of these chemotherapeutic agents [7,8]. More recent

investigations have explored using hUPP inhibitors to boost

cellular uridine concentrations, as a means of limiting the toxic

effects of fluoropyrimidine nucleoside exposure to healthy tissues

during the course of treatment [9,10]. Compounds such as 5-

benzylacyclouridine (BAU) [11] have been tested for their ability

to increase the maximum tolerated dosage and therapeutic index

of 5-FU through this uridine-mediated cyto-protective phenome-

non [12].

A fundamental understanding of the underlying structural

mechanisms behind the catalytic activity of this enzyme has been

established through extensive structural analysis of bacterial UPPs,

starting with E. coli UPP (EcUPP) [13–16] and then the closely-

related S. typhimurium homologue [17–19]. More recently, multiple

structures of the human enzyme, hUPP1 [20], its bovine

homologue, bUPP1 [21], and a UPP from the parasitic protozoa,

Trypanosoma brucei [22], have been determined. These structures

have revealed unexpected differences in variations of this enzyme.

Most interestingly, the hexameric, trimer-of-dimers organization

of prokaryotic UPPs has been dissociated in favour of strictly

dimeric complexes in eukaryotic organisms. These studies are also

uncovering unique differences in the molecular details of the

architecture of these enzymes that may be critical to discovering

novel compounds with increased efficacy in modulating this

enzyme’s activity for the development of better therapeutic

regimens.

Here we present the crystallographic structure of hUPP1 bound

to 5-FU. This structure reveals previously unknown conforma-

tional flexibility in loops proximate to this enzyme’s active sites
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that impact the structure-guided design of new inhibitors of this

protein. These insights regarding the structural dynamics of

hUPP1 will be useful both for improving our understanding of this

enzyme’s role in the activation of fluoropyrimidines and in

identifying strategies for more effectively modulating this protein’s

activity through medications.

Results

hUPP1 structure when bound to 5-fluorouracil
One of the unexpected findings of the first structures of hUPP1

was the discovery that the domains of the enzymatic dimer are

flexibly linked, allowing an interdomain motion from an ‘‘open’’

ligand-free conformation to a ‘‘closed’’ catalytically-active struc-

ture [20]. The structure of hUPP1 bound to 5-FU provides further

insight into this motion, having been crystallized in a transitional,

intermediate position roughly 80% of the way from ‘‘open’’ to

‘‘closed’’ (Figure 1). The observed rotational movement hinges

around a stable pivot point on one face of the enzyme that

contains an extensive interdomain interface formed by overlap-

ping strand-turn-strand elements that are not present in

prokaryotic homologues [20]. The constraints imposed by the

hexameric ring structure of bacterial UPPs likely prevent the

occurrence of a similar phenomenon in these enzymes and it has

not been observed in any of the structures of these proteins. This

interdomain motion may have interesting consequences on the

kinetics and regulation of dimeric eukaryotic enzymes relative to

their better-characterized prokaryotic counterparts. The observed

structural flexiblity links the two active sites and predicts that

substrates that stablize the ‘closed’ conformation of the enzyme by

associating with residues from both protein chains will coopera-

tively increase the affinity of other substrates that also bind across

the dimer interface. Indeed, cooperative binding of phosphate and

ribose-1-phosphate has recently been confirmed through extensive

in vitro analysis of the biochemistry of recombinant hUPP1 [23].

It is notable, that the interdomain motion between folds within a

hUPP1 dimer is accompanied by nearly imperceptible changes in

the conformational structure of the individual domains. The

overall R.M.S.D. of main chain atoms from ligand-free to BAU-

bound for aligned monomers is less than 1.00 Å. The differences

are even less comparing BAU-bound and 5-FU-bound enzymes,

with structural differences limited almost exclusively to a loop

lining the back side of the active site pocket (Figure 1, magenta

highlight).

Coordination of 5-FU within the hUPP1 active site
Analysis of electron density distribution at the enzyme’s active

site reveals density in omit maps consistent with bound 5-FU

(Figure 2). The coordination of 5-FU by the protein is exactly as

seen previously for E. coli UPP with 5-FU [15], S. typhimurium UPP

with 5-FU [18], and bovine UPP1 with 5-FU [21]. The binding of

uracil is stabilized by a network of hydrogen-bonds created by

Gln217, Arg219, Arg275 and a single deeply buried water

molecule. All of these elements are strictly conserved among

known UPPs and have been proposed to form a UPP-specificity

motif for distinguishing those enzymes with uridine preference

from among the larger family of nucleoside phosphorylases [22].

