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Myocardial infarction (MI) is one of the leading causes of death worldwide. Mesenchymal stem cell (MSC) transplantation is
considered a promising approach and has made significant progress in preclinical studies and clinical trials for treating MI.
However, hurdles including poor survival, retention, homing, and differentiation capacity largely limit the therapeutic effect of
transplanted MSCs. Many strategies such as preconditioning, genetic modification, cotransplantation with bioactive factors, and
tissue engineering were developed to improve the survival and function of MSCs. On the other hand, optimizing the hostile
transplantation microenvironment of the host myocardium is also of importance. Here, we review the modifications of MSCs as
well as the host myocardium to improve the efficacy of MSC-based therapy against MI.

1. Introduction

Myocardial infarction (MI) leads to a massive loss of func-
tional cardiomyocytes, which is a major cause of human
death worldwide [1–3]. Though pharmacotherapy, throm-
bolysis, coronary stent implantation, and coronary artery
bypass grafting have been clinically used to treat MI and
improve patients’ survival, these methods cannot fundamen-
tally repair the damaged heart and restore heart function.
Stem cell transplantation is considered as a promising way
to treat MI, which has made significant progress in preclini-
cal and clinical studies recently [4]. Stem cell candidates
mainly include two categories: (1) pluripotent stem cells
(embryonic stem cell and induced pluripotent stem cells)
and their derivatives and (2) adult stem cells, including
hematopoietic stem cells and mesenchymal stem cells
(MSCs) [5]. MSCs are mesoderm-derived multipotent stro-
mal cells that reside in embryonic and adult tissues, having
the capacity for self-renewal, immune privilege, immunomo-
dulation, and low tumorigenicity [6]. To date, MSCs have
become the mostly practiced cell type in clinical trials for

treating MI [7], due to the safety, multidifferentiation poten-
tial, nutritional activity, immunomodulatory properties, and
abundant donor sources [6, 8]. MSCs have low immunoge-
nicity due to the low expression of MHC II as well as the lack
of expression of MHC I, which lead to immune tolerance
allowing allogeneic transplantation [8].

However, the therapeutic effect of MSC transplantation is
unsatisfactory. The increase in left ventricular systolic
function (LVSF) of MI patients is only 3–10% with MSC
transplantation [9]. Implanted cells do not survive for a long
time. In fact, only about 3% of MSCs appeared in the
marginal area of the infarct myocardium within 24 hours
after systemic administration, and less than 1% of MSCs
could survive for more than a week [5]. Recent studies have
concluded that MSCs are very difficult to differentiate
towards cardiomyocytes, and the benefits of MSC therapy
mainly depend on its paracrine mechanism [10]. The key
steps of the cell therapy procedures, such as donor selection,
in vitro amplification, survival in a hostile transplantation
microenvironment, migration, differentiation, and paracrine
function, need to be optimized. Here, we review the strategies
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of MSC modifications for optimizing the therapeutic poten-
tial of MSCs against MI.

2. Therapeutic Effect of MSCs against MI Injury

MSCs have the potential of self-renewal, proliferation, and
multidifferentiation in an appropriate microenvironment
[11]. MSCs exert a therapeutic effect on MI through direct
differentiation into vessel cells (cardiomyocyte differentia-
tion events are rare) and paracrine mechanism (which has
been proved predominant) [10]. Transplanted MSC-derived
endothelial cells and vascular smooth muscle cells can con-
tribute to the new vessel formation [12–14]. MSC paracrine
factors include protein cytokines such as vascular endothelial
growth factor (VEGF), hepatocyte growth factor (HGF),
insulin-like growth factor (IGF), miRNAs [15–17], and
exosomes [18]. These factors can induce immunomodulation
and anti-inflammatory effects, evidenced by inhibition of the
activity of inflammatory mediators and regulation of the
function of immune cells [19]. The factors can induce an
antifibrosis effect by inhibiting the proliferation of fibro-
blasts, reducing the deposition of collagen and producing
matrix metalloproteinases [20]. In addition, factors such as
stromal cell-derived factor-1 (SDF-1), VEGF, and basic fibro-
blast growth factor (bFGF) have a strong proangiogenic
effect, due not only to promotion of endothelial cell prolifer-
ation and migration but also to prevention of endothelial
cells from apoptosis [8, 21].

