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The overuse and misuse of antibiotics have accelerated the selection of antibiotic-resistant bacteria,
significantly impacting human, animal, and environmental health. As aquatic environments are
vulnerable to antibiotic resistance, suitable management practices should be adopted to tackle this
phenomenon. Here we show an effective, nature-based solution for reducing antibiotic resistance from
actual wastewater. We utilize a bioreactor that relies on benthic (biofilms) and planktonic microbial
communities to treat secondary effluent from a small urban wastewater treatment plant (<10,000
population equivalent). This treated effluent is eventually released into the local aquatic ecosystem. We
observe high removal efficiency for genes that provide resistance to commonly used antibiotic families,
as well as for mobile genetic elements that could potentially aid in their spread. Importantly, we notice a
buildup of sulfonamide (sul1 and sul2) and tetracycline (tet(C), tet(G), and tetR) resistance genes spe-
cifically in biofilms. This advancement marks the initial step in considering this bioreactor as a nature-
based, cost-effective tertiary treatment option for small UWWTPs facing antibiotic resistance challenges.

© 2024 Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin
Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The growth of the urban population has led to a significant in-
crease in wastewater production, generating a serious problem in
its management [1]. The current regulation in the European Union
(EU) (e.g., Council Directive 91/271/EEC [2] concerning urban
wastewater treatment) establishes a mandatory control of total
nitrogen and phosphorus loads in urban wastewater treatment
plants (UWWTPs) over 100,000 population equivalents (P.E).

The latest data reveal that 96% of the wastewater generated by
the population of the European Union is treated in UWWTPs, of
which 7.75% is processed only up to secondary treatment, while the
large majority (86.14%) undergoes much more stringent treatment
(understood as at least tertiary treatment) [3]. Contrastingly, the
half of Chinese Society for Enviro
under the CC BY-NC-ND license (
small sewage facilities in the EU (<10,000 P.E) have not incorpo-
rated a tertiary treatment due to high energetic and economic costs
[1,4].

The proposal for a new EU Directive concerning UWWTPs is to
apply this strict control between 10,000 and 100,000 P.E [5].
Nevertheless, UWWTPs have presented an important issue in
coping with bioavailable nutrients [6]. Despite the modern
advanced technologies applied in UWWTPs, different global sce-
narios predict an increase in nutrient loads from their effluents into
aquatic ecosystems [7], with the consequent impact associated
with their ecosystem services and biodiversity, thereby affecting
the environmental, economic, and social pathways [8]. Water
quality regulators have been increasingly concerned about con-
taminants of emerging concern (CECs) detected in aquatic ecosys-
tems [9]. However, the limits of CEC release are not yet embedded
under the current EU directive.

The CECs monitoring list in the EU (Directive 2008/105/EC [10]
amended in Decision 2015/495/EU [11]) refers to monitoring
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Fig. 1. Real image and scheme of the bioreactor. Dark blue: input effluent; red: output
effluent; green: benthic compartment; Light blue: output/planktonic compartment;
yellow: recirculating compartment; orange: water pumps.
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different micropollutants, including some antibiotics such as
macrolides (i.e., azithromycin, clarithromycin, and erythromycin)
and sulfonamides (i.e., sulfamethoxazole), because of their occur-
rence, resistance and resilience, and ecotoxicological and health-
related issues in the environment.

The major issue associated with human health is the develop-
ment of anti-microbial resistance (AMR), which is primarily caused
by antibiotic-resistant bacteria (ARB) characterised by the presence
of resistome describing antibiotic resistance genes (ARGs)
commonly associated with mobilome capable of transmitting
them. The mobilome associated with the mobile genetic elements
(MGEs) facilitated the horizontal gene transfer (HGT), enhancing
direct contact between bacterial cells with the ability to transfer
ARGs by different processes (i.e., conjugation, transformation, and
transduction) [12]. Recent studies have demonstrated that one of
the major hotspots for ARGs and ARB emergence and spread to the
environment is represented by wastewater treatment plants and
their effluents [13,14].

The magnitude of the problem is undeniable. World antimi-
crobial resistance is estimated to produce 64.0 (95% uncertainty
interval [UI] ¼ 46.8e84.9) deaths per 100,000 inhabitants, whereas
in central and eastern Europe is estimated at 57.9 (95%
UI ¼ 41.6e77.6) deaths per 100,000 inhabitants [15]. Furthermore,
resistance to b-lactams and fluoroquinolones has been considered
remarkable due to the efficiency of these antibiotic families in the
initial treatments of severe infections [16], considerably reducing
more than 70% of the deaths of AMR infections [15].

ARGs are considered to bond with MGEs due to their high
plasticity in interacting with bacterial communities, favouring their
acquisition and spread [12]. MGEs are the precursors of horizontal
genetic transfer, an important role in bacterial communities
considered as potential hotspots of transferring ARGs [17].

This public health concern has increased in recent years, and
therefore, further research is needed to improve the treatment,
such as using advanced technologies to reduce ARB, ARGs, and
MGEs in UWWTP effluents [18e20]. Different technologies have
been evaluated in laboratory conditions and under more realistic
scenarios in pilot plant approaches [21,22]. However, the economic
and energetic costs of these advanced technologies are generally
high (i.e., ozonation, ultraviolet (UV)/H2O2, nanofiltration, and
reverse osmosis [23]), limiting their potential application, partic-
ularly in small facilities with infrastructural and economic
constraints.

Recent studies explored the possibility of implementing nature-
based solutions (NBSs), such as constructed wetlands [24e26], to
improve the overall quality of UWWTP effluent released to the
environment and consequently protect the receptor ecosystems at
lower costs. NBSs are considered a key tool for improvingwaste and
sewage management at lower economic and energy costs,
leveraging ecosystem services [27].

Benthic and planktonic freshwater microbial communities have
shown the capacity to attenuate nutrient concentrations by direct
uptake for growth [28,29], metabolizing some CECs [30,31] and,
less studied, reducing ARB and ARGs [32], with biofilms being
particularly considered as potential ARB reservoirs [33,34]. Reactors
mimicking aquatic ecosystems in which these microbial commu-
nities actively develop can be a potential NBS to reduce contami-
nation in UWWTP effluents before their release into aquatic
environments, specifically acting as a trap for ARB, ARGs, andMGEs.
In this study, the efficiency of an NBS bioreactor, inwhich microbial
benthonic and planktonic communities’ composition and activity
were monitored, was evaluated to reduce AMR loads in a UWWTP
effluent. Furthermore, advanced analytical methods, grounded on
next-generation sequencing (NGS) approaches [35], have been
applied to analyse microbial communities, resistome, and
2

mobilome variation in treatedwastewater after its pass through the
tested NBS bioreactor. Targeted ARGs and MGEs have been previ-
ously analysed using PCR-based methods [36]. However, meta-
genomic approaches have been applied to obtain a wider range of
ARGs and MGEs [37e39], providing a full picture of the resistome
and mobilome in a given ecosystem.

