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Abstract: The efficacy of antitumor radiotherapy can be enhanced by utilizing nonradioactive
nanoparticles that emit secondary radiation when activated by a primary beam. They consist of small
volumes of a radiosensitizing substance embedded within a polymer layer, which is coated with
tumor-specific antibodies. The efficiency of nanosensitizers relies on their successful delivery to the
tumor, which depends on their size. Increasing their size leads to a higher concentration of active
substance; however, it hinders the penetration of nanosensitizers through tumor capillaries, slows
down their movement through the tissue, and accelerates their clearance. In this study, we present a
mathematical model of tumor growth and radiotherapy with the use of intravenously administered
tumor-specific nanosensitizers. Our findings indicate that their optimal size for achieving maximum
tumor radiosensitization following a single injection of their fixed total volume depends on the
permeability of the tumor capillaries. Considering physiologically plausible spectra of capillary pore
radii, with a nanoparticle polymer layer width of 7 nm, the optimal radius of nanoparticles falls
within the range of 13–17 nm. The upper value is attained when considering an extreme spectrum of
capillary pores.

Keywords: mathematical oncology; numerical optimization; radiosensitizers; nanoparticles

1. Introduction

Improving the efficacy of antitumor therapy requires not only the introduction of new
technologies into clinical practice, but also the rationalization of the use of implemented
agents and techniques. In practice, solving the problem of optimizing any type of therapy
formally requires an enormous number of clinical trials, which is physically unfeasible and
associated with insurmountable ethical difficulties, since the result of changing a clinical
protocol may well reduce the overall treatment efficacy. Mathematical modeling, in which
a tumor and its microenvironment are represented as a single dynamic system, can be
of great help in solving complex optimization problems of this kind. This approach can
narrow down the range of potentially effective treatment regimens that need to be tested
in practice. Mathematical oncology is currently gaining popularity and has already led to
some positive results in both preclinical and clinical settings [1]. Ideally, the corresponding
optimization tasks have to imply the enormous complexity and dramatic variability of
cancers, their constant evolution, and the impossibility of performing reliable estimations
of all the related parameters during an ongoing treatment. That drastically distinguishes
optimization tasks in mathematical oncology from the optimization tasks in exact sciences
and computer science [2,3].

The two most common therapeutic methods in oncology are surgery and radiotherapy.
Given the widespread use of radiotherapy and its applicability to the vast majority of
tumors, radiobiologists have suggested that optimizing radiotherapy is a more effective
way than developing expensive tumor-specific drugs to achieve a comparable increase in
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the worldwide cure rate for cancer [4]. One promising technology in this context is the
use of nonradioactive nanosensitizers that emit secondary radiation when activated by
the primary beam. When accumulated in the tumor, nanosensitizers allow localizing and
increasing the effective dose of radiation directly in the malignant tissue. The overall efficacy
of the entire course of radiotherapy with nanosensitizers should depend significantly on a
number of factors, including the schedule of their administration and the distribution of
irradiation both in time (fractionation) and space (dose painting). Moreover, the crucial
factor determining the success of treatment is the efficiency of the delivery of the active
radiosensitizing agent to the tumor. In order to increase the therapy efficacy and minimize
its side effects, a rational approach is to use tumor-specific nanoparticles, each of which
represents a small volume of the active substance covered by a layer of polymers with
specific antibodies embedded in it.

However, the use of such nanoparticles is associated with certain difficulties in their
delivery to the tumor when injected intravenously into the body. The inflow of large
particles into the tumor, in particular, is impeded by the necessity of their penetration
through the small pores in the capillary walls (this factor is somewhat facilitated but not
eliminated by the proangiogenic substances produced by the tumor) [5], the localization of
newly formed tumor capillaries, which are mostly not at the depth of the tumor, but at its
interface with normal tissue [6], and the increased interstitial fluid pressure in the tumor,
which limits the advective inflow of nanoparticles from the capillaries and leads to washout
of fluid from the tumor into surrounding tissue [7]. Defining the appropriate size for the
production of nanosensitizers can be facilitated by mathematical modeling.

In order to create the model that provides the quantitative answer for the optimal
size of nanoparticles, a reasonable approach is to account for all the known physiological
processes that can eventually influence the distribution of nanoparticles within the tumor.
Crucially, the process and peculiarities of tumor angiogenesis must be considered in a
detailed and physiologically sound manner. Interstitial fluid dynamics has to be accounted
for, as fluid transports nanoparticles from blood to tumor, redistributes them through
the tissue, and carries them away from the tissue into the lymphatic system. The correct
method for modeling the dynamics of interstitial fluid is to simultaneously consider the
stress arising in the solid phase of the tissue, as it is closely related to fluid pressure—in
particular, the deformation of the solid component of the tissue affects fluid flow, while
fluid outflow from the tumor leads to its shrinking and solid stress relaxation.