The MSC-based treatments for MI have successfully
entered phase I and phase II clinical trials. A meta-analysis
comprising 34 randomized controlled trials (RCTs) with a
total number of 2307 patients indicates that MI patients
who received MSC transplantation showed a significantly
improved cardiac function, a significant increase in the left
ventricular ejection fraction (LVEF) (+3.32%), and a decrease
in LV end-diastolic indexes (−4.48) and LV end-systolic
indexes (−6.73) [22]. Another meta-analysis covering 28
RCTs with a total of 1938 STEMI patients shows that MSC
treatment resulted in an improvement in long-term (12
months) LVEF of 3.15% [23]. A recent study also showed
benefits of MSC transplantation on mechanical and clinical
outcomes. The LVEF of MI patients with MSC treatment
increased by 3.84%, and the effect was maintained for up to
24 months. Scar mass was reduced by −1.13, and the wall
motion score index was reduced by −0.05 at 6 months after
MSC treatment [24]. Clinical trials of MSC transplantation
for treating MI are listed in Table 1. Though previous clinical
trials have made some advances, optimizing the process of
MSC transplantation is needed in preparing for the clinical
phase III trials.

3. Strategies for Optimizing MSC-
Based Therapy

MSCs can be obtained from various tissues such as bone
marrow, fat, peripheral blood, lungs, muscle, placenta,
umbilical cord blood, and dental pulp [40]. Bone marrow
MSCs (BM-MSCs) are the most frequently investigated and
tested in clinical trials. It is reported that MSCs from younger

donors are more effective than those from older donors, indi-
cating an age-dependent effect of MSC functions. The
expressions of inhibitory kappa B kinase, interleukin-1a,
and inducible nitric oxide synthase in the elderly donor’s
MSCs were significantly decreased [15]. Previous studies
showed that the expression of the pigment epithelium-
derived factor (PEDF) was significantly increased in MSCs
of aged mice compared with young mice. Knockout PEDF
in aged MSCs can improve the therapeutic effect of MSCs
[41]. These data suggest that using young MSCs for treating
MI might be a more advisable option.

For cell number of MSC transplantation, ~105–108 MSCs
were reported in diverse studies [42], but usually >1× 107
cells were required in clinical trials given the low retention
rate [43, 44]. Cell expansion in vitro is needed for about 1–
3 months before implantation to obtain enough cell numbers
[5]. However, cell aging and the loss of chemokine markers
during amplification could reduce the cell survival and func-
tions of MSCs in the transplantation microenvironment.
Methods such as environmental preconditioning, cytokine
or drug coculture, and gene modification may overcome
these problems.

3.1. Preconditioning MSCs in Culture before Transplantation

3.1.1. Hypoxia Preconditioning. The peripheral area of MI is a
typical site for preclinical MSC treatment. The oxygen partial
pressure in the peripheral area generally does not exceed 1%,
and hypoxia is a major cause of dysfunction and death of
transplanted MSCs [45]. Hypoxia preconditioning in vitro
(2–5% oxygen) can maintain homogeneity and differentia-
tion potential, delay cell senescence process, and increase
chemokine receptor expression of MSCs [46]. Hypoxia pre-
conditioning is also proved to increase the paracrine activity
of nonhuman primate MSCs [47]. Thus, MSCs with hypoxia
preconditioning is more therapeutically effective against
massive myocardium injury and does not increase the inci-
dence of arrhythmia complications [48].

3.1.2. Hyperoxia or Hydrogen Peroxide Preconditioning.
Hyperoxia pretreatment can also improve MSC efficacy by
reducing the number of apoptotic cells. BM-MSCs were
implanted into hypoxic tissues after hyperoxia (100% oxy-
gen), and the apoptotic cells were significantly reduced (apo-
ptotic score index determined by TUNEL assays reduced
from 86.6% to 11.6%) [49]. In addition, sublethal hydrogen
peroxide preconditioning attenuated oxidative stress-
induced cell apoptosis. Pretreatment with 200μmol/L H2O2
for 2 hours decreased MSC apoptosis. Compared with con-
trol MSCs, MSCs with H2O2 pretreatment better improved
cardiac function and reduced myocardial fibrosis [50].