Therefore, this study aims to assess the efficiency of this benthic
and planktonic nature-based bioreactor, called biofilm and
plankton reactor (BPR), to remove ARGs and MGEs as an additional
treatment step in small sewage facilities. This experiment evaluates
the efficiency of the biological system in reducing the AMR load of
urban wastewater in the operational environment of a small
UWWTP facility, directly treating its secondary effluent. We ex-
pected the BPR to effectively reduce the abundance of most ARGs
and MGEs, optimizing the efficiency and performance of the
bioreactor. We also expected an accumulation of ARGs and MGEs
within the benthic compartment of the reactor as a consequence of
the removal of ARGs and MGEs from the system.
2. Methodology

2.1. Experimental design

The BPR was operated in the UWWTP of Quart, Girona
(41�57059.300 N, 2�50041.300 E). The UWWTP treats 2750 P.E with an
average input flow of 600 m3 day�1 and a maximal removal po-
tential of 70mg nitrogen L�1, 20 mg phosphorus L�1, and amaximal
chemical oxygen demand (COD) of 495 mg L�1 (data from the
Catalan Water Agency). The BPR mimicked lotic and lentic fresh-
water ecosystems composed of a stream-pond sequence in which
the most relevant active biological compartments are benthic and
planktonic microbial communities. The upper part contained the
stream-based component of the BPR, in which aquatic biofilms
(benthic community) were grown over artificial substrata (sand-
rugous glasses) of different sizes (4, 9, 36, and 90 cm2), covering an
overall surface of 120 � 380 cm (Fig. 1). On the lower part, the
pond-based component of the BPR consisted of a water tank in
which the planktonic communities were allowed to grow. The total
volume of the tank was 1.96 m3 (length � depth � width:
4.05 � 0.40 � 1.21 m). The input wastewater effluent treated from
the secondary treatment entered the system into a recirculation
tank of 0.027 m3 (Fig. 1). The system was set in recirculation mode
during the first 15 days (colonization phase) to favour biofilm set-
tlement in glass substrata and planktonic community development
in a pond-based system before switching to the operational phase.
In the first stages of the operational phase, the secondary effluent
inflow to the reactor was set at 0.76 m3 day�1 for 15 days (accli-
matation stage) and then increased at 1.20 m3 day�1 for a resultant
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hydraulic time residence (HTR) of 1.6 days. The system was oper-
ational from early May until the end of June 2022.

2.2. Sampling performance and DNA extraction

Samples from input and output (100 mL) were collected
considering the HRT of the system (to calculate the removal effi-
ciency of the BPR) at days 19e21, 33e35, and 47e49 during the
operational phase (T0, T14, and T28, respectively) and assembled
by filtration through a 0.20 mm hydrophilic polycarbonate mem-
brane filters (Merck; Darmstadt, Germany). Biofilm samples were
scrapped directly from glass tiles (9 cm2) and centrifugated at 800 g
for 2 min to remove the supernatant. Triplicates were collected and
stored at �20 �C until DNA extraction in both cases. Firstly, 900 mL
of TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) buffer and 40 mL of
lysozyme (40 mg mL�1) were added to the filters (cut in small
pieces), and biofilm samples briefly agitated and incubated for 1 h
at 37 �C and 300 rpm in a heat incubator. We added 40 mL of pro-
teinase K (20 mg mL�1) and 100 mL of SDS 10% for incubation at
300 rpm and 56 �C for 1.5 h. Afterwards, 3 mL of RNase Awas added
to digest RNA and incubated briefly at 56 �C for 5 min. We used
Maxtract High Density (MHD) tubes (Qiagen, Hilden, Germany),
previously centrifugated at 800 g for 2 min at room temperature,
into which the lysate was transferred, and DNA was extracted by
adding 1 mL of phenol-chloroform-isoamyl alcohol (25:24:1)
(Sigma Aldrich, St.Louis, MO, USA). The MHD tubes were cen-
trifugated at 200 g for 5 min at room temperature, followed by
three cycles of mixing and centrifugation. Phases were separated by
decantation, followed by adding 10% volume of sodium acetate
(3 M, pH 5.3) and two volumes of ethanol 100% stored at �20 �C
overnight. The next day, we centrifugated the extracts at 15,000 g at
4 �C for 30 min, and we removed the supernatant to add 1 mL of
ethanol 70%. The previous centrifugation was also set for 10 min
with removing the supernatant. Finally, the extracts were dried
using a speed vacuum concentrator at 30 �C for 15 min to further
mix the pellet into 60 mL of TE buffer and stored at �20 �C for
sequencing analysis. DNA concentration of the extracts was quan-
tified using a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA,
USA), and their quality was examined using agarose gel
electrophoresis.

2.3. Metagenomics sequencing

Metagenomic analysis was conducted using the TruSeq Nano
DNA High Throughput Library Prep Kit (Illumina, San Diego, CA,
USA) at Macrogen, South Korea. The sequencing library was pre-
pared by randomly fragmenting the DNA sample, followed by 50

and 30 adapter ligation. Specifically, 100 ng of genomic DNA was
sheared using adaptive focused acoustic technology (Covaris,
Woburn, MA, USA), and the fragmented DNA was end-repaired to
create 50-phosphorylated, blunt-ended dsDNA molecules.
Following end-repair, DNA was size-selected using the bead-based
method. These DNA fragments go through adding a single ‘A’ base
and ligating the TruSeq DNA UD Indexing adapters. The products
were then purified and enriched with PCR to create the final DNA
library. The library was quantified using qPCR according to the
qPCR Quantification Protocol Guide (KAPA Library Quantification
kits for Illumina Sequencing platforms) and qualified using the
Agilent Technologies 4200 TapeStation D1000 screentape (Agilent
Technologies, Santa Clara, CA, USA). Afterwards, the library was
loaded onto a flow cell, where fragments were captured on a sur-
face coated with oligonucleotides complementary to the library
adapters. Each fragment was then amplified into distinct clonal
clusters through bridge amplification. After cluster generation was
completed, the templates were prepared for sequencing. Then, the
3

paired-end (2 � 150 bp) sequencing was performed by NovaSeq
6000 (Illumina, San Diego, CA, USA) synthesis technology using a
proprietary reversible terminator-based method. This method
detected single bases as they were incorporated into DNA template
strands. As all 4-reversible, terminator-bound dNTPs were pre-
sented during each sequencing cycle, natural competition mini-
mized incorporation bias and greatly reduced raw error rates
compared to other technologies. Accurate base-by-base sequencing
was obtained, eliminating sequence-context-specific errors, even
within repetitive sequence regions and homopolymers. Raw data
was generated using sequencing control software for system con-
trol and base calling, facilitated by integrated primary Real Time
Analysis software. The BCL/cBCL (base call) binary files were con-
verted into FASTQ files using bcl2fastq (Illumina-provided pack-
age). Total read sequences obtained for different samples ranged
between 13,658,860 and 54,003,130 reads. Specifically, there were
26,692.013 ± 13,638,656 reads in the input samples compared to
33,275,531 ± 18,148,755 in the output samples and
23,466,640 ± 15,056,764 in the benthic compartment.
2.4. Bioinformatic analyses