The fluorine moiety of 5-FU forms a hydrogen bond with Ser142

and is otherwise closely encased in a cluster of hydrophobic

residues including Leu272, Leu273 and Ile281. These latter

residues, which are key to binding the benzyl modification of high

affinity inhibitors such as BAU, are also the only distinguishing

active site residues when comparing eukaryotic and prokaryotic

enzymes (equivalent E. coli residues are Ile 220, Val221 and P229).

This is an important consideration when contemplating generating

selectivity in such competitive inhibitors between the two enzymes,

Figure 1. Structural comparison of hUPP1 with varying ligands. Overlay of the structures of hUPP1 bound to 5-FU, BAU, or ligand-free (APO)
reveals the high degree of retention of the global fold of the enzyme when binding either substrate or inhibitor. The position of the two 5-FU
molecules within the symmetric active sites at the dimer interface is also shown. In this illustration, the green/yellow monomers are least-squares
aligned (R.M.S.D.s shown in angstroms) and the resulting displacement of the backbone traces of the partnering chains (arrows) reveals the
interdomain flexibility of hUPP1. Between aligned monomers binding either 5-FU or BAU, there is a noticeable structural difference only in the
conformation of a loop proximate to the active site (magenta).
doi:10.1371/journal.pone.0012741.g001

Structure of hUPP1 with 5-FU
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as would be needed for the development of effective antibiotics

targeting only bacterial homologues of this protein [19].

Substrate-induced conformational changes
Comparison of the architectures of BAU-bound and 5-FU

bound monomers of hUPP1 reveals that substantial structural

changes are restricted to a single loop region toward the back side

of the active site. This loop has been demonstrated in E. coli UPP

to undergo an ‘induced-fit’ restructuring from a flexible,

disordered form to an active-site capping position upon ligand

binding [15]. In contrast, earlier structures of hUPP1 had revealed

no conformational differences between BAU-bound and ligand-

free states for this loop and comparably low thermal factors in both

structures for this region of the protein, leading to the suggestion

that this loop might be rigid in the human enzyme [20]. The 5-

FU-bound structure shows that this conclusion is inaccurate, as the

loop clearly closes around the small fluorine moiety of 5-FU

(Figure 3A). While this flap-like structure is clearly less mobile in

the human enzyme than in its prokaryotic equivalent, its retained

ability to adjust its shape to accommodate various altered chemical

forms of uracil/uridine has important implications for under-

standing how to strategically exploit this dynamic element in the

design of better enzyme inhibitors. It is certainly noteworthy that

BAU binds hUPP1 with this loop in nearly an identical

conformation as found in the ligand-free structure, suggesting

that this compound binds to a naturally occurring, low-energy

state of the enzyme (Figure 3B). As this region includes the three

active site-distinguishing hydrophobic residues mentioned earlier,

Figure 2. 5-Fluorouracil binding to hUPP1. (A) 5-FU is coordinated by residues restricted to the individual monomers of the hUPP1 dimer, in
contrast to the binding of BAU that traverses the dimer interface. As expected, Gln217 and Arg219, the key uridine-discriminating residues, form
multiple hydrogen bonds with one face of the uracil base. This face also includes a well-coordinated, buried water molecule that associates with 5-FU
and creates stabilizing bonds with both Gln217 and Arg275. Additional favourable interactions may be formed by both the backbone carbonyl and
side chain hydroxyl groups of Thr141, although the geometry observed in the crystal structure is not consistent with hydrogen bonding. The fluorine
moiety resides in a hydrophobic pocket created by Leu272, Leu273 and Ile281, and forms a hydrogen bond with Ser142. Electron density from a 2Fo-
Fc map contoured at 1.5s is shown for the ligand (blue wire). (B) Surface representation from the same perspective emphasizes the depth and fit of
the active site for the pyrimidine substrate. The position of Phe213, which was omitted from (A) for clarity, is also illustrated. This residue caps the
active site and forms hydrophobic, herringbone stacking interactions with the uracil ring. (C) Schematic map of the contacts between hUPP1 and 5-
FU as analyzed by LigPlot [37].
doi:10.1371/journal.pone.0012741.g002

