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Genome-wide association studies as well as lymphatic expression analyses have linked

both Cbl-b and GM-CSF to human multiple sclerosis as well as other autoimmune

diseases. Both Cbl-b and GM-CSF have been shown to play a prominent role

in the development of murine encephalomyelitis; however, no functional connection

between the two has yet been established. In this study, we show that Cblb knockout

mice demonstrated significantly exacerbated severity of experimental autoimmune

encephalomyelitis (EAE), augmented T cell infiltration into the central nervous system

(CNS) and strongly increased production of GM-CSF in T cells in vitro and in vivo.GM-CSF

neutralization demonstrated that the increased susceptibility ofCblb−/− mice to EAE was

dependent on GM-CSF. Mechanistically, p50 binding to the GM-CSF promoter and the

IL-3/GM-CSF enhancer element “CNSa” was strongly increased in nuclear extracts from

Cbl-b-deficient T cells. This study suggests that Cbl-b limits autoimmunity by preventing

the pathogenic effects of GM-CSF overproduction in T cells.
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INTRODUCTION

The E3 ubiquitin ligase Cbl-b regulates T cell activation thresholds by mediating the requirement
for CD28 costimulation (1, 2), thus playing an essential role in immunotolerance and limiting
autoimmunity via CD28 (1, 3). Mechanistically, Cbl-b restricts activation of the T cell antigen
receptor (TCR) by controlling key molecules involved in T cell stimulation. It has been proposed
that Cbl-b inhibits activation of the p85 subunit of phosphoinositide 3-kinase (PI3K) (4, 5), protein
kinase C theta (PKCθ), and phospholipase C-γ1 (PLC-γ1) (3, 6) and acts in concert with c-
Cbl to promote antigen-induced downregulation of the TCR (7). In addition, Cbl-b represses
transactivation of the transcription factor nuclear factor-κB (NF-κB) (8). Furthermore, Cbl-b has
been shown tomediate the suppressive effects of TGF-β, leading to reduced T cell sensitivity toward
TGF-β and to inhibition by regulatory T cells (9–15).

Cbl-b-deficient mice are prone to develop autoimmunity (1) and two (2, 16) out of three
(13) studies showed such mice to have a high susceptibility to experimental autoimmune
encephalomyelitis (EAE), the animal model for multiple sclerosis (MS). Along these lines, various
genome-wide association studies showed that variants of the CBLB gene are associated with MS
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(17–19). Furthermore, Cbl-b in T cells was reported to be
decreased in patients with MS, and low expression of mRNA
was associated with increased risk of relapse (20). The underlying
molecular functions of Cbl-b, however, have remained elusive.

In MS and EAE, the central nervous system (CNS) becomes
inflamed, and the insulating myelin sheath of axons gets
attacked by autoreactive immune cells (21–23). In EAE, the
CNS inflammation and subsequent paralysis is induced by active
immunization of mice with self -antigens such as myelin basic
protein (MBP), myelin oligodendrocyte glycoprotein (MOG)
or proteolipid protein (PLP) (24). Single epitopes of such
proteins, such as MOG35–55 and PLP139–151 peptides, are
also sufficient to induce disease (25–27). Onset of MS and
EAE is believed to be dependent on autoreactive CD4+ T
cells which migrate into the CNS to activate and recruit
other immune cells (28, 29). Cytokines derived from these
CNS antigen-specific CD4+ T cells and their corresponding
transcription factors are of significant interest in autoimmune
research.

Somewhat surprisingly, it has been shown that many
proinflammatory cytokines such as IFNγ, IL-12, IL-17A, IL-
17F, IL-21, or IL-22 are not required for EAE development
(30–38). Instead, it has been shown in several studies that
GM-CSF, mainly produced by T cells in an inflammatory
setting (39), is an essential cytokine in the pathogenesis of
autoimmune neuroinflammation such as EAE (28, 40–42). Its
elevated expression in T cells is also implicated in MS (43, 44),
and blocking GM-CSF is being tested as a potential treatment
option (45).

GM-CSF is a monomeric glycoprotein (46), recognized by
a heterodimeric receptor whose β-chain is shared with the
IL-3 and IL-5 receptors (47, 48). Signalling at low GM-CSF
concentrations occurs via the PI-3 kinase pathway, while
higher concentrations further activate JAK2/STAT5 (49) and
can lead to proliferation, protection from apoptosis, early
commitment to myelopoiesis, differentiation/maturation
of committed progenitors and multiple activation and
motility functions in mature cells (50). Its ability to promote
macrophage polarization and subsequent inflammatory
mediator production (51, 52) is of particular interest in the EAE
setting.