After sequencing libraries on a NovaSeq 6000 system (Illumina,
San Diego, CA, USA) using paired-end 2� 150 bp reads, low-quality
reads were filtered out using the FASTX-Toolkit [40], applying a
quality cut-off value of 20 for reads covering more than 90% of their
length. In each metagenome, the total number of 16S rRNA gene
reads was identified using METAXA2 [41], which was used for
taxonomic classification and data normalization. Identification of
ARGs and MGEs in each compartment (biofilm, plankton, and
input) was conducted using the BLASTX tool [42] implemented in
DIAMOND [43], aligning high-quality reads against the ARGminer
database [44] and an in-house database [45], respectively. The
ARGminer database contains sequences from CARD [46], DeepARG-
DB [47], ARDB [48], MEGARes [49], UniProt [50], the National
Database of Antibiotic Resistant Organisms (NDARO), SARG [51],
ResFinder [52], and ARG-ANNOT [53], whereas our in-house data-
base contains non-redundant sequences from INTEGRALL [54],
InterPro [55], Isfinder [56], MobileElementFinder [57], MOBscan
[58], and the Transposon Registry [59]. In both cases, a read was
annotated as a resistance gene or mobile genetic element if the best
BLAST hit (BLASTX) demonstrated a minimum identity of 90%
amino acid over 90% of the length of the query sequence (see
pipeline details in Supplementary material B). This conservative
threshold was selected to minimize false positives [45]. Detected
ARGs were also assessed against the list of “critically important
antimicrobials” [60] and classified based on their respective gene
family, resistance antibiotic class, and membership in the same
protein complex, using DIAMOND as described above. The abun-
dance of reads annotated as ARGs or MGEs was normalised to the
total number of reads annotated as 16S rRNA genes from each
metagenome, using METAXA2 as previously described. The nor-
malised abundance of ARGs and MGEs was compared between
different compartments and sampling uptake times to determine
removal efficiency rates. The removal efficiencies of ARGs and
MGEs were then assessed between input and output (equation (1))
[61].

Log removal value ðLRVÞ ¼ log10
½ARG or MGE�input
½ARG orMGE�output

(1)



Fig. 2. NMDS of the most abundant and frequently occurring ARGs reads normalised
by 16S rRNA reads in different compartments and sampling times.
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2.5. Accession number

Sequence data obtained in this study were submitted to the
National Center for Biotechnology Information (http://www.ncbi.
nlm.nih.gov/) under the Bioproject accession number
PRJNA1049147.

2.6. Statistical analyses

Previously, selection and reorder of the most abundant ARGs
and MGEs were set at 0.1% and 0.01% of relative abundances nor-
malised to the total 16S rRNA genes of different compartments
(input, benthic, and output) and sampling uptake times. ARGs and
MGEs below this limit were classified as minority groups.

To determine differences between compartments of the biore-
actor and sampling uptake times in ARGs and MGEs, permutational
multivariate tests and analysis of similarity by Bray-Curtis dissim-
ilarity distance were performed by vegan [62] and PERMANOVA [63]
R packages. Additionally, ARGs and MGEs removal efficiency in the
bioreactor and the accumulation in the benthic compartment were
determined to interpret the efficiency of the bioreactor. We also
performed a non-metric multidimensional scaling (NMDS) with
the vegan [62] R package to visualise the differences between
treatments.

Each most representative family in antibiotic families, ARGs and
MGEs groups were tested by non-parametric Kruskal-Wallis by
rstatix [64] R package with pairwise Dunn post-hoc tests by
dunn.test [65] R package, to evaluate differences between different
compartments and time due to the lack of normality and homo-
scedasticity of data, the signification level was set at 0.05. The alpha
diversity of ARGs and MGEs was determined using vegan [62] R
packages. This parameter was also analysed following the same
statistical approach.

A heatmap was achieved to interpret the relative abundance of
ARGs and MGEs and to facilitate the interpretation of the differ-
ences between compartments and sampling uptake times using the
pheatmap [66] R package.

Similarly, the most abundant bacterial families were set at 5% of
relative abundances normalised to the total 16S rRNA genes of the
input and output samples and sampling uptake times. This classi-
fication was essential for the interpretation graph and the NMDS
analysis. Spearman correlations were calculated between the most
relevant bacterial families and ARGs and MGEs using the Hmisc
package [67] in R. All statistical analyses were performed using
Rstudio in an R version 2022.12.0 þ 353.

3. Results

3.1. BPR removal efficiency: resistome

The resistome, containing the most abundant and frequently
observed ARGs in the metagenomes analysed in the BPR, showed
clear differences among the different compartments considered
(Input: secondary effluent from UWWTP; benthos; and Output:
effluent treated from BPR), as observed in the permutational
multivariate analysis of variance and similarity distance results
(Fig. 2; Table 1). A total of 419 ARGs were detected in this study. The
number of ARGs detected in each compartment provides initial
evidence of the high efficiency of the BPR in achieving an overall
reduction of AMR in urban treated wastewater. Specifically, 400
ARGs were detected in the input, whereas only 119 were observed
in the output, indicating a 70% reduction. The benthic compartment
(biofilms) hosted only 56 ARGs, corresponding to 13% of the overall
resistome (419 ARGs).

Our results also revealed a significant decrease (X2 ¼ 16.53, p-
4

value ¼ 0.0003) in the relative abundance of ARGs (normalised to
the total 16S rRNA) in the output (4.8 ± 1.8% of total 16S rRNA)
compared to the input (16.9 ± 3.9% of total 16S rRNA) (Dunn tests p-
value < 0.05). Furthermore, the benthic compartment exhibited a
significantly higher relative abundance of ARGs (13.4 ± 6.6% of total
16S rRNA) compared to the output and contrastingly to a slight
reduction in the input (Dunn tests p-value < 0.05), indicating an
accumulation of ARGs within the system. Additionally, the a-di-
versity of ARGs was significantly higher in the input (65.5 ± 2.7)
compared to the output (12.0 ± 2.2) and the benthic compartment
(4.8 ± 1.5) (X2 ¼ 23.14, p-value < 0.0001; Dunn tests p-value < 0.05;
SupplementaryMaterial Tables S4 and S5), indicating a reduction in
the diversity of ARGs after the treatment.