Figure 3. Conformational dynamics of a hUPP1 active site loop. (A) Comparison of the structure of the loop lining the back of the hUPP1
active site when bound to 5-FU (green), BAU (lime), or ligand-free (yellow), reveals that this region is somewhat mobile and able to close around
substrate upon its binding. (B) Overlay of the BAU molecule with the known structures of hUPP1 shows that the benzyl moiety of this inhibitor
displaces Ile281 from its normal substrate binding position to accommodate the extra bulkiness of this molecule. It is notable how similar the BAU-
bound and ligand-free conformations of hUPP1 are, suggesting that BAU fits the naturally occurring structure of the protein in the absence of
substrate. (C) While the new structure of hUPP1 reveals some degree of flexibility in the back-side active site loop, the conformational range of this
region of hUPP1 is substantially less than that of the equivalent part of E. coli UPP, which closes more tightly when bound to 5-FU (yellow) and opens
wider in the absence of ligand (orange) when compared with its BAU-inhibited structure (red). The increased rigidity of the human enzyme is likely
due to the insertion of two additional residues into this loop region, including a proline (inset).
doi:10.1371/journal.pone.0012741.g003

Structure of hUPP1 with 5-FU
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this additional feature further impacts the strategy for developing

selective inhibition of only one homologue over others (Figure 3C).

As the interdomain hinge is in a transitional, intermediate state

in the 5-FU-bound structure of hUPP1, it was expected that there

would also be substantial conformational changes in the active site

residues that reach from one domain to influence ligand binding in

the partnering domain’s active site. Earlier studies of hUPP1

suggested that hinge closure was driven by the creation of

energetically favourable contacts between residues from the one

chain with the small molecules bound to the other chain’s active

site [20]. Specifically, in the BAU-bound structure of hUPP1,

three partner-subunit residues assisted in the coordination,

respectively, of the benzyl moiety (Tyr35), the ribose group

(His36), and phosphate ion (Arg94). These chemical groups are all

absent from the 5-FU-bound structure, eliminating every inter-

domain protein-ligand interaction. In spite of the lack of these

stabilizing associations, all of these residues adopt conformations

similar to those observed in the BAU-bound structure (Figure 4).

This suggests that the active, ligand-binding conformations of

these residues are low energy, naturally-adopted rotamers, thus

favouring substrate association and catalysis of phosphorolysis. It is

also interesting that while both the BAU-bound and 5-FU

structures were crystallized under very similar conditions, only

the former was found to have bound phosphate, presumably

chelated from trace contamination in the purification or

crystallization solutions. This is likely a result of the benzyl and

sugar groups of the BAU inhibitor stabilizing a fully ‘‘closed’’

enzyme configuration in which the two phosphate-binding

arginine residues are in perfect alignment for ion coordination.

Consistent with 5-FU not effectively stabilizing this interdomain

conformation, the resulting structure is found partially open and

the phosphate site unoccupied.

Discussion

Human uridine phosphorylase has been of interest to clinical

researchers for several decades now due to its important role in

activating front-line chemotherapeutic fluoropyrimidine nucleo-

sides [1]. It has also been studied as the molecular target for the

design of specific inhibitors intended to boost plasma and tissue

uridine levels in order to rescue normal tissues from these cytotoxic

compounds [10]. The structure of hUPP1 in complex with 5-FU

reported here clarifies several aspects regarding the conformation-

al dynamics of this enzyme, an understanding of which impacts the

rational design of better inhibitors with improved affinity and

selectivity. In contrast with better characterized microbial UPPs,

the dimeric architecture of the human enzyme leads to

interdomain motions that ‘‘close’’ the protein around substrates

and ‘‘open’’ to facilitate product release. This observation suggests

a new avenue for the development of a novel class of UPP

inhibitors that sterically block the closing of this enzyme. Even a

small obstruction that maintains the separation of Arg94 from

Arg138 (as produced by crystal contacts in the 5-FU-bound

structure) may effectively completely disrupt the enzyme’s activity

by preventing phosphate coordination and in turn, catalyzed

phosphorolysis of uridine. Further, understanding the conforma-

tional flexibility within the backside loop proximal to the active site

provides new approaches as to how to rationally redesign the

hydrophobic modifications of acyclouridine analogues to most

effectively maximize favourable interactions with low energy

configurations of this part of the enzyme. Given recent reports

indicating that BAU may also affect human aldehyde oxidase

activity [24], improving this compound’s selectivity may be critical

to creating a therapeutically valuable medicine with limited side-

effects.

Figure 4. Inter-domain flexibility of hUPP1. Illustration highlights conformational changes at the dimer interface proximate to the active site,
overlaying the 5-FU-bound structure (gold), the BAU-bound structure (orange), and ligand-free structure (red). Despite a lack of molecular contacts
between residues from the partnering subunit and the 5-FU ligand, the critical residues for binding natural substrates adopt conformations close to
those seen in the BAU-bound structure, where they are stabilized by the formation of favourable molecular interactions, and not the conformations
revealed in the ligand-free structure. The location of the phosphate ion from the BAU-bound structure is shown for orientation, but not found to be
occupied in the 5-FU-bound structure.
doi:10.1371/journal.pone.0012741.g004

Structure of hUPP1 with 5-FU
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The implications of this research are gaining significance as

new roles for uridine in the cytoprotection of tissues are being

discovered. Recent reports have shown that uridine phosphor-

ylase activity is under the regulation of a number of hepatic

nuclear receptors, suggesting a link between lipid and uridine

metabolism [25,26]. This is increasingly of interest given the

rising prevalence of fatty liver disease among populations.