At present, mathematical modeling of tumor growth taking into account the biome-
chanical aspects is an unpopular area of research, in particular, because of the relatively
recent recognition of the significance of their influence on tumor growth. The first relevant
experimental study was conducted in 1997 [8], and the first corresponding works on math-
ematical modeling appeared in 2003 [9,10]. In these, tumor tissue is treated as a fluid-like
medium or as an anisotropic linear elastic medium, but the interstitial fluid is not taken into
account. Despite the relative simplicity of such approaches, their use makes it possible to
reproduce key experimental observations, in particular, the effect of maximum tumor size
reduction with an increase in external pressure. More sophisticated approaches, adapted
from continuum mechanics and based on the multiplicative decomposition of the tissue
gradient deformation tensor have now emerged [11,12]. The components of decomposition
correspond to tumor proliferation described as the stretching of tumor tissue, to the elastic
response of the tumor and normal tissue, and, in some works, to the formation of residual
stress in the tumor [13] and to the reorganization of intercellular links in response to defor-
mation [14,15]. However, such approaches are characterized by significant computational
complexity and, as a consequence, are inapplicable in practice for solving optimization
problems that require a large number of simulations under variation of multiple model
parameters. Moreover, apparently due to their computational complexity, as far as we know,
mathematical models of tumor growth taking into account biomechanical aspects have not
yet been used for the explicit modeling of antitumor therapy as regards reproducing the
reaction of the tumor and its microenvironment to therapeutic action. This is particularly
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relevant to the capillary network. In addition, there exist the works devoted to modeling
the distribution of a therapeutic agent in the tumor after its injection into the blood, which
is a much less computationally expensive task [16,17].

Based on our models that were previously used to study various aspects of tumor
growth and treatment [18–20] and based on the elements of ideological approaches used in
the above articles, we developed a mathematical model of tumor growth and its radiother-
apy with the use of intravenously administered nanosensitizers. We solved the problem
of finding the optimal size of nanoparticles to achieve maximum radiosensitization of the
tumor as the result of a single injection of a given total volume of particles. The resulting
model is based on the use of essential simplifications applicable to the function of the defor-
mation of a set of interconnected cells when considering a spherically symmetric problem.
These simplifications should make it practically possible to use the developed model to
further solve the problems of the spatiotemporal optimization of antitumor radiotherapy
using radiosensitizing nanoparticles, and as a basis for solving other similar problems.

The computational code of the model was implemented in C++ and can be found in
the Supplementary Materials.

2. Results
2.1. Mathematical Model

The developed mathematical model is presented in detail in Section 4. Here, the main
information is outlined.

The block scheme of the main model interactions is presented in Figure 1. It depicts 11
spatially distributed variables of the model. Three of them correspond to different types
of tumor cells: proliferating, quiescent and damaged. Normal cells and interstitial fluid
are also present in the tissue section under consideration. Two types of capillaries are
considered: normal and abnormal. The latter have altered properties due to the influence
of vascular endothelial growth factor, VEGF. Glucose was chosen as the key nutrient since
it is the essential element for biosynthesis and the key energy metabolite for tumor cells.
The nanoparticles in the tissue exist in both a free state and a tumor cell-bound state. There
is also one time-dependent variable in the model, which determines the concentration
of nanoparticles in the blood. Its instantaneous increase corresponds to the injection of
particles into the blood. Another external action corresponds to instantaneous irradiation,
resulting in the transition of tumor cells to a damaged state.

The model considers the spherically symmetric growth of a noninvasive tumor in
normal tissue. The tumor and normal tissue consist of two phases: the cells, forming a solid
porous fraction, and the intercellular fluid, capable of flowing through the pores of the solid
fraction. The tissue is assumed to be saturated and incompressible, that is, the total density
of cells and fluid is constant and, for convenience, is normalized to unity. Cell proliferation
happens with the use of intercellular fluid (and the implicitly implied substances dissolved
in it) as a source of mass, and cell death is reflected by the reverse transition. The rate of
cell proliferation depends on the rate at which they consume glucose, and on the local
solid stress. When glucose levels drop significantly, tumor cells switch to a quiescent state,
and this transition is reversible. Cell death due to the lack of nutrients for simplicity is
not considered in this paper. Fluid flows from the capillaries by filtration through their
pores and drains into the lymphatic system, which is not explicitly considered, but it is
assumed that the density of the lymphatic capillaries is proportional to that of normal
cells. The intercellular fluid flows through the porous solid phase according to Darcy’s
law, assuming that all external forces (e.g., gravity) can be neglected, that the flow of fluid
through the pores is slow enough so that inertial effects become negligible, and that the
solid phase is uniformly permeable. For simplicity, it is assumed that the solid stress is
isotropic, that is, it acts with equal magnitude in all directions. Thus, the solid phase
behaves as an elastic fluid substance. It then follows from the theory of porous media
that the pressure gradients of liquid and solid stress are equal to each other with opposite
sign [21].
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Figure 1. Scheme of the main interactions of the model governed by Equation (1). Green arrows
denote stimulating interactions, red lines show inhibiting interactions, white arrows correspond to
transitions of variables.

The solid stress function, illustrated in Figure 2, is based on a rather general assumption
that the volume fraction of cells is related to the average distance between them [22]. It is
a smooth function that is qualitatively consistent with experimental observations [23]. It
is assumed that when the fraction of cells s = s0 is normal, cell interactions result in zero
solid stress. As the cells become closer together, s > s0, there is a repulsive interaction,
σ > 0. As the distance between the cells increases, s < s0, an attractive interaction emerges.
At first, it intensifies and then it gradually weakens due to successive ruptures of individual
intercellular contacts. The stress becomes zero at s = ss < s0.