The most relevant ARGs detected in the BPR (n¼ 24), selected for
relative abundances higher than 0.1%, encompassed a diverse array
of resistances to different antibiotic families, including amino-
coumarin, aminoglycoside, bacitracin, b-lactam, fosfomycin, macro-
lides, lincosamides, and streptogramines B (MLSB), multidrug,
phenicol, quinolone, sulfonamide, and tetracycline (Fig. 3;
Supplementary Material Table S1). Specifically, aminocoumarin,
beta-lactam, fosfomycin, and quinolone ARG families were pre-
dominantly detected in the input, significantly lower in the output
(Dunn tests p-value < 0.05; Fig. 3). In contrast, the bacitracin ARG
family showed a significant increase in its relative abundance in the
output compared to its levels in the input (Dunn tests p-value < 0.05;
Fig. 3). The benthic compartment served as a reservoir for specific
ARG families, such as sulfonamide and tetracycline resistances,
whose relative abundances were significantly higher than the other
compartments analysed (Dunn tests p-value < 0.05; Fig. 3). Themost
relevant ARG relative abundances revealed clear differences among
the analysed compartments (Fig. 2). The input resistome was char-
acterised by multidrug (acrB, MexD, and mtrA), quinolone (mfd and
qacH), MLSB (mphD and msrE), fosfomycin (murA), aminocoumarin
(mdtB), b-lactam (AER-1), and tetracycline (tetQ), whereas the output
was dominated by MLSB (mphG and mefC) and bacitracin (BacA)
ARGs (Fig. 2). The mentioned ARGs were detected in significantly
higher abundance in the input than the output (Fig. 4; Dunn tests p-
value < 0.05, Supplementary Material Table S2) and represented
nearly all detected antibiotic families within the BPR system.

Removal rates were calculated to better describe the system's
efficiency in reducing ARG levels. The results confirmed that most
of these ARGs were drastically reduced by the BPR (Fig. 5),

http://www.ncbi.nlm.nih.gov/
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Table 1
PERMANOVA and ANOSIM multivariant similarity analyses of ARGs and MGEs reads normalised to the 16S rRNA reads between compartments and sampling times. Df Num:
numerator degree of freedom; df Denom: denominator degree of freedom; R2: determination coefficient. n.s: not significant.

Variables Factors PERMANOVA ANOSIM

Explained Residual df Num df Denom F (p-value) R2 (%) Significance

ARGs Compartment:Time 516.95 133.05 8 18 8.74 (0.0001) 84.13 0.0001
Compartment 327.88 322.12 2 24 12.21 (0.0001) 87.46 0.0001
Time 52.72 597.28 2 24 1.06 (n.s) �0.03 0.6119

MGEs Compartment:Time 499.14 46.86 8 18 23.97 (0.0001) 95.75 0.0001
Compartment 372.64 173.36 2 24 25.79 (0.0001) 99.82 0.0001
Time 43.75 502.25 2 24 1.05 (n.s) 0.87 0.3569

Fig. 3. The most abundant and frequently occurring logarithmic mean relative abun-
dances of antibiotic families with minority groups and total relative abundances be-
tween different compartments. Letters represented the significance between
compartments in each group.

Fig. 4. Pheatmap of the most abundant and frequently occurring antibiotic resistance
genes (ARGs) from logarithmic relative abundance ARG reads normalised to the 16S
rRNA gene reads at different compartments (input, benthos and output) and sampling
times (T0, T14, and T28). Antibiotic families are represented with different colours on
the right axis of the pheatmap.

Fig. 5. The logarithmic removal rate of the most abundant and frequently occurring
ARG reads normalised to the 16S rRNA reads in the bioreactor.
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averaging LRV ¼ 2.3 ± 1.2 (93.8 ± 8.6%; Supplementary Material
Table S6). However, specific ARGs exhibited lower removal rates,
notably observed in aminoglycoside [APH(300)-Ib and APH(6)-Id],
sulfonamide (sul1), and tetracycline [tet(C)] ARGs, averaging
5

LRV ¼ 0.9 ± 1.2 (78.3 ± 21.1; Supplementary Material Table S6). In
contrast, the output displayed an increase of MLSB (mphG and
mefC) and bacitracin (BacA) ARGs compared to the input (Fig. 4),
reflecting substantial negative LRVs (Fig. 5; Supplementary
Material Table S6).

Nevertheless, certain ARGs presented high variability, showing a
reduced removal, specifically for MLSB (ErmF, mphA, and mphG),
phenicol (floR), sulfonamide (sul2), and tetracycline [tet(G), tet(C),
and tetR] ARGs (Fig. 5; Supplementary Material Table S6).
Furthermore, these genes exhibited higher relative abundances
within the benthic compartment (Fig. 2), indicating a clear biofilm
accumulation (Fig. 4). Notably, MLSB (mphA, mefC, and ErmF), sul-
fonamide (sul2) and tetracycline [tet(C)] were not differentiated
between the input and output (Dunn tests p > 0.05; Supplementary
Material Table S2). Additionally, aminoglycoside [APH(300)-Ib and
APH(6)-Id], MLSB (mefC), sulfonamide (sul1), and other ARGs
(n ¼ 395) were also notably accumulated within the benthic
compartment (Fig. 4; Dunn tests p-value <0.05, Supplementary
Material Table S2). However, the ARGs representing bacitracin
(BacA) and MLSB (ErmF) demonstrated a tendency towards either
removal in the BPR or accumulation in the benthic compartment,
consequently increasing their relative abundances in the output
(Fig. 4). Specifically, BacA presented a notable increment in relative
abundances in the output (Dunn tests p-value <0.05,
Supplementary Material Table S2) concerning the input.

The BPR system performance did not show significant changes
across different sampling times (0,14, and 28 days) (Supplementary
Material Tables S1 and S2). However, specific ARGs displayed an
accumulation trend within the benthos compartment between day
0 and day 14, notably tetracycline [tet(C)] and MLSB (mefC) (Dunn
tests p-value <0.05). Furthermore, MLSB (mphG), sulfonamide
(sul1) and tetracycline [tet(C)] ARGs demonstrated a slight increase
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in the benthic compartment on the final day (day 28) of the BPR
operation (Dunn tests p-value < 0.05).
3.2. BPR removal efficiency: mobilome

The mobilome, encompassing the most abundant and
frequently occurring MGEs, exhibited clear differences across
different compartments, as evidenced by permutational multivar-
iate analysis of variance and similarity distance results (Fig. 6;
Table 1) in contrast to the sampling times. The metagenomic
analysis revealed the occurrence of 43 distinct MGEs. Most of these
MGEs were detected in the input (n¼ 41, 94% of total MGEs), with a
noticeable decrease observed in the output (n ¼ 31, �25%). In the
benthic compartment (biofilm), 61% of the MGEs identified were
detected (n ¼ 27).