3.1.3. Thermal Preconditioning. MSCs were incubated with
water bath at 42°C for 2 hours before transplantation can
effectively reduce the oxide-induced apoptosis of MSCs and
enhance cell survival. The mechanism may be related to the
expression of heat shock proteins, which act as a molecular
chaperone and indirectly promote cell survival by inhibiting
the apoptosis pathway and resist oxidation stress [51].
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3.1.4. Nutritional Deprivation Preconditioning. The trans-
plantation microenvironment is poor in nutritional supply.
Reducing energy requirements to allow MSCs to enter a rel-
atively quiescent state helps them adapt to the upcoming
low-energy environment. Serum deprivation for 48 hours
could induce MSCs into a quiescent state and improve
MSC survival rates. Compared with control, serum depriva-
tion increased the survival rates by 3–4-fold after the third
day and on the seventh day after transplantation [52].

3.1.5. Transient Adaptation Preconditioning. Although MSC
itself is with low immunogenicity, the presence of

immunogenic contamination in xenogeneic serum may
result in acute rejection with the host immune system after
MSC transplantation [53]. A two-stage culture strategy was
developed to overcome this problem. In the first phase, the
MSCs were isolated and expanded in the human platelet
lysate or mixed allogeneic serum medium. Then, in the sec-
ond stage, the expanded MSCs were cultured in the autolo-
gous serum medium. This transient adaptation in
autologous serum may contribute to the expression of che-
mokine receptors and tissue-specific differentiation of
amplified MSCs in vitro, which provides an efficient method
for the immunological rejection [46].

Table 1: Clinical trials of MSC transplantation for treating MI.

Clinical trials Phase
Dose
(∗106)

Delivery
route

Enrollment
Infarct
scar

LVEF
Following

up
Study Reference

NCT00114452 Phase 1 0.5/1.6/5 IC 53 n.a. ↑ ∗∗ 6m Hare et al. (2009) [25]

NCT00677222 Phase 1 100 IC 30 n.a. ↑ ∗ 4m Penn et al. (2012) [26]

2011AA020109 Phase 1 3.08 IC 43 = ↑ ∗ 12m Gao et al. (2013) [27]

UO1 HL087318–04 Phase 1 150 IC 65 ↓ ∗ ↑ ∗∗∗ 12m
Traverse et al.

(2014)
[28]

NCT01234181 Phase 1 100 IC 22 ↓ ∗ ↑ ∗ 12m Hu et al. (2015) [29]

NCT01087996 Phase 1/2 20 IM 30 ↓∗∗∗ ↑ 13m Hare et al. (2012) [30]

U54HL081028 Phase 1/2 20 IM 30 ↓∗ ↑ ∗∗ 13m
Suncion et al.

(2014)
[31]

NCT02323477 Phase 1/2 20 IM 79 n.a. n.a. 12m Can et al. (2015) [32]

NCT00883727 Phase 1/2 180–220 IV 20 = = 2 y
Chullikana et al.

(2015)
[33]

NCT02504437 Phase 1/2 — — 200 — — 12m Pei (2015–2017) ClinicalTrials.gov

NCT02503280 Phase 1/2 200 — 55 — — 12m
Joshua

(2015–2032)
ClinicalTrials.gov

NCT02666391 Phase 1/2 — — 64 — — 18m Pei (2016–2017) ClinicalTrials.gov

NCT01770613 Phase 2 — — — — — 12m Nabil (2013–2017) ClinicalTrials.gov

NCT00684021 Phase 2 150 IC 101 n.a. ↑ ∗∗∗ 6m Schutt et al. (2015) [34]

NCT00984178 Phase 2 15 IC 120 ↓ ∗ ↑ ∗∗ 12m
San Roman et al.

(2015)
[35]

NCT00765453 Phase 2 59.8 IC 100 n.a. ↑ ∗∗∗ 12m
Choudry et al.