σ, kPa
solid stress

s
0 

s
s 

 s 

volumetric 

cell fraction

 

re
p
u
ls

io
n

attra
ction

cells are

densely packed

cells are

loosely packed

Figure 2. The dependence of solid stress σ on the cell fraction s used in the model, governed by
Equation (1). The parameter values are based on their basic set provided in Table 1.

The method of considering tumor angiogenesis is based on the approach that we
introduced in the work [18]. VEGF is produced by quiescent cells under metabolic stress,
it diffuses through the tissue, nonspecifically degrades, and binds to endothelial cells,
affecting capillary properties and triggering the process of angiogenesis. The model uses
two variables to describe the capillary network, which are introduced separately to account
for differences in permeability of preexisting capillaries and capillaries affected by VEGF.
These variables have a physical meaning of capillary surface density, which is used to
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facilitate the description of the transvascular transport of substances. It is assumed that
capillaries lose their functionality and degrade within the tumor due to their rupture, which
is caused by their displacement and chemical factors [24]. The action of VEGF on capillaries
leads to angiogenesis, which is described by the formation of abnormal capillaries based
on both types of existing capillaries, and to the “denormalization” of capillaries, which is
introduced into the model to reflect the increase in capillary permeability under the action
of VEGF. Both actions are modeled by the terms of the Michaelis–Menten type, as a result of
which the rates of the corresponding processes vanish in the absence of VEGF and approach
maximum values when it is abundant. At low VEGF concentrations, the capillaries are
normalized and the opposite transition occurs. The overall density of the capillary network
is limited from above. In reality, while capillaries are formed during angiogenesis, they
sprout in the direction of increasing VEGF concentration, and in the model, this is reflected
by the active movement of abnormal capillaries. In addition, the capillaries move together
with the advective flow of the solid phase of the tissue.

Glucose flows from the capillaries into the tissue, diffuses through it, and is consumed
by the cells, with proliferating tumor cells consuming it much faster than others. Since the
vast majority of glucose enters the tissue by diffusion through the capillary walls [5], only
this type of transvascular transport is considered.

The model considers spherical radiosensitizing nanoparticles of radius ξ, covered
by a polymer layer of width ψ < ξ. It is assumed that under this layer, there is active
substance, which affects the efficiency of irradiation when the particles bind to tumor cells.
For simplicity, it is assumed that the local concentration of radiosensitizing agent in the
particles bound to cells leads to a linear increase in the radiation dose. The damage to cells
as a result of radiotherapy is described by a standard linear quadratic model [4].

The particle size ξ is varied in this work to determine their optimal size for the
maximum radiosensitization of the tumor. The same total volume of nanoparticles is
injected into the blood; hence, the larger the particles, the larger the total fraction of the
active substance in them. The size of the particles also affects their dynamics, as determined
by Equation (3).

Firstly, large particles have a lower diffusion coefficient, which affects both their
movement through tissue and the diffusion component of their inflow from capillaries.
Secondly, nanoparticles are eliminated from the blood with a characteristic time in the order
of hours (due to the filtration by the liver), with large particles being eliminated from the
body faster in accordance with experimental observations [25]. The coefficient of binding
to tumor cells is considered to be independent of the particle size. Thirdly, nanoparticle
size influences their diffusive permeability and the fraction of the pore cross-sectional area
available for them in the walls of capillaries of different types, as Figure 3 illustrates.

The resulting capillary permeability for nanoparticles is determined by the convolution
of certain functions on the spectra of pores in capillaries walls. For advective inflow, it is
a function related to the steric exclusion, which characterizes the fact that only a certain
fraction of the pore cross-sectional area is available for particle movement. The function of
diffusive inflow takes this into account, and also the diffusion coefficient of nanoparticles
and the hydrodynamic resistance that they encounter as they move through the pores,
which is approximated by the experimentally derived Renkin equation [5]. The total
number of pores in capillaries of different types is matched to the experimental data
on capillary permeability for glucose in the absence of VEGF and under its influence.
From these estimations, it reasonably follows that the larger the particles, the worse they
pass through any capillaries, but angiogenic capillaries are less restrictive in limiting
their inflow.
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Figure 3. Left: normalized pore spectra of capillaries PSn(x), PSa(x), and PSb(x) used in this work
and governed by Equation (3). Right: resulting values of the diffusive permeability Pu

y (ξ) and the
fraction of the pore cross-sectional area γu

y (ξ) available for nanoparticles in the walls of capillaries of
different types.

2.2. Free Growth and Irradiation of Tumor

At the very beginning of the model simulation, all tumor cells proliferate while they
actively consume glucose, and within a few days, its deficit is established inside the tumor,
stimulating the transition of cells to a quiescent state. In this state, they begin to produce
the proangiogenic factor VEGF. It diffuses through the tissue, binds with capillaries, and
leads to two key effects. First, the existing capillaries transit from a normal state to an
abnormal state with increased permeability, and second, new abnormal capillaries are
formed. The red dashed line in Figure 4 shows the sum of both types of capillaries.
However, within the tumor, the capillaries are destroyed, so the lack of glucose in the
tumor core persists, in contrast to its outer layer. This is qualitatively consistent with the
experimental observations on the location of functional capillaries in sufficiently large
tumors [6].