Our results also revealed a significant decrease (X2 ¼ 21.80, p-
value <0.0001; Dunn tests p-value <0.05) of the relative MGEs
abundances (normalised to the total 16S rRNA) in the output
(4.2 ± 0.8% of the total 16S rRNA) compared with the input of the
BPR in which MGEs represented the 71.2 ± 20.4% of the total 16S
rRNA. Conversely, the benthos compartment exhibited a signifi-
cantly lower relative abundance of MGEs (32.8 ± 16.0% of the total
16S rRNA) compared to BPR the input and output (Dunn tests p-
value <0.05).

Furthermore, the a-diversity of MGEs was slightly, but signifi-
cantly, higher in the input (5.28 ± 0.62) concerning the output
(4.26 ± 0.88) (X2 ¼ 19.70, p-value <0.0001; Dunn tests p-value
>0.05; Supplementary Material Tables S4 and S5). Additionally, the
a-diversities of MGEs in the input and output effluents were
significantly higher compared to the benthic compartment
(1.83 ± 0.54) (Dunn tests p-value <0.05; Supplementary Material
Tables S4 and S5), indicating a relevant decrease in the diversity
of MGEs within the biofilms.

The most prevalent MGEs (relative abundances higher than
0.01%) in the BPR (n ¼ 20) were similarly represented by the total
number of MGEs detected in the system (n ¼ 43). These selected
MGEs corresponded to various groups related to integron inte-
grases, insertion sequences (IS), insertion sequence common region
(ISCR), mobilization (MOB) relaxases, and transposons (Tn).

The relative abundance of these MGEs exhibited significant
differences among the analysed compartments within the BPR
(Fig. 6). The input mobilome primarily featured a multitude of
Fig. 6. NMDS of the most abundant and frequently occurring MGEs read normalised to
the 16S rRNA reads in different compartments and sampling times.
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MGEs: integron integrases (intl1 and intl3), IS and Tn transposases
(IS3, IS4, IS5, IS6, IS30, Tn3, and Tn7), ISCR elements (ISCR8, ISCR9,
ISCR15, ISCR21, and ISCR22), MOB relaxases (MOBP and MOBF), and
others. In contrast, the output of the BPR was dominated by the
MOB relaxase MOBQ and, to a lesser extent, the IS transposase
IS256 (Fig. 6). These MGEs were notably more abundant in the BPR
input than the output (Fig. 7, Dunn tests p-value <0.05,
Supplementary Material Table S3), representing most detected
MGE groups in the BPR.

The BPR showed a very good efficiency, achieving a substantial
reduction of these MGEs (Fig. 8), resulting in an average LRV of
about 2.3 ± 0.9, which corresponded to the 96.4 ± 4.9% removal of
the total MGEs load detected in the BPR input (Supplementary
Material Table S7). Distinct MGE groups were reduced over 90%,
in particular different transposase families [Tn (96.0 ± 1.6%) and IS
(94.8 ± 9.2%)], MOB relaxases (98.4 ± 3.1%), ISCR elements
(97.1 ± 3.4%), and integron integrases (97.4 ± 3.1%) (Fig. 8). In
contrast, some MGEs exhibited lower removal rates as observed for
the IS transposases (IS1380 and IS256), the ISCR element ISCR2, the
MOB relaxase MOBQ, and other MGEs averaging LRV ¼ 0.7 ± 0.4
(67.0 ± 17.7%; Table S7). However, all MGEs analysed exhibited
positive LRV (Fig. 8; Supplementary Material Tables S3 and S7,
Dunn tests p-value <0.05), confirming the very good efficiency of
the BPR in reducing the mobile load in treated urban wastewater.

A noticeable accumulation in biofilms was evident for the
transposase IS1380, ISCR2, and MOBQ (Fig. 7), corresponding to a
lower reduction of their abundance between the BPR input and
output (Fig. 8; SupplementaryMaterial Tables S3 and S7, Dunn tests
p-value <0.05). Specifically, IS1380 and ISCR2 showed a reduced
removal achieved by the BPR, resulting on average LRV ¼ 0.5 ± 0.2
(64.5 ± 12.5%), in comparison with MOBQ which reduction was
substantial, resulting in a LRV ¼ 1.4 ± 0.9 corresponding to
90.8 ± 7.6% reduction.

The BPR performance did not show any significant variation
across different sampling times (0, 14, and 28 days) concerning the
MGEs removal efficiency (Supplementary Material Table S3) nor
showed accumulation into the benthic compartment over time
(Dunn tests p-value >0.05, Supplementary Material Table S3).
Fig. 7. Pheatmap of the most abundant and frequently occurring mobile genetic ele-
ments (MGEs) from logarithmic relative abundance MGEs reads normalised to the 16S
rRNA gene reads at different compartments (input, benthos and output) and sampling
times (T0, T14, and T28). MGE groups are represented with different colours on the
right axis of the pheatmap.



Fig. 8. The logarithmic removal rate of the most abundant and frequently occurring
MGEs reads normalised to the 16S rRNA reads in the bioreactor.
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3.3. The interplay of microbial communities with ARGs and MGEs

The bacterial communities exhibited clear differences between
the input and output samples (Fig. 9b). The most abundant and
frequently occurring bacterial families in the input samples were
Comamonadaceae (6.8 ± 2.3%), Campylobacteraceae (5.2 ± 3.3%),
Rhodocyclaceae (4.8 ± 1.6), and Neisseriaceae (4.1 ± 2.5%) in the
Proteobacteria phylum, as well as Nocardioidaceae (1.2 ± 1.9%) in the
Actinobacteria phylum (Fig. 9a). Conversely, Burkholderiaceae
(13.6 ± 5.4%), Acetobacteraceae (4.5 ± 2.8%), and Rhodobacteraceae
(3.2 ± 2.5%) in the Proteobacteria phylum, Microbacteriaceae
Fig. 9. Relative abundance of the most abundant and frequently occurring bacterial
families normalised to the 16S rRNA gene reads in the input and output samples and
sampling times (T0, T14, and T28) (a) and non-metric multi-dimensional scaling
(NMDS) (b).
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(13.5 ± 16.2) in the Actinobacteria phylum, and Chitinophagaceae
(7.1 ± 5.0%) in the Bacteroidetes phylum, were predominantly
detected in the output samples respect to the input samples (Fig. 9a).