Along this line of argumentation, IL-3, a cytokine closely
related to GM-CSF (47, 48, 53–55), has also been associated with
autoimmune neuroinflammation. IL-3 was shown to exacerbate
EAE (56) and to be upregulated in MS lesions (57), whereas
another study describes it to be a marker of encephalitogenic T
helper 1 (Th1) and Th17 cells but redundant for the severeness of
EAE symptoms (58).

Because of the apparent importance of GM-CSF and IL-3 for
CNS autoimmunity, their deregulation inMS-patients (44, 57, 59,
60), their functional relationship (47, 48, 55) and the correlation
of Cbl-b with autoimmunity as well as the hyper-responsive
Cblb−/− T cell phenotype (1–3, 17–19), we were interested to
find out whether Cbl-b suppresses EAE through the regulation
of GM-CSF and IL-3. We show that Cbl-b deficiency leads to
massive upregulation of GM-CSF and IL-3 in CD4+ T cells, a
potentially causative factor in increased neuroinflammation.

RESULTS

Cbl-b-Deficient T Cells Produce
Significantly More GM-CSF and IL-3 in vitro
Since Th17 cells were implicated in EAE pathogenesis and
reported to be an important source of GM-CSF (41, 42, 61, 62),
we isolated naïve CD4+ T cells from wt and Cblb−/− mice,
differentiated them into the Th17 subset in vitro (Figure 1C) and
determined their cytokine production. As a result, unskewed Th0
cells lacking Cbl-b produced significantly more GM-CSF and IL-
3 than their wt counterparts both at protein and mRNA levels
(Figures 1A,B,D,E). Interestingly, however, Th17 differentiation
repressed rather than upregulated GM-CSF and IL-3, and this
repression was also pronounced in Cbl-b-deficient Th17 cells
(Figures 1A,B). Since the downregulation of GM-CSF and IL-3
is dependent on IL-6 [(63) and data not shown], this indicates
that the IL-6/STAT3 pathway is not affected by the loss of Cbl-b.

It has been shown that activation of STAT5 induces the
expression of GM-CSF and IL-3 (63, 64). It is also known
that Cbl-b-deficient T cells produce enhanced amounts of IL-
2 (1, 2, 16). To exclude the possibility that increased GM-
CSF expression by Cblb−/− T cells was just due to auto- and
paracrine IL-2/STAT5 signaling, we neutralized IL-2. Blocking
IL-2 with the combination of two different antibodies efficiently
inhibited STAT5 activation, thus showing this approach to be
valid (Figure 1G). As shown in Figure 1F, increased GM-CSF
secretion by Cbl-b-deficient T cells was conserved during IL-2
blockade, indicating that this effect is not dependent on IL-2.

The immunosuppressive cytokine TGF-β is implicated in the

suppression of EAE (65, 66), and Cblb−/− cells have been shown
to be relatively resistant against TGF-β-mediated inhibition (9,

10, 15). Therefore, we wanted to find out whether this would

also apply to GM-CSF expression. As shown in Figure 1H,
TGF-β efficiently suppressed GM-CSF secretion of wt T cells
in a dose dependent manner (99% inhibition at 5 ng/ml TGF-
β), whereas Cblb−/− T cells were partially resistant to TGF-β
inhibition (58% inhibition at 5 ng/ml TGF-β). Notably, even with
the highest concentration of TGF-β used, Cbl-b-deficient T cells
still produced more GM-CSF than wt T cells without addition of
TGF-β (Figure 1H).