(2015)
[36]

NCT01291329 Phase 2 6 IC 116 ↓ ∗∗∗ ↑ ∗∗∗ 18m Gao et al. (2015) [37]

NCT03047772 Phase 2 — — 124 — — 12m Yang (2017–2018) ClinicalTrials.gov

NCT00877903 Phase 2 — IV 220 — — 5 y
Donna

(2009–2018)
ClinicalTrials.gov

NCT02013674 Phase 2 100 IM 30 ↓∗ ↑ ∗ 12m
Florea et al.
(2013–2019)

[38]

NCT01392105 Phase 2/3 72 IC 80 n.a. ↑ ∗ 6m Lee et al. (2014) [39]

NCT03404063 Phase 2/3 30 115 — — 6m Piotr (2017–2020) ClinicalTrials.gov

NCT01394432 Phase 3 — IM 50 — — 12m
Evgeny

(2012–2016)
ClinicalTrials.gov

NCT01652209 Phase 3 — — 135 — — 13m Yang (2013–2020) ClinicalTrials.gov

NCT02672267 Phase 3 — IM 50 — — 6m Saule (2014–2016) ClinicalTrials.gov

MSCs: mesenchymal stem cells; MI: myocardial infarction; IM: intramyocardial; IC: intracoronary; IV: intravenous; LVEF: left ventricular ejection fraction; y:
year; m: month; n.a.: not analyzed; =: no statistical significance. ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001.
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3.2. Genetic Modification and Cytokine/Drug Treatment on
MSCs. To obtain enough cell numbers, MSC expansion in
culture usually needs 1–3 months [5]. Not only is the process
time-consuming and laborious but also it is difficult to main-
tain the multidifferentiation ability. Viral vectors or nonviral
methods were used to genetically modify MSCs before trans-
plantation. Overexpression of antiapoptotic transcription
factor Akt could significantly increase MSC viability [54].
MSCs transfected with both OCT4 and SOX2 showed a
strong proliferative activity [55]. Overexpressing manganese
superoxide dismutase can endow cells with anoxic tolerance
before transplantation then effectively increase the survival
rate [56]. Studies that enhance cell engraftment via genetic
modification are listed in Table 2. Pretreating MSCs with
cytokines/drugs prior to transplantation can promote cell
proliferation. A combination of hypoxia (5% O2) and
10ng/mL basic fibroblast growth factor generated a signifi-
cant synergistic effect. It produced highly reproducible
MSCs, allowing MSCs to maintain multidifferentiation
ability after the 11th generation. Besides, the cell production
is 2.8 times faster than the traditional method [57].
Chemical drugs are also used for MSC pretreatment.
Proline hydroxylase inhibitor DMOG-pretreated MSCs
significantly reduced cell mortality after transplantation,
which is associated with elevated expressions of hypoxia-
inducible factor-1α (HIF-1α), VEGF, GLUT-1, and
phospho-Akt were significantly increased [58]. Mitochon-
drial electron transport inhibitors, such as antimycin, have
been used to block the activation of mitochondrial death
pathways [53]. Omentin-1 promotes MSC proliferation,
inhibits apoptosis, increases the secretion of angiogenic
cytokines, and enhances angiogenesis via the PI3K/Akt
signaling pathway [59]. Studies that enhance cell engraft-
ment via drug/cytokine pretreatment are listed in Table 3.

3.3. Cotransplantation MSCs with Bioactive Factors.Multiple
studies have shown that cotherapy with drugs/specific cells/
cytokines/specific biomaterials can prolong the survival time
of MSCs and thus improve their therapeutic efficacy [117].
MSC transplantation combined with heparin significantly
reduced the retention of MSCs in the lungs. Cotransplanta-
tion of MSCs and HGF improved cardiac function and
reduced infarct size of post-MI heart [118]. Encapsulating
cells in an injectable biomaterial could play an antioxidant
role [119]. In a rat MI model, the survival rate of MSCs was
increased by about 30% after coinjection with fibrin glue
[120]. In a swine MI model, cotransplantation of MSCs and
cardiac stem cells was reported to be superior than transplan-
tation of each single type of stem cells [121]. Combined ther-
apy of MSCs and rosuvastatin reduced fibrosis, decreased
cardiomyocyte apoptosis, and preserved heart function
[122]. Nutrient-rich plasma containing high levels of growth
factors and secreted proteins has been identified as a biolog-
ical material which can promote MSC function and promote
wound healing. Thus, cotransplantation of MSCs with
plasma is beneficial for MSCs adapting to nutritional defi-
ciency in the infarct myocardium, which has been applied
for clinical trials [123]. When we injected the MSCs
through intravenous administration, it is easy to induce

the block of vessels. Then, the use of vasodilator drugs
significantly avoids the issues and contributes to the
migration and homing of MSCs [53].