The most abundant and frequently occurring bacterial families in
the input samples revealed robust positive correlations with various
ARG families (r > 0.7, p-value <0.001; Supplementary Material
Fig. S1). Notably, Campylobacteraceae (Proteobacteria) demonstrated
strong positive correlations with several ARGs, including amino-
coumarin mdtB, aminoglycoside APH(6)-Id, MLSB mphD and msrE,
multidrug MexD and acrB, quinolone qacH and mfd, and tetracycline
tetQ (Supplementary Material Fig. S1). Similarly, other families from
the Proteobacteria phylum, such as Comamonadaceae, Neisseriaceae,
Oxalobacteraceae, and Rhodocyclaceae exhibited similar positive
correlations across these ARGs (Supplementary Material Fig. S1). The
most abundant and frequently occurring bacterial families in the
output samples correlated differently with ARGs. Rhodobacteraceae
displayed negative correlations with these ARG families (Supple-
mentary Material Fig. S1). Conversely, this family showed strong
positive correlations with sulfonamide and tetracycline ARGs, except
for tetQ (Supplementary Material Fig. S1). Burkholderiaceae and
Chitinophagaceae were strongly associated with the bacitracin BacA
and the MLSB mfD. In contrast, Acetobacteraceae exhibited negative
correlations with a broad range of ARGs, including aminocoumarin
mdtB, b-lactam AER-1, MLSB mphD and msrE, multidrugs MexD and
acrB, quinolone qacH and mfd, and tetracycline tetQ (Supplementary
Material Fig. S1).

Similarly, significant positive correlations were observed be-
tween the most relevant bacterial families and MGEs detected.
Specifically, Campylobacteraceae, Comamonadaceae, Neisser-
iaceae, Oxalobacteraceae, and Rhodocyclaceae exhibited strong
positive correlations with most MGEs (Supplementary Material
Fig. S1). In contrast, Acetobacteraceae, Planctomycetaceae, and
Rhodobacteraceae exhibited negative correlations with theseMGEs
(Supplementary Material Fig. S1). Additionally, Alcaligenaceae and
Microbacteriaceae showed weaker correlations with the ARGs and
MGEs (Supplementary Material Fig. S1).

4. Discussion

4.1. BPR potentiality for future urban wastewater treatment plants

The growing global impact of ARB and ARGs on human and
animal health demands immediate attention from policymakers. In
particular, there is an urgent need to maximise the removal of
antibiotic resistance determinants from UWWTP effluents, recog-
nized as one of the main dissemination sources of AMR to aquatic
environments worldwide [68,69]. Consequently, there is an
increasing interest in applied research focusing on potential cost-
effective solutions, as the NBS tested in this study. These solu-
tions aim to develop and demonstrate new, advanced, and more
sustainable systems utilising natural processes occurring in simu-
lated ecosystems to efficiently reduce ARGs (i.e., constructed wet-
lands (CWs) [70,71]).

In our study of the sequential microbial BPR, notable removal
efficiencies were obtained for most of the relevant ARGs and MGEs
families identified. These findings highlight the BPR's potential as a
nature-based tertiary treatment for UWWTPs, especially beneficial
for facilities managing wastewater from smaller agglomerations
(<10,000 inhabitants).

Research on streambed biofilms’ effectiveness in reducing ARGs
has gained traction in the last decade [72,73]. However, the col-
lective exploration of benthic and planktonic communities oper-
ating as a consortium at the macrocosm scale remains unexplored.
These microbial communities are considered potential reservoirs of
ARGs in freshwater ecosystems [34,74,75]. Interactions within the
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biofilm and planktonic communities, composed of hundreds of
bacterial and algal species, lead to complex co-aggregation, thereby
enhancing the potential for HGTevents and amplifying AMR spread
[76]. Moreover, anthropogenic antimicrobial compounds accumu-
late inwastewater through faecal pollution, forming aggregates and
assemblages with bacterial and algal consortia, creating new
adhesion sites. This situation introduces a surveillance bias and
may increase AMR spread from UWWTPs, also depending on the
socioeconomic conditions of the country [69]. Despite achieving
high removal efficiencies of ARB, especially after secondary and
tertiary treatments [77], the high loads of antibiotic resistance
determinants discharged into freshwater ecosystems fromUWWTP
effluents raise concerns about maximising the resistome and
mobilome removal performance [78].

For instance, the prevalent UWWTP secondary treatment
strategy uses Fe3Cl as a coagulant for nutrient removal, serving as a
trap for ARGs [79]. Furthermore, reliance on chlorination alone
(<4 mg L�1) has proven insufficient for reducing ARGs in UWWTPs
[80,81]. However, high dosages of chlorine (>80 mg Cl2 min L�1)
may conduce to better ARG removal efficiencies but can produce
excessive chlorine residues, leading to corrosion and human
toxicity [80]. Fortunately, this practice has not been implemented
in sewage facilities. Some advanced treatments (i.e., UV and
ozonation [82]) are directly proportional to the reduction of ARGs
in treated wastewater. However, the release of free DNA into water
could enhance other environmental risks, contributing to the
persistence of ARGs [82]. Other advanced treatments (i.e., nano-
filtration [83], reverse osmosis [84], and advanced oxidation pro-
cesses [85]) are considered highly efficient for reducing ARGs and
ARB in UWWTPs, despite their high economic and energetic de-
mands [86], representing new challenges in smaller UWWTPs.
Additionally, some researchers suggest that post-treatment, lower
bacteria densities and diversities could increase the availability of
ecological niches occupied by highly resistant ARB [87,88]. The BPR
developed in this study offers a cost-effective NBS to reduce
resistome and mobilome threats, specifically for these small
communities.

4.2. Antimicrobial resistance reduction: resistome removal
efficiency

The BPR achieved a broad spectrum of removal rates for ARGs
conferring resistance to various antibiotic families. Removal per-
formance was particularly evident for multidrug (acrB, MexD, and
mtrA), MLSB (mphD andmsrE), quinolone (mfd and qacH), b-lactam
(AER-1), fosfomycin (murA), and tetracycline (tetQ) genes. Notably,
the BPR achieved, on average, a 93.8% reduction for these ARGs,
surpassing the overall efficiency of other advanced treatments such
as A2/Oþ ozonation, which exhibited an average 95.0% reduction of
the total ARGs abundance [89], considering MLSB (i.e.,msrE, mphE),
tetracyclines [i.e., tet(C)] and cephalosporin (i.e., acrB, AAC(60)-Ie-
APH(200)-Ia) [89]. The latter data was determined by metagenomic
analysis, highlighting the enhanced analytical depth of our study
(n ¼ 420) compared to quantitative PCR (qPCR) assays (n ¼ 4
[90,91]) and high-throughput qPCR (HT-qPCR) (n ¼ 283 [92])
techniques used in previous studies.