day 0
interstitial fluid

normal cells

glucose

capillaries

tumor

mm

day 5

capillaries

tumor

quiescent

cells proliferating

cells

abnormal

normal

day 51

VEGF

fluid

 pressure

fraction of potentailly

damaged cells

Figure 4. Distributions of model variables obtained from numerical simulations of free tumor growth,
Equation (1). Values of the variables for glucose and capillaries are renormalized for better visualization.
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Increased capillary permeability also leads to enhanced fluid inflow into the tissue,
but in normal tissue, the lymphatic system drains excess fluid effectively, so its level there
remains almost unchanged. Inside the tumor, there are no lymphatic capillaries, so the
fluid level in the tumor increases, as does its pressure. This is highlighted in the right figure
where the lymphatic capillaries are absent. Thus, the fluid pressure inside the tumor is
elevated, and it is normalized at the border with normal tissue. This also corresponds well
with experimental data and has been previously reproduced in mathematical models [7].

The lower figure shows the distribution of the local fraction of cells that wold be
affected by radiation if it is administered at the designated moment. Since nonproliferating
tumor cells are less sensitive to radiation, a larger proportion of cells would survive deep
within the tumor.

Figure 5 demonstrates the result of tumor irradiation. It leads to the formation of
a population of damaged cells, which further die, from the point of view of the model
turning into a fluid flowing out of the tumor against its own pressure gradient. As a result,
the tumor slightly shrinks at first, but in the absence of further irradiation, it recovers
within a few hours and continues to grow.

hour 0

tumor

mm

quiescent

cells

proliferating

cells

damaged

cells

hour 72

Figure 5. Distributions of model variables obtained by numerical simulations after irradiation of
tumor on day 51 of its growth. Styles of the lines correspond to that in Figure 4.

2.3. Injection of Nanoparticles

Figure 6 demonstrates the result of injection of nanoparticles into the blood at the
same moment in the absence of irradiation. In the model, the introduction of nanoparticles
is reflected by a sharp increase in their concentration in the blood, which then gradually
decreases due to the particles clearance from the body. As long as this concentration is
high, the terms of nanoparticle inflow into the tissue are acting actively. The particles
move through the tissue by means of both diffusion and advection, the latter, in particular,
causing them to be partially washed out from the tumor into the normal tissue. Some
of the particles are bound to tumor cells, becoming immobilized, i.e., they stop moving
relative to them. The presence of bound particles increases the radiosensitivity of the cells,
and therefore, the tumor radiosensitivity grows during the first hours after the injection
of nanoparticles. However, soon, the terms of the outflow of free nanoparticles from the
tissue, through the blood and the lymphatic system, also become efficient. After a time of
about two or three days, the tumor boundary is occupied by the newborn cells to which
the particles have not had time to bind, so the radiosensitivity of the outermost cells starts
decreasing. In addition, the cells to which the nanoparticles have bound become quiescent
as they move away from the tumor border due to the drop in the local glucose level,
and their radiosensitivity also decreases as a consequence of it.
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hour 0 hour 56

mm

fraction of potentially

damaged cells

free

nanoparticles

bound

nanoparticles

Figure 6. Distributions of model variables obtained by numerical simulations after the injection of
nanoparticles into the blood (ξ = 20) on day 51 of tumor growth. Styles of the lines correspond to
that in Figure 4.

2.4. Optimization of Nanoparticle Size

Figure 7 demonstrates the dynamics of the total amount of bound active substance
and the fraction of potentially damaged tumor cells as the size of injected nanoparticles
varies (they are also injected on day 51 of tumor growth), with a pore spectrum of abnormal
capillaries PSa(x), defined in Equation (3). According to the description of tumor dynamics
and the nanoparticle distribution given above, when enough nanoparticles penetrate
the tumor, its radiosensitivity at first increases, and then gradually decreases. However,
as follows from the graphs, at the particle sizes of 30 nm and higher, the increase in
radiotherapy efficacy in this case is negligible. In general, 30-nanometer particles are able
to bind to the tumor when administered in a two orders of magnitude lower amount of
active substance than 10- and 15-nanometer particles.

Relative amount of bound active substance

within the tumor

Fraction of potentially

damaged tumor cells

Maximum in time Maximum in time

hours hours

nanoparticles radius, nm nanoparticles radius, nm

10 nm

15 nm

20 nm

30 nm

40 nm

10 nm

15 nm

20 m

30 nm

40 nm

13 nm
0.027 0.022

Figure 7. Dynamics of the bound active substance and the fraction of potentially damaged tumor
cells when nanoparticles of varying size are injected at day 51 of tumor growth under the abnormal
capillary pore spectrum PSa(x), defined in Equation (3).

The results suggest that for the maximal radiosensitization of the tumor, the particles
should be relatively small, but not too small, otherwise they will contain too little of the
active substance. Given the selected abnormal capillary pore spectrum and other selected
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model parameters, the maximum radiosensitization is achieved for a nanoparticle radius
of 13 nm, with its variation by two nanometers resulting in the reduction in the maximum
fraction of potentially damaged cells by no more than three percent.