3.4. Biomaterials, Scaffolds, and Tissue Engineering to
Improve MSC Functions. Long-term retention in the
injection site is a necessary condition for the continued effec-
tiveness of MSCs in the MI treatment. MSCs have multiple
administration routes applied to clinical or preclinical
studies. Injection routes including intravenous injection,
intracoronary injection, intramyocardial injection (including
transendocardial and transepicardial) were applied for MSC
transplantation [124, 125]. Systematic intravenous injection
is obviously simple and easy for dose control, but it causes
massive cell redistribution into other organs such as the liver
and lung. To date, intracoronary injection is the most studied
technique during the time of percutaneous coronary inter-
vention after MI, which is convenient and proved safe. Stem
cells delivered through this method have been proved to
improve cardiac function and reduce infarct size. Further-
more, specific studies comparing the effectiveness of different
cell delivery routes showed that catheter-based transendocar-
dial injection is superior to intracoronary injection, in terms
of cell retention and cardiac function improvement [126].
Accumulating evidence supported that both transendocar-
dial and surgical transepicardial injections are safe and
effective in various preclinical and clinical studies [38].
Therefore, intramyocardial injection is considered to be the
most efficient way for cell delivery [127]. However, even after
intramyocardial delivery, the majority of transplanted cells
are lost; thus, the above methods still could not guarantee
the cell survival and long-term retention.

3.4.1. Multicellular Spheres. Cell preparations based on
multicellular spheres have proved to be a promising way to
enhance the therapeutic potential of MSCs [128]. Compared
with the traditional two-dimensional (2D) monolayer
culture, three-dimensional (3D) cell tissue can enhance the
intracellular effect. Compared with the same number of
MSCs in the traditional 2D monolayer culture, the MSC
sphere in fibrin gel increased the level of VEGF secretion by
100 times [129] and the level of the CXCR4 receptor by 2
times [130]. The MSC sphere also obviously increases the
expressions of HIF-1, FGF2, HGF, and miRNAs related to
pleiotropia [17, 131]. Therefore, 3D MSCs improve the
anti-inflammatory and angiogenic properties of MSCs after
transplantation. In both rodent and porcine MI models, 3D
MSCs were shown to be differentiated into endothelial cells
and myocardium-like cells after transplantation and improve
cardiac function of post-MI hearts [132, 133].

3.4.2. Cell Sheet and Hydrogels. Cell sheet technology has
been confirmed to prolong the resident time of trans-
planted cells in the infarct myocardium [134]. The effect
of three-layer MSC sheet administration for MI treatment
is better than that of conventional intramyocardial injec-
tion [135]. The use of biomaterials, such as suspending
MSCs in hydrogels or coated MSCs with hydrogel, may
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effectively reduce the mechanical forces during injection
and protect cells from damage [136].

The process of survival and retention of MSCs can be
affected by various factors, such as ischemia, hypoxia, and
inflammatory cell attack. The application of tissue engineer-
ing can improve this undesirable state [137]. The physical
properties and microstructure of hydrogels regulate the infil-
tration of inflammatory cytokines and T lymphocytes
in vivo, thereby reducing the attack of inflammatory cells
on MSCs [53]. Injecting MSCs in an in situ cross-linked algi-
nate hydrogel can maintain its activity and keep its paracrine
with no immunogenicity [138]. Encapsulating MSCs in an

alginate hydrogel patch may also improve the retention of
MSCs [139]. The collagen scaffolds (such as type I collagen
scaffolds) can enhance the adhesion and proliferation of
MSCs and exhibit better cytocompatibility [4].

In addition, the invention of an artificial simulated extra-
cellular matrix based on tissue engineering has overcome
many difficulties in the application of MSCs. Using hydrogels
as scaffolds and adding high-affinity growth factors and
chemokines may overcome the loss of chemokines via cell-
scaffold interaction [4, 140]. MSCs suspended at 2% sodium
alginate (a natural hydrogel) before transplanting was four
times more effective [141].