The proximal promoter of the GM-CSF gene, encompassing
about 120 bp upstream of the transcription start site, contains
a CD28 response region that consists of one SP1 and two
NF-κB binding sites. The proximal NF-κB site is responsive
to TCR signals and binds RelA/p50 heterodimers. Mutation
of this site has been shown to reduce the activation of a
GM-CSF promoter reporter by at least 50% (67, 68). A distal
enhancer element “CNSa” in the IL-3/GM-CSF gene cluster
(69) also shows potential NF-κB binding sites. Since our results
showed deregulated GM-CSF and IL-3 expression in Cbl-b-
deficient T cells, we were interested to find out whether this
was reflected by changes in NF-κB binding to the GM-CSF
promoter and CNSa. Therefore, we prepared nuclear extracts
from anti-CD3/anti-CD28-stimulated wt and Cblb−/− CD4+

T cells and performed electrophoretic mobility shift assays
(EMSA). As DNA oligonucleotides, we used the wt sequence
of the proximal NF-κB binding site of the GM-CSF promoter
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FIGURE 1 | Cytokine expression of CD4+ cells in vitro. CD4+ CD62L+ cells of wt and Cblb−/− mice were kept in Iscove’s Modified Dulbecco’s Medium (IMDM)

supplemented with 10% FCS, 2mM l-glutamine and penicillin-streptomycin [50 U/ml] and stimulated with 1µg/ml anti-CD28 and 3µg/ml platebound anti-CD3, with

or without Th17 differentiation conditions (5 ng/ml TGF-β, 20 ng/ml IL-6, 10 ng/ml IL-23, 2µg/ml antiIFN-γ, 2µg/ml antiIL-4). GM-CSF [(A), n = 4–8; 3–6 independent

experiments] and IL-3 levels [(B), n = 4–8; 3–6 independent experiments] were measured on day 3 in the cell culture supernatants. To validate Th17 differentiation,

IL-17 was measured as well [(C), n = 4; 4 independent experiments]. RNA was extracted on day 2, and qRT-PCR for GM-CSF [(D), n = 6; 5 independent

experiments] and IL-3 [(E), n = 6; 5 independent experiments] was performed. In some experiments, IL-2 blocking antibodies JES6 (30µg/ml) and S4B6 (40µg/ml)

were added in combination (=anti IL-2), and GM-CSF levels were measured in the supernatants on day 3 [(F), n = 4; 3 independent experiments]. To validate the

antibody function, cells were lysed, submitted to western blot and pSTAT5 was detected [(G), 1 out of 2 experiments]. The loading control was considered in the

quantification. (H) (n = 4; 2 independent experiments) shows GM-CSF amounts in supernatants on day 3 of unstimulated (=unst) or stimulated CD4+ cells treated

with different amounts of TGF-β.

(−110 to −125; Figure 2A) and the sequences of two predicted
NF-κB binding sites within CNSa (Figures 2B,C) as well as
mutated forms of the respective oligos to confirm the specificity
of the interaction. As shown in Figure 2, binding of NF-
κB p50 was well inducible by T cell stimulation (validated

by a p50 super-shift) at all investigated sites. Notably, p50
binding to the NF-κB binding site was strongly enhanced in
nuclear extracts from Cbl-b-deficient T cells at the GM-CSF
promoter as well as the CNSa enhancer. Using the mutant
oligonucleotide sequences, either labeled (not shown) or as cold
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competitors, validated the specificity of the NF-κB p50 binding
site.

Cbl-b-Deficient Mice Are
Hyper-Susceptible to EAE Which Is
Correlated With Dysregulated GM-CSF
Expression
In several models, Cbl-b has been shown to be crucial for
tolerance induction and prevention of autoimmunity (1, 3, 70,
71). However, the studies on Cbl-b in EAE so far did not
yield consistent results (2, 13, 16). Given the fact that Cbl-
b is a threshold regulator in T cells, these divergent results
could be due to different EAE protocols (1, 2, 72). To address
this issue, we used an EAE protocol that leads to only mild
signs of disease in wt mice. Applying this protocol, Cbl-b-
deficient animals demonstrated significantly enhanced disease
severity (Figure 3A), which was accompanied by significantly
increased T cell infiltration into the CNS (Figure 3B). The
frequency of regulatory T cells (Tregs) was increased as well
but was not sufficient to impair EAE progression in Cblb−/−

animals (Figure 3B, right) likely due to the increased resistance
of Cblb−/− effector T cells to Treg suppression in vivo (9, 13).

On the peak of disease, restimulation of mononuclear CNS
cells with CD3 crosslinking led to strongly enhanced GM-CSF
and IL-3 secretion in the absence of Cbl-b (Figures 4A,B).
Consistent with this observation, restimulation of draining
lymph node cells with the MOG peptide showed the same effect
(Figures 4C,D). Importantly, cells isolated from non-MOG-
challenged control mice did not express any of these cytokines
upon stimulation (not shown).