However, while the majority of ARGs displayed substantial
reduction, the efficacy of the BPR to reduce aminocoumarin (mdtB),
quinolone (mfd), and MLSB (msrE) genes did not align with prior
reviewed studies. Conversely, low removal efficiencies were
observed for aminoglycosides [APH(300)-Ib and APH(6)-Id], sulfon-
amide (sul1), and tetracycline [tet(C)] ARGs, in contrast to the high
variability in the removal rates for MLSB (mphA, mphG, mefC, and
ErmF), sulfonamide (sul2), and tetracyclines [tet(G) and tetR] ARGs
with less reduction in the BPR. Moreover, ARGs conferring
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resistance to the aminoglycosides [APH(300)-Ib and APH(6)-Id], MLSB
(mphA and mefC), sulfonamide (sul2), and tetracyclines [tet(C),
tet(G), and tetR] exhibited relevant accumulationwithin the benthic
compartment. This accumulation was also described in activated
sludge and conventional treatments, indicating an overall increase
in tetracycline (tet genes) and sulfonamide (sul1 and sul2) [13] ARGs
in wastewater treatment processes. Otherwise, other aminoglyco-
sides (i.e., AacAad, StrA, and AadA) showed high resistance in
UWWTPs [93], potentially explaining the accumulation in biolog-
ical treatments also observed in our study. Furthermore, MLSB is
one of the most abundant groups of ARGs in UWWTPs (i.e., Erm,
mphE, andmsrE), and the biofilm enrichment observed in our study
for these ARGs can be explained by their generally high occurrence
in wastewaters [89].

Interestingly, sulfonamide sul2 exhibited a relevant reduction in
advanced treatments [e.g., UV disinfection and biological activated
carbon (BAC) [13] compared to low removal and substantial accu-
mulation in biofilms detected in our study. UV disinfection process
achieves an intracellular photochemical degradation of DNA into
ARB. It can eventually lead to the release of free DNA. In contrast,
the BAC mode of action relies on the adsorption of the ARB con-
taining ARGs (and other bacteria) as the main efficient removal
method [13,82]. In our system, the UV effect of solar radiation has
not been considered but may have played a role in removing ARGs,
considering that the BPR has been operational during late spring-
early summer. On the other hand, biofilms could have acted as
active and/or passive traps for ARB (as demonstrated by the
enrichment sul2 in biofilms), performing somehow similarly to BAC
technology. This element suggests that biofilm could incorporate
planktonic ARB released from WWTP effluents. It has been
demonstrated that AR determinants may migrate from the water
column into biofilms [94], and field studies confirmed that biofilms
could act as a sink for ARGs [95]. Similarly, sulfonamides were not
reduced from CWs and accumulated in the sediments [96]. Com-
parable observations were reported for sulfonamides (sul1 and
sul2) in drinking water treatments [97], emphasising their persis-
tence post-disinfection. These sulfonamide ARGs were extensively
analysed in the literature and are considered one of the most
relevant ARGs released from UWWTPs. Contrastingly, tetracycline
tet(C) exhibited a lower reduction in our system compared to these
advanced treatments.

Likewise, the minimal removal rates observed in the BPR for
MLSB (ErmF, mefC, and mphG), bacitracin (BacA), phenicol (floR),
and aminocoumarin (mdtB) align with findings from other studies.
For instance, BacA [98] and ErmF [13] showed similar patterns in
drinking water and conventional and advanced processes in
wastewater treatments, respectively, in which a multiresistance
combination with multidrug (mexT) and b-lactam (blaOXA-12) ARGs
was observed. Moreover, phenicol floR exhibited enrichment in
biofilms and lesser removal in the BPR compared to its removal in
advanced ultrafiltration and UV radiation treatments [99].

The observed variations may be attributed to the BPR's
enhanced performance compared to conventional treatments and
its slightly lower efficiency than some advanced treatments.
Additionally, differences in accumulation and removal patterns in
biofilms could be related to unique system-specific traits as a trap
for ARGs.

Moreover, a global study of freshwater biofilms detected a wide
range of ARGs [73], reminiscent of the diversity observed in our
investigation. In that research, the mdtC, kdpE, and emrB ARGs were
used as indicators in freshwater biofilms to further evaluate the other
co-occurring resistance genes. However, in our experiment, only
mdtC and emrB were detected and classified as other minority ARG
groups. Specifically, bacitracin (BacA) represented the most resistant
antibiotic class in our study and on a cross-regional scale [73]. These
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discrepancies in the occurrence and resistance levels of specific ARGs
among studies could be associated with (i) the sample collection
(grab or composite sampling, filtration or centrifugation), (ii) the
DNA extraction (low or high-molecular weight kit procedures or
phenol-chloroform method), (iii) the DNA characterization and
quantification (gel electrophoresis, and Nanodrop or QUBIT DNA
quantification), (iv) metagenomics sequencing (library preparation
and short- or long-read sequencing), (v) integrity of ARGs (different
referenced databases, alignment software) and (vi) corresponding
analysis [35,100,101] that demonstrate a lack of global stand-
ardisation on next-generation sequencing (NGS) approaches for AMR
detection and research. Another reason could be related to the
regional specificity of our study compared to the global research
reviewed in the cited literature.

The identification of prevalent clinical ARGs in our system,
predominantly beta-lactam (i.e., AER-1), quinolone (i.e., qacH), and
sulfonamides (i.e., sul1 and sul2), diverges from the broader di-
versity observed globally [102]. This divergence could be linked to
treated population density, antibiotic consumption [87], and so-
cioeconomic characteristics specific to our study location [73].

4.3. Horizontal gene transfer reduction connected to the resistome

The BPR achieved high removal efficiencies for awide spectrumof
MGEs, especially the integron-associated integrase genes (i.e., intI1
and intI3), considered one of the most important MGEs with high
capacity to spread AMR into the environment [13,103,104]. The
prevalence of high removal rates for whole MGEs (i.e., transposases
families, MOB relaxases, ISCR elements, and integron integrases)
achieved by the BPR demonstrated its high capacity to reduce the
risk of transferring ARGs into thewastewater treatment systems and,
more importantly, to the environment. The MGEs may represent the
HGT in ARB, which, in our study, was highly reduced compared to an
analogous study on activated sludge [13]. Additionally, HRT has been
associated with HGT [105], suggesting a potential relationship be-
tween low HRT and limited adaptation time for ARB communities,
possibly reducing their proliferation in the BPR and leading to the
observed results. However, a lower HRT might compromise the
removal efficiency for certain ARGs [106], as observed in some spe-
cific groups in our system, highlighting that an increase in HRTcould
also indirectly reduce HGT by lowering the persistence of faecal
bacteria associated with ARB and ARGs into the system. It is known
that these enteric bacteria are not well adapted to aquatic life, and it
has been demonstrated that 90% of culturable Escherichia coli would
not survive more than three days in freshwater environments at
temperatures lower than 25 �C [107].