The pore spectrum of abnormal capillaries is obviously a factor that significantly
influences this result, and the model calculations allow us to investigate to what extent an
increase in capillary permeability can shift the optimal nanoparticle size. Figure 8 shows
similar results for more permeable abnormal capillaries, with a pore spectrum PSb(x).
In this case, 50-nanometer particles allow as much active agent to accumulate inside the
tumor as 30-nanometer particles do for the previous spectrum PSa(x). But such large
particles still do not result in any notable increase in irradiation efficacy. The important
conclusion is that, while the use of large, e.g., 30-nanometer particles, becomes noticeably
more effective when the pore spectrum is changed, the efficiency also increases for smaller
particles. As a result, the optimal particle radius increases, but not significantly, to 15 nm.

Relative amount of bound active substance

within the tumor

Fraction of potentially

damaged tumor cells

Maximum in time Maximum in time

hours hours

nanoparticles radius, nm nanoparticles radius, nm

10 nm

15 nm

20 nm

30 nm

40 nm

10 nm

15 nm

20 nm

30 nm

40 nm

15 nm

0.013 0.015

50 nm

50 nm

Figure 8. Dynamics of the bound active substance and the fraction of potentially damaged tumor
cells when nanoparticles of varying size are injected at day 51 of tumor growth under the abnormal
capillary pore spectrum PSb(x), defined in Equation (3).

It is not clear from the literature data to what extent the pore spectrum can be shifted
in a physiologically reasonable way. Figure 9 demonstrates the simulation results in the
very extreme case of a uniform pore spectrum of abnormal capillaries PSc(x) = 1. In this
setting, a pore of 100 nm radius is met in the abnormal capillary wall as often as a pore of
1 nm radius, and as a pore with any other radius between these values. Even in this case,
the optimum particle radius does not shift much and becomes equal to 17 nm. This suggests
that, whatever physiologically reasonable properties of abnormal capillaries are selected
in the model, the optimal particle radius of 17 nm is a limiting value, at least if the other
values of model parameters are maintained. Moreover, the graph of maximum irradiation
efficacy with respect to varying particle size becomes more flat, i.e., a deviation of 2 nm
already has a weaker effect on the optimal result, which is explained by the approaching
complete eradication of tumor cells at the tumor border.

It is worth noting that, if the tumor stimulates angiogenesis weakly, the optimal
particle size is, of course, reduced. Simulations under the complete absence of angiogenesis,
not shown here, lead to the formally optimal nanoparticle radius of 10 nm, but then, in any
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case, so few particles penetrate into the tumor that the increase in radiosensitivity due to
their action is negligible.

Relative amount of bound active substance

within the tumor

Fraction of potentially

damaged tumor cells

Maximum in time Maximum in time

hours hours

nanoparticles radius, nm nanoparticles radius, nm

10 nm

15 nm

20 nm

30 nm

40 nm

10 nm

15 nm

20 nm

30 nm

40 nm

17 nm

0.006 0.007

50 nm 50 nm

Figure 9. Dynamics of the bound active agent and the fraction of potentially damaged tumor cells
when injecting nanoparticles of varying size at day 51 of tumor growth with a uniform pore spectrum
of abnormal capillaries.

3. Discussion

The results of mathematical modeling show that the optimal size of nanoparticles for
the maximum radiosensitization of the tumor during a single intravenous injection of a
given total volume of nanoparticles depends on the degree of permeability of capillaries
formed as a result of tumor angiogenesis and affected by proangiogenic factors produced
by tumor cells. Given the physiologically reasonable values of the pore spectrum of such
capillaries, the width of the polymer layer of nanoparticles surrounding the active substance
of 7 nm, and physiologically reasonable other values of mathematical model parameters,
the optimal radius of nanoparticles lies between 13 and 17 nm, with the upper value
achieved using a very extreme pore spectrum of tumor capillaries, in which pores with
any radii in the range of 1–100 nm are equally frequent. Reducing the size of nanoparticles
negatively affects the efficacy of irradiation due to the decrease in the volume fraction of
the active substance in them. Increasing the size of nanoparticles has a negative effect on
the irradiation efficacy primarily due to the decrease in capillary permeability for them
under any capillary pore spectrum, and to a lesser extent, due to the accelerated removal of
nanoparticles from the body and due to the decrease in their diffusion coefficient, which
complicates their penetration into the tumor from capillaries located predominantly at its
border and outside.

The developed model will be used in the future to solve the problem of the spa-
tiotemporal optimization of proton therapy using radiosensitizing nanoparticles. The low
computational complexity of the implemented approach will allow hypotheses to be formed
on therapy optimization, which is relevant in a wide range of tumor-specific and patient-
specific parameters. The simplifications used during model development should not
compromise the results, since the potential practical value lies primarily in the qualitative
trends of changes in treatment settings that lead to their optimization.
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4. Materials and Methods
4.1. Model Equations

The system of Equation (1) defines the dynamics of the model variables.

proliferating
tumor cells:

∂np

∂t
=

proliferation︷ ︸︸ ︷
Bnp ·Θp(σ)

g
g + g∗

transition︷ ︸︸ ︷
−B · [1−Θtr(g)]np + B ·Θtr(g)nq
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− 1

r2
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∂r
;
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fluid:
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∂t

=

inflow︷ ︸︸ ︷
[Lncn + Laca] · [pc − p]

outflow︷ ︸︸ ︷
−Llh[p− pl ]

cell death︷ ︸︸ ︷
+Mm

cell proliferation︷ ︸︸ ︷
−Bnp ·Θp(σ)

g
g + g∗

advection︷ ︸︸ ︷
− 1

r2

∂(I f f r2)