Table 2: Gene modification in MSC transplantation for treating MI.

Gene name Disease Model Modification Gene function Reference

Hsp27 MI Rat Overexpression Viability↑; apoptosis↓ [60]

MicroRNA-133 MI Rat Overexpression Survival ↑ [61]

SDF-1α MI Rat Overexpression Homing↑ [62]

CAMKK1 MI Rat Overexpression Angiogenesis↑; infarct size↓; ejection fraction↑ [63]

eNOS MI Rat Overexpression Infarct size↓; angiogenesis↑ [64]

Akt1 MI Rat Overexpression Cardiac function↑ [45]

PKG1α MI Rat Overexpression Survival↑; angiogenesis↑ [65]

Caspase 8 MI Rat Silence Cardiac fibrosis↓; survival↑ [66]

SIRT1 MI Rat Overexpression Cardiac remodeling↓; angiogenesis↑ [67]

Netrin-1 MI Rat Overexpression Survival↑; migration [68]

FGF4-bFGF MI Rat Overexpression Survival↑; microvascular density↑; cardiac fibrosis↓ [69]

MicroRNA-377 MI Rat Knockdown Angiogenesis↑ [70]

PKCɛ MI Rat Overexpression Survival ↑; infarct size ↓apoptosis ↓ [71]

Trx1 MI Rat Overexpression Angiogenesis↑ [72]

BCL2L1 (Bcl-xL) MI Rat/MSC culture Overexpression Apoptosis↓; angiogenesis↑ [73]

MDK MI Rat/MSC culture Overexpression Apoptosis↓; cardiac function↑ [74]

miR-23a MI Rat/MSC culture Overexpression Apoptosis↓; infarct size↓ [75]

miR Let-7b MI Rat/MSC culture Overexpression Cardiac function↓; infarct size↓; angiogenesis ↑ [76]

VEGF MI Rat/MSC culture Overexpression Survival ↑; angiogenesis ↑ [77]

HIF-1A MI Rat/MSC culture Overexpression Paracrine↑; angiogenesis↑; migration↑ [78]

KLK1 (tissue kallikrein) MI Rat/MSC culture Overexpression Apoptosis ↓; apoptosis↓ [79]

PHD2 MI Mouse Silence Survival↑; apoptosis↓;scar size↓ [80]

ecSOD MI Mouse Overexpression Infarction size↓; apoptosis↓; survival.↑ [81]

MIR1-1 (miR-1) MI Mouse Overexpression Survival↑ [82]

HGF MI Mouse Overexpression Angiogenesis↑; apoptosis↓ [83]

ILK MI Porcine Overexpression Homing↑; LVEF↑; myocardial remodeling↓ [84]

IGF-1 MI Porcine Overexpression Angiogenesis ↑ [85]

GLP-1 MI Porcine Overexpression Angiogenesis ↑ [86]

VEGF (165) MI Ovine Overexpression Infarct size↓; left ventricular function↑ [87]

hRAMP1 MI Rabbit Overexpression Infarct size↓ [88]

SOD2 — MSC culture Overexpression Apoptosis↓ [56]

miR-210 — MSC culture Overexpression Apoptosis↓; survival↑ [88]

CXCL12 — MSC culture Overexpression Apoptosis↓; proliferation↑ [89]