The BPR achieved remarkable removal of various MGEs such as
transposons (i.e., Tn3), IS (i.e., IS3, IS4, IS5, IS6, IS30, IS256, IS1380),
ISCR (i.e., ISCR2, ISCR8, ISCR9, ISCR15, ISCR21, ISCR22), and MOB
relaxases (i.e., MOBF, MOBP, MOBQ) from secondary effluent in the
UWWTP. The notable removal of Tn3 might be linked to the
reduced occurrence of b-lactam genes, suggesting a possible asso-
ciation between Tn3 and b-lactam genes (i.e., blaKPC) [108] as
observed in other studies. Contrastingly, transposon (Tn3) and IS
(IS3 and IS5) were considered dominant in UWWTPs and strictly
associated with HGT of intI1 [37], emphasising that our system is
highly efficient for the removal of these elements, achieving an
overall reduction of the risk associated with the AMR spread from
treated urban wastewaters. Other detected MGEs related to IS (IS4
and IS256) were associated with tetracycline resistance genes [38],
along with IS6 and IS1380, which were also linked to MLSB and
phenicol resistance genes, respectively [38]. Other MGEs related to
IS30, ISCR8, and MOBP and MOBF were highly removed from our
system and are described as highly prevalent in other UWWTPs
[45,109]. These patterns underscore the variability in the removal
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efficiency of ARGs, facilitating their reduction in our system by
curbing their HGT.

Furthermore, IS1380, ISCR2, and MOBQwere accumulated in the
benthos compartment with lower removal rates than the other
most occurring and detected MGEs in the BPR. Notably, MOBQ
contributed to a high potential for conjugation [110]. Although intI1
exhibited high removal efficiency in the BPR, IS1380was associated
with intI1 and tet genes in aerobic biofilm reactors [111], suggesting
a potential correlation between low HRT and reduced reduction of
these ARGs in our system. Additionally, ISCR2 was associated with
multiple types of ARGs, including MLSB resistance genes (i.e., ErmF)
[112] that were also accumulated in our system and the benthic
compartment.

Studies focused on removing MGEs from treated wastewater
have primarily targeted intI1 [99]. Various advanced treatments,
such as UV disinfection, ozonation, and different biological reactors
(i.e., membrane bioreactors and constructed wetlands), have
demonstrated similar removal efficiencies to those observed in the
BPR. Furthermore, chlorination systems in UWWTPs have also
exhibited efficient reductions in insertion intI1, IS (i.e., IS1216 and
IS613), and different transposons [81].

4.4. The BPR influencing the bacterial communities, ARGs, and
MGEs

The BPR induced significant changes in the bacterial commu-
nities between the input and output samples, indicating distinct
microbial compositions associated with different types of effluent
[113]. Notably, Comamonadaceae, Campylobacteraceae, Rhodocy-
claceae, and Neisseriaceae (Proteobacteria), along with the Nocar-
dioidaceae (Actinobacteria), were more abundant in the input
samples compared to the output, a trend consistent with obser-
vations in wastewater [114] and streams impacted by UWWTP ef-
fluents [115]. These findings imply that these bacterial
communities of wastewater origin are still dominant in the current
wastewater effluent released to the environment (the input water
to the BPR system). Conversely, in the output of the BPR, the
dominance of Burkholderiaceae and Rhodobacteraceae (both
belonging to the Proteobacteria phylum), along with Chitinopha-
gaceae (Bacteroidetes), indicates their higher similarity with the
microbiota detected in the streams [116]. Additionally, members of
the Microbacteriaceae family (Actinobacteria) may be associated
with planktonic microalgae communities [117]. This finding evi-
dences that the BPR system also greatly reduces the bacterial
families associated with wastewater, releasing an effluent with a
microbiome much more similar to those described in freshwater
ecosystems. This implies an overall reduction of the impacts of
WWTP effluent release on the microbial biodiversity of the
receiving aquatic ecosystems.

Moreover, the positive correlations observed between the most
relevant bacterial families and several ARGs underscore the potential
role of specific bacterial communities in harbouring and dissemi-
nating antibiotic resistance [92]. Nevertheless, the reduction in
relative abundances of some of these families (Comamonadaceae,
Campylobacteraceae, Rhodocyclaceae, and Neisseriaceae) in the
output of the BPR suggests that the bacterial and resistome dynamics
may be altered, potentially resulting in a decrease in potential
pathogens [118,119]. Otherwise, the bacterial families negatively
correlated with several ARGs, particularly Acetobacteraceae could be
associated with reducing ARGs within the BPR. A similar patternwas
observed with MGEs, in which negatively and non-correlated bac-
terial families with the most relevant MGEs detected in the output of
the BPR were also associated with their removal from the system.
These evidences demonstrate the reduced AMR potential spread
from treated wastewater to the environment achieved by the BPR
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system. These results underscore the complexity of the interplay
between microbial communities and antibiotic resistance elements,
highlighting the need for further research to understand the mech-
anisms underlying antibiotic resistance dissemination within
wastewater treatment systems and to the aquatic environment [120].

5. Conclusions

Given the limited studies utilising next-generation sequencing
(NGS) approaches to investigate AMR spread reduction from
UWWTPs, our comprehensive detection of a wide range of MGEs
and ARGs, along with the overall resistome and mobilome reduc-
tion achieved by the BPR, signifies pioneering work with implica-
tions for future studies in biological wastewater treatments,
particularly nature-based solutions (NBS) for AMR spread mitiga-
tion. The BPR system substantially reduced the diversity of ARGs
and MGEs, highlighting its potential to mitigate AMR release from
UWWTPs into freshwater ecosystems [88]. Particularly, this system
holds promise for socio-economically challenged countries grap-
pling with limited wastewater treatment capacities [121], where an
increase in AMR would hinder the achievement of a One Health
approach. For facilities treating wastewater from small village
populations (<10,000 inhabitants) in the EU, we strongly advocate
additional research and monitoring of the overall quality of treated
wastewater effluents from conventional treatments, in which the
new Directive proposal should establish the monitoring of anti-
microbial resistance and consequent removal capacity. This study
has demonstrated the high potential of the BPR as a viable sec-
ondary/tertiary treatment option with expected low energetic de-
mand and economic costs for UWWTPs lacking biological and/or
advanced treatments and exhibiting low and uncontrolled AMR
removal efficiencies. Nonetheless, to validate this nature-based
technology and boost its implementation on a wider scale, a
techno-economic life cycle assessment would be recommended to
confirm and quantify its overall sustainability.
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