∂r
;

VEGF:
∂v
∂t

=

secretion︷︸︸︷
Svnq

internalization︷ ︸︸ ︷
−ω[cn + ca]v

degradation︷ ︸︸ ︷
−Mvv

diffusion︷ ︸︸ ︷
+Dv∆v;

normal
capillaries:

∂cn

∂t
=

degradation︷ ︸︸ ︷
−Mc[nq + m]cn

normalization︷ ︸︸ ︷
+

Vnv∗

v + v∗
ca

denormalization︷ ︸︸ ︷
− Vdv

v + v∗
cn

advection︷ ︸︸ ︷
− 1

r2
∂(Iscnr2)

∂r
;

abnormal
capillaries:

∂ca

∂t
=

degradation︷ ︸︸ ︷
−Mc[np + kM{nq + m}]ca

angiogenesis︷ ︸︸ ︷
+

Rv
v + v∗

[cn + ca][1−
cn + ca

cmax
]

normalization︷ ︸︸ ︷
− Vnv∗

v + v∗
ca

denormalization︷ ︸︸ ︷
+

Vdv
v + v∗

cn

active motion︷ ︸︸ ︷
+

Dc

r2
∂2(gr2)

∂r2

advection︷ ︸︸ ︷
− 1

r2
∂(Iscar2)

∂r
;

glucose:
∂g
∂t

=

inflow︷ ︸︸ ︷
[Pg

n cn + Pg
a ca] · [1− g]

consumption︷ ︸︸ ︷
−[{νgB}npΘp(σ) + Qg

h{nq + h + np[1−Θp(σ)]}]
g

g + g∗

diffusion︷ ︸︸ ︷
+

Dg

r2
∂2(gr2)

∂r2 ;

free
nanoparticles:

∂u f

∂t
=

advective inflow/outflow︷ ︸︸ ︷
{[Lnγu

n(ξ)cn + Laγu
a (ξ)ca] · [pc − p]}[ubl ·Θ(pc − p) + u f ·Θ(p− pc)]

diffusive inflow/outflow︷ ︸︸ ︷
+[Pu

n (ξ)cn + Pu
a (ξ)ca] · [ubl − u f ]

binding︷ ︸︸ ︷
−κ[np + nq]u f

lymphatic outflow︷ ︸︸ ︷
−Llh[p− pl ]u f

diffusion︷ ︸︸ ︷
+

Du(ξ)

r2
∂2(gr2)

∂r2

advection︷ ︸︸ ︷
− 1

r2

∂(I f ur2)

∂r
;

bound
nanoparticles:

∂ub
∂t

=

binding︷ ︸︸ ︷
κ[np + nq]u f

advection︷ ︸︸ ︷
− 1

r2
∂(Isur2)

∂r
;

nanoparticles
in blood:

∂ubl
∂t

=

injection︷ ︸︸ ︷
δ(t− tu)

clearance︷ ︸︸ ︷
−C(ξ)ubl ;

solid stress: σ ≡ σ(s) = k
[s− s0][s− ss]2

[1− s]0.1 ·Θ(s− ss);

irradiation: Rx = Γx(ub(r, t)) · δ(t− tR) · nx(r, t), x = p, q;

where s + f = 1, s = np + nq + h + m,
Θp(σ) = [1 + tanh(ε{σp − σ})]/2, Θtr(g) = [1 + tanh(ε{g− g∗})]/2,

f (I f − Is) = −K
∂p
∂r

,
∂p
∂r

= −∂σ

∂r
,

Γx(ub(r, t)) = 1− exp(−ky{αDe f f + βD2
e f f }), y = p, q,

De f f = {Kuub[{ξ − ψ}/ξ]3}D.

(1)
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There are two separate advective motions in the model: I f = I f (r, t) denotes the absolute
advective velocity of the fluid, and Ic = Ic(r, t) denotes the advective velocity of the solid
phase. When the equations of dynamics of all cells and fluid are added together, the resulting
left-hand side becomes zero as a derivative of the constant, and most of the kinetic terms are
reduced due to the mass conservation. This leads to implicit Equation (2) for the solid phase
velocity, the solution of which depends on boundary conditions, which will be defined further.

∂

∂r
([Is − K

∂p
∂r

]r2) = {[Lncn + Laca] · [pc − p]− Llh[p− pl ]}r2. (2)

It follows from the first equation that the tumor volume increase caused by the displace-
ment of solid tissue elements ultimately occurs due to the inflow of fluid from capillaries
into the tumor mass. The movement of the fluid from the tumor to the normal tissue along
the liquid pressure gradient, on the contrary, stimulates tumor shrinkage.

The dynamics of nanoparticles depends on their size as follows.