MDK: midkine; Trx1: thioredoxin-1; PKCɛ: protein kinase C ɛ; IGF-1: insulin-like growth factor-1; Hsp27: exogenous heat shock protein 27; SOD2: manganese
superoxide dismutase; OH-1: heme oxygenase; CXCR4: CXC chemokine receptor 4; CAMKK1: calcium/calmodulin-dependent protein kinase kinase-
1;eNOS:endothelial nitric oxide synthases; ILK: integrin-linked kinase; Nrf2: nuclear factor- (erythroid-derived 2-) like 2; PHD2: prolyl hydroxylase domain
protein 2; GLP-1: glucagon-like peptide-1; SIRT1: silent mating type information regulation 2 homolog 1; FGF4: fibroblast growth factor 4; bFGF: basic
fibroblast growth factor; ecSOD: extracellular superoxide dismutase; RAMP1: receptor activity-modifying protein 1; PKG1α: protein kinase type 1α.
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3.4.3. Nanomaterials. Nanobiomaterial-incorporated stem
cell therapy for MI has aroused much attention in recent
years. The cardiac patch [142], nanofibrous scaffolds [143],
and self-assembling peptides [144] appear promising in
repairing the damaged myocardium. Cardiac patches consist
of native collagen or synthetic polymers with a nanofibrous
structure poly(lactide-co-epsilon caprolactone (PLCL)).
These patches function when they are placed on the epicar-
dial surface of the infarcted myocardium. PLCL is a highly
flexible polymer which can form nanofibrous scaffolds,
which significantly improves the survival rate of implanted
MSCs compared to MSCs by direct injection [145]. Bioin-
spired self-assembling peptide nanofibers can be used as a
cell carrier. MSCs that dealt with functional self-assembling
peptide nanofibers RAD/PRG or RAD/KLT showed
improved efficacy to treat MI [144]. Another study con-
structed poly(lactide-co-glycolide)-monomethoxy-poly-
(polyethylene glycol) nanoparticles to encapsulate melatonin

on adipose-derived MSCs and improve the efficiency of their
transplantation [146].

3.5. Modifying Transplantation Environment of the Host
Myocardium.Modifying the target tissue prior to MSC trans-
plantation to make the environment more conducive is a
supplement approach to donor cell pretreatment. C1q/tumor
necrosis factor-related protein-9 (CTRP9) is a novel prosur-
vival cardiokine with a significantly downregulated expres-
sion after MI, which is critical in maintaining a healthy
microenvironment facilitating stem cell engraftment in
infarcted myocardial tissue. Overexpression of CTRP9 in
the host myocardium significantly enhanced stem cell thera-
peutic efficacy [147].

The process of transporting MSCs to damaged tissue is
called homing, which is the result of the interaction of multi-
ple chemokines and their receptors. CXC chemokine recep-
tor 4 (CXCR4) and SDF-1 play a key role in the homing.

Table 3: Drug/cytokine pretreatment in MSC transplantation for treating MI.

Drug/cytokine Disease Model Dose/method Function Reference

Pioglitazone MI Rat 3mg/kg/day/2 weeks Cardiac function ↑ [90]

Atorvastatin MI Rat 1mM/24 h Neovascularization ↑ [91]

Sevoflurane MI Rat 3%/30min Activation of CSCs [16]

Tadalafil MI Rat 1 μmol/L/2 h Survival ↑; homing ↑ [92]

AER-ME MI Rat 200mg/kg/day/30 days Viability ↑; differentiation ↑ [93]

SRT1720 MI Rat 0.5 μM/24 h Survival ↑ [94]

Angiotensin II MI Rat 100 nM/24 h Infarct size ↓ [95]

Salvianolic acid B MI Rat 10 μM/30min Infarct size ↓ [96]

DNP MI Rat 0.25mM/20min Infarct size ↓; angiogenesis ↑ [97]

Edaravone MI Rat 500 μM Apoptosis ↓; migration ↑ [98]

Trimetazidine MI Rat 2.08mg/kg/day Apoptosis ↓;infarct size ↓ [99]

IGF-1 MI Rat 10 ng/mL/48 h Survival ↑; apoptosis ↓ [100]

IL-1β, TNF-α MI Rat 10 ng/mL/24 h Infarct size ↓ [101]

(EGb) 761 MI Rat 100mg/kg/day Antioxidant ↑; differentiation ↑ [102]

Tβ4 MI Rat 1 μg/mL/48 h Proliferation ↑; retention ↑; survival ↑ [103]

Tanshinone IIA MI Rat 0.2 μg/mL/72 h Migration ↑ [104]

Astragaloside IV MI Rat 0.4 μg/mL/72 h Migration ↑ [104]

Melatonin MI Mouse 5mM/24 h Infarct size ↓ [105]

Apicidin MI Mouse 3 μM/24 h Cardiac markers ↑ [106]

H2O2 MI Mouse 200 μmol/L/2 h Apoptosis ↓; angiogenesis ↑ [50]

PMSNs-siCCR2 MI Mouse 25 μg/g/cotransplantation Survival ↑; angiogenesis ↑ [107]