To test the relevance of GM-CSF for the increased EAE disease
severity of Cblb−/− mice we therapeutically administered GM-
CSF blocking antibodies to Cblb−/− and wt mice during the
course of an EAE experiment.

Strikingly, neutralization of GM-CSF led to an exorbitant
amelioration of EAE symptoms in Cblb−/− mice down to wt
levels (Figure 5).

Overall, our findings demonstrate that the increased
susceptibility of Cblb−/− mice to a MOG-induced
neuroinflammatory autoimmune reaction in vivo is mediated
via GM-CSF and suggests that Cbl-b limits autoimmunity by
preventing the pathogenic effects of GM-CSF overproduction in
T cells.

DISCUSSION

Initially, GM-CSF was not considered as a prominent cytokine in
neuroinflammatory diseases such as EAE or MS. Instead, CNS
autoimmunity was long thought to be mediated by Th1 and
Th17 cells through the production of IFNγ and IL-17 until the
non-redundant function of T cell-derived GM-CSF in EAE was
demonstrated in a number of publications (28, 41, 42); this led to
the further discovery that T cells in MS show elevated GM-CSF
production (43, 44).

While there is agreement on T cells being the main source
for GM-CSF, there is no consensus on the T cell subset that

FIGURE 2 | NFκB EMSA. EMSA of nuclear extracts from wt and Cblb−/−

CD4+ T cells, unstimulated or stimulated overnight with 3µg/ml platebound

anti-CD3 and 1µg/ml anti-CD28. As wt oligo, the NFκB consensus sequence

within the minimal GM-CSF promoter (A) or predicted NFκB sites in the distal

(Continued)
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FIGURE 2 | enhancer element of the IL-3/GM-CSF gene cluster “CNSa” (B,C)

were used. To validate binding specificity, mutated oligos were used instead.

Wt and mutated sequences were added in excess as unlabeled competition

oligos (cold comp., cold mut.). Where indicated, an anti-p50 antibody was

added. One representative experiment out of three (A) or two (B,C) is shown.

FIGURE 3 | EAE score and CNS-infiltrating T cells. EAE was induced in wt

and Cblb−/− mice and disease progression was monitored [(A), n = 16–18; 5

independent experiments]. At the peak of disease (day 14), FACS analysis of

brain and spinal cord was performed [(B), n = 6; 2 independent experiments].

is primarily responsible for the increased production of this
cytokine. There are many reports describing Th1 or Th17 cells
as main GM-CSF producers (28, 42), some claim that there is
a GM-CSF-producing T cell subset (63) while others do not
link GM-CSF production to T cell polarization (41). In this
study, stimulation of naïve CD4+ T cells with CD3 and CD28
crosslinking without any skewing conditions (Th0) yielded the
highest levels of GM-CSF, while Th17 differentiation clearly
repressed GM-CSF production (Figure 1A). This was mainly due
to the action of IL-6 (not shown), which is in agreement with
previous reports (42, 63). Thus, we show that GM-CSF is not a
Th17-specific cytokine under in vitro differentiation conditions.

FIGURE 4 | In vitro T cell recall. At the peak of EAE (day 14), mononuclear

cells from brain and spinal cord were restimulated overnight with 5µg/ml

platebound anti-CD3; GM-CSF [(A), n = 6; 2 independent experiments] and

IL-3 [(B), n = 6; 2 independent experiments] were measured in the

supernatants. In parallel, draining inguinal lymph node cells were restimulated

with 100µg/ml MOG for the indicated time periods, and GM-CSF [(C), n =

8–10; 3 independent experiments] and IL-3 [(D), n = 8–10; 3 independent

experiments] were measured in the supernatants.

FIGURE 5 | aGM-CSF therapy in EAE. EAE was induced in wt and Cblb−/−

mice (n = 5 per group) and 400 µg aGM-CSF or IgG control antibody were

injected i.p. on day 6, 9, 12, 15, 17, and 20. Disease progression was

monitored.

The E3 ubiquitin ligase Cbl-b is an established negative
regulator of T cell activation, providing a “safety net” against
autoimmunity. Here we provide strong experimental evidence
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that Cbl-b regulates lymphatic GM-CSF expression in vitro and
in vivo during EAE pathogenesis (Figures 1, 4).