Diffusion in tissue: Du(ξ) = D0
u/ξ; clearance from blood: Cu(ξ) = C0

uξ;

fraction of available pore cross-section area:
γu

y (ξ) =
∫ X

0 [πx2 · A(ξ, x) · PSy]dx/
∫ X

0 [πx2 · PSy]dx, y = n, a;

diffusive permeability:
Pu

y (ξ) =
∫ X

0 [πx2 · P(ξ, x) · PSy(x)/Ny]dx, y = n, a;

where A(ξ, x) = Θ(x− ξ) · (x− ξ)2/x2; P(ξ, x) = A(ξ, x) · Du(ξ) · R(ξ, x);
PSn(x) = x3.7exp(−x0.9); PSa(x) = x11exp(−x0.85); PSb(x) = x13exp(−x0.8);
R(ξ, x) = 1− 2.1(ξ/x) + 2.09(ξ/x)3 − 0.95(ξ/x)5;
Ny =

∫ X
0 [πx2 · P(ξg, x) · PSy(x)]dx/Pg

y .

(3)

4.2. Parameters

The model contains several dozen parameters, which, if possible, were estimated from
the the results of experiments of a different nature or were selected in order to reflect known
features of tumor growth. A basic set of parameters is provided in Table 1, where the following
normalization parameters are used to derive their model values: t̂ = 1 h for time; r̂ = 10−2 cm
for length (except for nanoparticle and pore sizes); n̂ = 3× 108 cells/mL for maximum cell
density; v̂ = 10−11 mol/mL for VEGF concentration; ĉ = 100 cm2/cm3 for capillary surface
area density (based on its average value for human muscle [5], and the rate of glucose consump-
tion by normal cells also corresponds to this tissue); ĝ = 1 mg/mL for glucose concentration;
D̂ = 1 Gy for irradiation dose; ξ̂ = 1 nm for nanoparticle and pore size. The normalization
factor for nanoparticle concentration is not used explicitly because it is considered to be formally
included as a linear multiplier in the factor of dose amplification by the active substance Ku.

The tumor cell proliferation rate and glucose consumption rates were estimated from
the experimental data of the work [26], from which the maximum density of tumor cells n̂
was also taken. The rates of these processes were proportionally reduced in order to be
more consistent with a less malignant type of tumor, which is justified by the fact that
tumor cell invasion is not considered in the model; hence, the malignancy of the tumor in
question is not high. The value of critical stress for cell proliferation σcr was estimated by
extrapolating data from the work [22], in which a series of experiments were performed
on the growth of tumor spheroids subjected to varying external mechanical pressures.
The solid stress coefficient was roughly estimated so that the maximum adhesion stress
was comparable to the critical stress in absolute values. The smoothing parameter of
the Heaviside function was chosen to be large enough to approximate the corresponding
functions as step functions, but still to avoid the numerical artifacts. The death rate of
damaged cells was equated with the maximum rate of cell proliferation, based on the fact
that many cells damaged by radiation die when attempting the next mitosis [4].
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Table 1. Model parameters.

Parameter Description Value Based on

Cells:

B maximum rate of cell proliferation 0.01 [26]
σp critical stress for cell proliferation 15 [22]
ε smoothing parameter of Heaviside function 500 see text
M the rate of death of damaged cells 0.01 see text

Stress:

k solid stress coefficient 500 see text
ss minimum fraction of interacting cells 0.3 [27]
s0 initial fraction of cells 0.8 [27]

Interstitial fluid:

Ln hydraulic conductivity of normal capillaries 0.1 [13]
La hydraulic conductivity of abnormal capillaries 0.22 see text
pc fluid pressure in capillaries 4 [13]
Ll hydraulic conductivity of lymphatic capillaries 1300 [13]
pl lymph pressure 0 [13]
K tissue hydraulic conductivity 0.1 [28]

VEGF:

Sv secretion rate 1 [29]
ω internalization rate 1 [30]

Mv degradation rate 0.01 [31]
Dv diffusion coefficient 21 [31]

Capillaries:

R maximum rate of angiogenesis 0.008 [32]
cmax maximum surface area density 5 [32]
Mc characteristic degradation rate 0.03 [6,32]
kM coefficient of degradation in the tumor core 2 [6,32]
Vn normalization rate 0.1 [33]
Vd denormalization rate 0.1 [33]
v∗ Michaelis constant for VEGF action 0.001 see text
Dc coefficient of active movement 0.03 [6,32]
X maximum pore radius 100 see text

Glucose:

g∗ Michaelis constant for consumption 0.01 [34]
Pg

n permeability of normal capillaries 4 [35]
Pg

a permeability of abnormal capillaries 10 [18]
νg parameter of consumption by proliferating cells 1200 [26]
Qg

h rate of consumption by normal tissue 0.5 [36]
Dg diffusion coefficient 100 [37]
ξg hydrodynamic radius 0.36 [38]

Irradiation:

α linear parameter of cell radiosensitivity 0.1 see text
β quadratic parameter of cell radiosensitivity 0.01 [4]

kp, kq coefficients for proliferating and quiescent cells 1, 0.2 [39]
D irradiation dose 2 see text
Ku factor of dose enhancement by radiosensitizer 100 see text

Nanoparticles:

κ coefficient of binding with tumor cells 0.5 see text
ψ width of polymer coating 7 see text

D0
u parameter for diffusion coefficient 65 [18]

C0
u parameter for clearance rate 0.003 see text



Int. J. Mol. Sci. 2023, 24, 11806 14 of 17

The basic value of tissue hydraulic conductivity is taken from the middle part of the
range of experimental measurements performed on tumors grown in mice in the work [28]
(when considering it on a logarithmic scale). The hydraulic conductivity of abnormal
capillaries refers to that of normal capillaries as the ratio of the fractions of their surface
areas occupied by pores, which is estimated from Equation (3).