Aliskiren MI Mouse 15mg/kg/day Survival ↑; systolic function ↑ [108]

Atorvastatin MI Porcine 0.25mg/kg/day Infarct size ↓ [109]

TG-0054 MI Porcine 2.85mg/kg/day LV contractility ↑ [110]

GLP-1 MI Porcine 100 nM/48 h Apoptosis ↓; infarct size ↓ [111]

G-CSF MI Rabbit 20 u/kg/day Apoptosis ↓ [112]

Atorvastatin MI Rabbit 1.5mg/kg/day Myocardial remodeling ↓ [113]

Nicorandil — MSC culture 100 μM/1.5 h Apoptosis ↓ [114]

Geraniin — MSC culture 20 μM/24 h Efficacy ↑ [115]

Exendin-4 — MSC culture 0–20 nm/L/12 h Proliferation ↑ [116]

DNP: 2,4-dinitrophenol; GLP-1 :glucagon-like peptide-1; DMOG: dimethyloxalyl glycine; AER-ME: Ailanthus excelsa Roxb. methanolic extract; PMSNs:
siRNA-loaded photoluminescent mesoporous silicon nanoparticles. TG-0054: a novel CXCR4 antagonist; EGb 761: Ginkgo biloba extract; G-CSF:
granulocyte colony-stimulating factor; Tβ4: thymosin β4.
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MSCs are naturally capable of migrating to the injured area
in the myocardium, but this feature is impaired because
in vitro culture would induce the loss of the key homing
receptor CXCR4 and other cellular signals. Releasing the ade-
noviruses carrying SDF-1α to increase the local concentra-
tion of SDF-1α in the injured myocardium could increase
the homing of MSCs [90]. Combination of SDF-1 secretes
from the infarct myocardium, and CXCR4 in MSCs can
induce the migration of MSCs to the injured site [4]. Mean-
while, transfection of MSCs with CXCR4 overexpression vec-
tor increased the number of migrating MSCs by 3-fold [4].

3.6. Novel Approaches to Stimulate MSC Homing. Another
intriguing method to increase the homing efficiency of
MSCs is cell surface engineering, which is the temporary
modification of the cell surface. These temporary changes
help to improve the homing of MSCs without affecting
viability, proliferation, adhesion, or differentiation of the
transplanted cells [148]. In addition, the phage display

approaches were used to screen MI-specific peptide
sequences. In MI mouse models, four peptide sequences
(CRPPR, CRKDKC, KSTRKS, and CARSKNKDC4) were
identified. The number of homing MSCs was significantly
increased by injecting MSCs coated with MI-specific hom-
ing peptide in treating MI, indicating that the use of hom-
ing peptide-coated MSCs is a promising method for the
treatment of MI [149].

Except for molecular modification of MSCs, it has been
found that radiation, ultrasound, electric field, or magnetic
field can also promote homing.Within 4 hours ofMI, treating
the bone marrow with 804 nmwavelength and 1 J/cm2 energy
density can increase the survival, proliferation, and homing of
MSCs [150]. The magnetic targeting technique (MTT) is
based on the premagnetization of MSCs and then MSCs
move in vivo with the aid of a magnetic field [151]. MTT
allows a wider range of transplanted cells to reach the target
tissue, providing a more efficient and sustained medium
release without increasing the number of MSCs [152].
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Figure 1: The procedures of MSC-based therapy, including donor selection, cell expansion, dosage, injection routes, homing, and target tissue
modification. MSCs: mesenchymal stem cells.
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4. Conclusion and Future Perspectives

Many strategies were developed to modify the MSCs as
well as the transplantation microenvironment, which
improve the survival, retention, homing, multidifferentia-
tion capacity, and paracrine factors, thereby enhancing
the outcome of MSC-based therapy against MI
(Figure 1). The combination of certain methods may exert
synergistic effects to improve the efficacy of MSC trans-
plantation. Clinical trials have shown that MSC transplan-
tation is feasible and safe for MI, and it does not increase
the risk of adverse events. Although some approaches such
as supplement with rosuvastatin are clinically safe [122],
whether other methods to improve the MSC functions
are safe when applying to patients is currently uncertain.
Further optimizing these methods to achieve clinical safety
and effectiveness is of great significance for stem cell
therapy.
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