We and others have shown that Cbl-b indirectly controls
TGF-β-mediated inhibition in T cells (9, 10, 15). The reduced
effectiveness of TGF-β in Cblb−/− mice and the fact that TGF-β
ameliorates EAE (65, 66, 73, 74) potentially explain why Cblb−/−

mice develop such severe EAE (Figure 3A), probably secondary
to increased GM-CSF expression (Figures 1, 4).

Interestingly and along this line of argumentation, GM-
CSF expression itself is inhibited by TGF-β and this effect is
considerably dampened in Cblb−/− CD4+ T cells (Figure 1H).

Additionally, as described previously, GM-CSF production is
induced by NF-κB binding to the GM-CSF promoter (67, 68, 75).
Furthermore, it has been shown that Cbl-b negatively regulates
NF-κB (76) and that NF-κB binding to the IL-2 promoter is
enhanced in Cbl-b-deficient mice (16). In keeping with these
reports, we show that NF-κB binding to the GM-CFS promoter
as well as to a distal enhancer element in the IL-3/GM-CSF gene
cluster is enhanced in Cbl-b-deficient mice (Figure 2), providing
furthermechanistic insight into the observed robust upregulation
of GM-CSF and IL-3 in Cbl-b-deficient T cells.

The discovery of IL-3 involvement in the development of EAE
(56) is even more recent but not unexpected due to its close
relationship to GM-CSF (54, 55). Similar to the effect on GM-
CSF, the dysregulation of IL-3 in Cbl-b-deficient T cells is also
drastic, an observation of potential interest, especially once more
research on IL-3 in CNS autoimmunity has been conducted.

Since MS has a family recurrence rate of 20% (77), genetic
factors are evolving to be of increasing interest in MS research.
Cbl-b seems to be one such genetic factor, as it has emerged to be a
potential MS risk gene (17–19). This fits well to our results, which
show that Cbl-b-deficient mice develop drastically increased EAE
symptoms and CNS infiltration by T cells (Figure 3). As the
frequency of Tregs is also increased (Figure 3B) we hereby prove
that the higher EAE susceptibility of Cblb−/− mice is not due to
diminished Treg numbers. We showed not only that more T cells
infiltrate the CNS, but also that they produce more GM-CSF and
IL-3 upon restimulation with CD3 crosslinking (Figures 4A,B).
Furthermore, restimulation of draining lymph node cells with
MOG peptide resulted in significantly increased GM-CSF and
IL-3 levels in supernatants from Cblb−/− cells (Figures 4C,D).
As treatment with MOG would only trigger MOG-experienced
cells, and CD3 crosslinking alone would only stimulate cytokine
production in effector T cells, this shows that in the Cblb−/−

mice more effector cells produce more GM-CSF and IL-3. This
finding may prove to be a useful gauge: low lymphatic Cbl-b
expression in MS patients could be an indication for higher levels
of GM-CSF in MS lesions and better responses could be expected
from antibody therapies. This speculation is strongly supported
by our blocking experiments, which showed that neutralization
of GM-CSF was particularly effective in Cbl-b-deficient mice
(Figure 5). Research on such therapeutic antibodies has already
yielded promising results: Blockade of GM-CSF receptor has
been reported to ameliorate chronic as well as relapsing-remitting
EAE (78), and a monoclonal antibody against human GM-
CSF (MOR103) has already been tested in a phase Ib trial for
MS (45).

Taken together, we identified the Cbl-b/GM-CSF signaling
axis as a potentially causative actor in neuroinflammatory patho-
mechanism.

MATERIALS AND METHODS

Mice
Cbl-b knockout mice on a C57Bl/6 background have been
described previously (1). Mice were maintained under SPF
conditions. All animal experiments were performed in
accordance with the Austrian “Tierversuchsgesetz” (BGBI.
Nr.501/1989 i.d.g.F. and BMWF-66.011/0061-II/3b/2013) and
were approved by the Bundesministerium für Wissenschaft und
Forschung (bm:wf).