The method of capillary network description via spatially distributed variables im-
poses certain difficulties on the estimation of parameter values for capillary dynamics,
which, however, in practice, strongly depend on a huge number of factors and will differ
for different tumor cell lines, host tissues, host organism health states, and will differ
from organism to organism. Therefore, we limit ourselves to rough estimates so that the
model behavior of the capillary network adequately approximates the general features
of the structure and dynamics of the functional capillary network in a tumor during its
growth. Capillary density in various mouse tumor models increases three- to six-fold
over several days [32], which determines the order of the maximum angiogenesis rate and
maximum capillary surface area density. The high-resolution imaging in [6] presents a
reconstruction of the microcirculatory bed of a 280 mm3 tumor, which shows that there
are very few functioning capillaries within its core. Along with the observation that the
capillaries within the tumor degrade within a few days, this allows for the estimation of
the rate of capillary degradation and the rate of their active movement [32]. The rate of
denormalization is estimated so that the capillaries are almost completely abnormal within
the tumor, and the chosen basic rate of normalization ensures that they return to a normal
state after a few days, with both observations being based on the work [33]. The Michaelis
constant for angiogenesis and denormalization rates is the technical parameter needed to
smoothly model the onset and termination of these processes. When VEGF levels are equal
to this constant, the rates of these processes are semimaximal. The maximum pore radius
was chosen to be large enough so that, for the selected pore spectra, its further increase
does not lead to noticeable changes in the values of capillary permeability for nanoparticles
with a radius up to 50 nm.

The radiosensitivity of tumor cells was chosen so that in the absence of nanoparticles,
when irradiated with a typical dose for clinical protocols, D = 2 Gy, approximately half of
the cells are damaged. The ratio of tumor cell radiosensitivity parameters α/β is typical
for many tumor cell lines [4]. The factor of dose enhancement by the active substance Ku
was chosen so that the introduction of particles over a wide range of their sizes would,
indeed, result in a noticeable dose-enhancing effect in the model. The width of the polymer
coating is estimated to be of few nanometers, which is typical according to the order of
magnitude of the hydrodynamic radius increase as a result of particle pegylation [40] as
well as of the typical size of specific antibodies. The coefficient of binding of nanoparticles
to the tumor cells was estimated so that in the presence of tumor cells at their normal
density, approximately half of the particles would bind to them in one and a half hours.
The parameter for the diffusion coefficient of nanoparticles is based on the characteristic
values for the diffusion coefficients of large molecules in the tissue, similar to the case in
our work [18].

4.3. Numerical Solving

During the numerical simulation of the system of Equations (1)–(3), the equation for
intercellular fluid was not explicitly considered due to the equality f = 1− s. For the other
variables, the method of splitting into physical processes was used, that is, kinetic equations,
diffusion equations, and advection equations were solved sequentially at each time step.
The kinetic equations were solved by the simple explicit Euler method, which is justified by
the relative smallness of the used time steps that are required for the solution of advective
equations. For diffusion equations, the implicit Crank–Nicholson scheme was used. These
classical methods are described, e.g., in the book [41]. The advective equations were solved
using the conservative flux-corrected transport algorithm with an implicit antidiffusion
stage, proposed in the work [42]. It is important to note that this method by itself, however,
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introduces a small amount of uncorrectable diffusion, which leads to the artificial invasion
of the tumor into the normal tissue. Another problem of the direct implementation of
this algorithm is the inability to correctly model the movement of the free normal tissue
boundary on a uniform spatial grid. To overcome these problems, we introduced two
additional floating points on the computational grid, marking the position of the tumor–
normal tissue interface and the position of the normal tissue boundary. The coordinates of
these points were calculated using the conservation of the total cell volume when solving
advection equations at each time step.

The following initial conditions were used, representing a spherical section of normal
tissue of initial radius RN

0 = 4 mm with a small spherical colony of tumor cells of radius
RT

0 = 0.2 mm located in its center, where r = 0:
np = sst,

h = 0,
g = 1,
cn = 0

f or r ≤ RT
0 ;


np = 0,
h = sst,
g = 1,
cn = 1

f or RT
0 < r ≤ RN

0 . (4)

Here, sst is the steady-state value for the fraction of cells differing from s0 for the
used parameter values by less than a thousandth of a percent, which corresponds to a
small stretching of the network of interconnected cells due to the pressure of fluid flowing
into the tissue from the capillary system under the blood pressure, but rapidly escaping
into the lymphatic system. The values of the other variables were initially equal to zero.
Initial conditions are illustrated in Figure 4. Zero-flow boundary conditions were set for
all variables on the left boundary; their values on the right boundary were constant and
corresponded to the initial conditions for normal tissue. At the left boundary, advective
flow velocities were assumed to be zero; at the right boundary, a free boundary condition
was used for them. This resulted in the following equation for the velocity of the solid
phase of the tissue:

Is = K
∂p
∂r

+
1
r2

∫ r

0
{[Lncn + Laca] · [pc − p]− Llh[p− pl ]}z2dz.

Supplementary Materials: The C++ computational code can be downloaded at https://www.mdpi.
com/article/10.3390/ijms241411806/s1.
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