Uridine has also been found to protect astrocytes from cellular

death under energy-limiting conditions, such as ischemia

[27,28]. Further, administration of uridine in combination with

docosahexaenoic acid is being tested as a potential treatment for

both Alzheimer’s disease [29] and Parkinson’s disease [30].

Thus, targeting human UPP to raise endogenous uridine levels

may prove valuable as a more general approach toward the

cytoprotection of a variety of cells, beyond its original

application as a means of rescuing tissues exposed to

fluoropyrimidines during the course of chemotherapeutic

treatment.

Materials and Methods

Protein production and purification
Production and isolation of hUPP1 was conducted as

previously reported [20,31] and followed standard laboratory

protocols for recombinant bacterial protein expression and

purification. In brief, pQE plasmid containing an N-terminally

six histidine-tagged construct of the enzyme was transformed into

BL21(DE3) E. coli. Freshly transformed colonies were cultured in

Terrific Broth and induced with 0.1 mM isopropyl-b-D-thioga-

lactopyranoside (IPTG) at an O.D. of 1.0. Growth was continued

overnight at 18uC. Cells were harvested and resuspended in

50 mM Tris buffer pH 8.0, 300 mM KCl, 10% glycerol with

20 mM imidazole. The bacteria were then disrupted by

sonication on ice and membranes with other insoluble material

were pelleted by high speed centrifugation (100,0006g). Recom-

binant hUPP1 was subsequently purified from the resulting

supernatant using Ni-NTA affinity chromatography and batch

eluted with 500 mM imidazole added to the sonication buffer

above. Further purification was conducted using gel filtration

chromatography over Superdex 200 resin equilibrated in

300 mM KCl, 50 mM Tris buffer pH 8.0 with 1 mM Tris (2-

carboxy-ethyl) phosphine (TCEP). The final sample was verified

to be homogenous by SDS-PAGE experiments and used directly

for crystallization.

Crystallization
Purified hUPP1 at 4 mgs/mL was supplemented with 1 mM 5-

FU (Sigma) and subject to crystallization screening in conditions

similar to those previously identified to successfully crystallize

hUPP1 with BAU [20]. Large rod-shaped crystals formed in 17%

PEG 3350, 100 mM Bis-Tris buffer pH 5.5, and 160 mM MgCl2.

Crystals were frozen by submersion in liquid nitrogen after a few

seconds incubation in cryoprotectant containing the above

constituents supplemented with 25% ethylene glycol and 5 mM

5-FU.

Data collection/processing and structure determination
Data was collected at SSRL beamline 7-1 as summarized in

Table 1. A complete, high quality dataset to 2.3 Å resolution was

collected. This data was processed and reduced by the HKL2000

package with Denzo and Scalepack [32]. The 5-FU-bound hUPP1

crystallized in the same orthogonal space group (P212121) as

crystals of this protein in complex with BAU and possessed low

mosaicity. Molecular replacement phasing of the data obtained on

hUPP1 with 5-FU was successful through Molrep [33] using

monomers of hUPP1 with BAU as a search model (PDB ID:

3EUF) [20]. Solution phases were sufficient to resolve unambig-

uous density for the four unmodeled 5-FU ligands (one per protein

chain). Rounds of model building and refinement were performed

using Coot [34] and Refmac [33]. As with the BAU-bound

structure, there is a lack of electron-density for the first 15 residues

of hUPP1, the N-terminal cloning artifact residues

‘MRGSHHHHHHGSPGLQEF’, and the final two C-terminal

residues. Tight non-crystallographic symmetry restraints (between

4 chains) were retained for the main chain loop residues 78–84 due

to the low quality of the electron-density map in this region of the

protein. The final structure was refined with Refmac to an Rfactor/

Rfree of 22.5%/27.7%, with approximately 89% of residues in

most favourable regions of the Ramachandran plot as analyzed by

Procheck [35]. The model was further validated using Molprobity

[36], scoring in the 98th percentile. Figures were rendered using

ICM Browser-Pro (Molsoft) or LigPlot [37]. The atomic

coordinates and structure factors have been deposited in the

Protein Data Bank (3NBQ).
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