EAE Induction
Wt and Cblb−/− mice received s.c. injection of 300 µl emulsion
containing 200 µg MOG35-55 (GenScript) in incomplete
Freund’s adjuvant (ThermoFisherScientific) supplemented with
killed Mycobacterium tuberculosis (BD; 2 mg/ml). Pertussis
toxin (Sigma; 500µg in 0.1ml PBS) was injected intraperitoneally
on days 0 and 2. Themice were observed from day 0, and the EAE
clinical scores were evaluated every day as follows: 0.5, partial tail
limpness; 1, tail limpness; 1.5, reversible impaired righting reflex;
2, impaired righting reflex and hindlimb weakness; 2.5, paralysis
of one hindlimb; 3, paralysis of both hindlimbs; 3.5, paralysis of
both hindlimbs and one forelimb; 4, hind- and forelimb paralysis;
5, death (79).

Antibody Therapy
Four hundred microgram aGM-CSF (BioXcell BE-0259; clone
MP1-22E9) or IgG2a (BioXcell BE0089, clone 2A3) in 400 µl
PBS were injected intraperitoneally to all mice, as soon as the
first mice showed EAE symptoms on day 6. Treatment was
administered on day 6, 9, 12, 15, 17, and 20 after EAE induction.

Brain and Spinal Cord Homogenization
Mice were perfused with PBS 14 days after EAE induction, and
brain and spinal cords were taken and cut into small pieces in
5ml PBS supplemented with 2.5 mg/ml collagenase (Sigma), 1.8
mg/ml DNAse (Sigma), 2.5mM MgCl and 2% fetal calf serum
(FCS, S1810). After 45min in a humid, 37◦ incubator, EDTA
was added (final concentration 1mM) and incubated for another
5min. The pieces were transferred onto a 70µm cell strainer and
pushed through with the back of a 10ml syringe. The suspension
was further passed through a 40µm cell strainer and then kept
on ice for further analysis.

Isolation of CNS Leukocytes
Mononuclear cells were isolated by Percoll (Sigma) gradient
centrifugation from homogenized combined brain and spinal
cords as described previously (80).

Restimulation of Draining Lymph Node
Cells
The draining inguinal lymph nodes were prepared 14 days after
EAE induction, pressed through a metal sieve and restimulated
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in RPMI+ + + (Roswell Park Memorial Institute 1640 medium
[PAA; E15-039] supplemented with 10% FCS, 2mM l-glutamine
and penicillin-streptomycin [50 U/ml]) with 100µg/ml MOG.

Isolation of T Cells
Spleen and lymph nodes (axillary, brachial, inguinal) were
mashed through a metal sieve, depleted of erythrocytes using
the mouse erythrocyte lysing kit (R&D, WL2000) and CD4+ T
cells were isolated using the “CD4+ T Cell Isolation Kit, mouse”
(Miltenyi Biotech 130-104-454) according to the manufacturer’s
protocol. For Th0 and Th17, cells were further subjected to
positive CD62L selection (Miltenyi, Cat.no.130-093-227).

Flow Cytometry
Homogenized brain and spinal cord cells were incubated with
FC-block (BD 553141) for 15min at 4◦, then stained for 20min at
4◦C with specific antibodies (CD8 PerCPCy5.5 [eBiosciences 45-
0081-80], CD45 APC [eBiosciences 17-0451-81], CD4 V500 [BD
560782], CD3 PB [Biolegend 100214]) diluted 1:200 in PBS/2%
FCS. Data acquisition was performed on a FACSVerse and data
analysis was conducted using the FlowJo 10.0.8r1 software.

Western Blot
A 48-well plate was coated with PBS containing 3µg/ml anti-
CD3 (2C11, in-house made) and incubated for 3 h at 37◦C.
After washing with PBS, 1.5 × 106 CD4+ cells per well were
cultured overnight in 0.5ml RPMI+ + + and costimulated with
1µg/ml anti-CD28 (BD 553294) and antibodies against IL-2
(JES-6, 30µg/ml; S4B6, 40µg/ml).

Cells were collected, washed once in ice-cold PBS and lysed
in 30 µl lysis buffer (5mM NaP2P, 5mM NaF, 1mM Na3VO4,
5mM EDTA, 150mM NaCl, 50mM Tris [pH 7.3], 1% NP-40,
aprotinin and leupeptin [50µg/ml each]) for 30min on ice. After
centrifugation (15,000 g, 4◦C), protein lysates were subjected
to Western blotting analysis with antibodies against pSTAT5
(cell signaling 9351; 1:1000) and fyn (Santa Cruz-16; 1:1,000).
Densitometric analysis was performed using ImageJ.

Nuclear Extracts
5 × 106 CD4+ cells were harvested, washed once with cold PBS,
(1min, 9,300 rcf, 4◦C) resuspended in 300 µl BufferA (10mM
Hepes pH 7.9; 10mM KCl; 0.1mM EDTA; 0.1mM EGTA; 1mM
DTT; 0.5mMPMSF) and kept on ice for 15min. 20µl 10%NP-40
(final concentration 0.63%) were added, the pellet vortexed (10 s)
and washed two times with 300µl BufferA (5min, 2300 rcf, 4◦C).
The supernatant was discarded, 30 µl BufferC (20mM Hepes
pH 7.9; 0.4M NaCl; 1mM EDTA; 1mM EGTA; 1mM DTT;
1mM PMSF) added and put on a shaker for 30min at 4◦C. After
centrifugation (10min, 13,000 rcf, 4◦C) supernatants were taken
and stored at−80◦C. Protein concentrations were determined by
Bradford assay.

Gel Mobility Shift Assay
Single-stranded oligonucleotides were synthesized by Eurofins
MWG Operon and annealed.

Overnight resting and anti-CD3/anti-CD28 stimulated CD4+

T cells from wt or Cbl-b- deficient mice were lysed and nuclear
extracts were prepared. The following oligonucleotides were
used, and the core binding motifs are underlined:

NFκB o4: 5′ - TCCACAACTCAGGTAGTTCCCCCGC-3′
(spanning −125 to −110 relative to the transcription start of
the mouse GM-CSF gene)

mutated o4/1: 5′ -TCCACAACTCTCTTAGTTCCCCCGC-3′
CNSa o2: 5′ -GAGAAATACAGGGAATTCCCTACTCT

GAGGATAATGG-3′ (predicted by TRANSFAC analysis of
CNSa)

CNSa mut o2: 5′ - GAGAAATACAGTTAATTCCATACTCT
GAGGATGGTGG-3′

CNSa o3: 5′ -TGGATCTTGATGGGAAATTAAGTGAAGT-3′
(predicted, published NFκB binding site within CNSa) (69)

CNSa mut o3: 5′ - TGGATCTTGATGGGCGCTTAAGTG
AAGT-3′.

Binding reactions and supershifts were performed for 30min
at 4–8◦C using the Binding Buffer B-1 (Active Motif 37480)
together with Stabilizing Solution D (Active Motif 37488)
containing 4 µg mouse T cell nuclear extracts (Active Motif
36042) and 2µg of anti NF-κB (p50) (Santa Cruz-1190) antibody.

Binding reactions with the 3 × 105 cpm labeled probe were
performed for 20min at 4◦-8◦C using Binding Buffer C-1 (Active
Motif 37484) together with Stabilizing Solution D (Active Motif
37488). Samples were run on a 4% native polyacrylamide gel
in 0.5 × TBE for 3 h at 250V. For competition assays, 10-fold
unlabeled oligonucleotides identical to the radioactive-labeled
probes were added to the binding reaction.

qRT-PCR
5 × 105 CD4+ cells were cultured in a 96-flat bottom well for
2 days. RNA was extracted using the RNeasy Mini Kit (Qiagen,
Cat.no.74106) according to the manufacturer’s protocol. For
cDNA synthesis, Omniscript RT Kit (Qiagen, Cat.no.205111),
Oligo-dT 15 primer (Promega, Cat.no.C1101) and RNase
inhibitor (Promega, Cat.no.N2111) were used according to the
manufacturer’s protocol.

Real-time PCR was performed using Bio&SELL 5x QPCR
MixII (Rox) (BS76.520.5000) and TaqMan probes for the relevant
genes on a 7500 FAST Real-Time PCR system. Results were
normalized to GAPDH.

Cytokine Measurements
Cell culture supernatants were analyzed via Bio-Plexmultianalyte
technology (BioRad).

Statistics
Results are expressed as mean ± standard error of the mean
(SEM). Groups were compared using the paired Student’s t-
test. For EAE, two-way Anova with Sidak’s post hoc test was
performed. Data analysis was performed using GraphPad Prism
7.00. Significant differences are indicated as ∗p≤ 0.05, ∗∗p≤ 0.01,
and ∗∗∗p ≤ 0.001, ∗∗∗∗p ≤ 0.0001.
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