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Linear and non-linear responses 
of vegetation and soils to glacial-
interglacial climate change in a 
Mediterranean refuge
Jens Holtvoeth1,2, Hendrik Vogel   3,4, Verushka Valsecchi5, Katja Lindhorst6, Stefan 
Schouten7,8, Bernd Wagner3 & George A. Wolff1

The impact of past global climate change on local terrestrial ecosystems and their vegetation and soil 
organic matter (OM) pools is often non-linear and poorly constrained. To address this, we investigated 
the response of a temperate habitat influenced by global climate change in a key glacial refuge, Lake 
Ohrid (Albania, Macedonia). We applied independent geochemical and palynological proxies to a 
sedimentary archive from the lake over the penultimate glacial-interglacial transition (MIS 6–5) and 
the following interglacial (MIS 5e-c), targeting lake surface temperature as an indicator of regional 
climatic development and the supply of pollen and biomarkers from the vegetation and soil OM pools 
to determine local habitat response. Climate fluctuations strongly influenced the ecosystem, however, 
lake level controls the extent of terrace surfaces between the shoreline and mountain slopes and hence 
local vegetation, soil development and OM export to the lake sediments. There were two phases of 
transgressional soil erosion from terrace surfaces during lake-level rise in the MIS 6–5 transition that 
led to habitat loss for the locally dominant pine vegetation as the terraces drowned. Our observations 
confirm that catchment morphology plays a key role in providing refuges with low groundwater depth 
and stable soils during variable climate.

Lake sediment records are important environmental archives that record the response of terrestrial habitats to 
global climate change1, 2. Broad-scale changes in vegetation and lake productivity in response to glacial-interglacial 
transitions have been studied in a range of lacustrine settings3–7. However, lakes may not necessarily respond in 
a coherent manner within a region; global and regional trends can be overwhelmed by local aspects of environ-
mental response such as changes in lake level, nutrient fluxes or soil stability7. In this context, the dynamics of the 
quantitatively important soil carbon pool within lacustrine catchments often remain elusive, due to the heteroge-
neous nature of the soil cover and its dependence on local geology and morphology8–10. Novel approaches using 
14C compound-specific isotope analysis show promise in distinguishing delivery of contemporary vs. older OM 
stored in soils and later eroded material11, but these are not appropriate for records older than ca. 50 ka.

Here, we use a combined organic geochemical and palynological approach to investigate a sediment record 
from Lake Ohrid (site Co1202, Fig. 1C), a trans-boundary lake shared between Albania and Macedonia 
(Fig. 1A,B; area 358 km2, maximum depth 293 m, average depth 155 m)12–15 that, together with other intramon-
tane basins in the Western Balkans, formed a key glacial refuge area for deciduous trees16–18. During the penulti-
mate glacial-interglacial transition (Termination II), there was broad-scale vegetation change in this region19, 20,  
which is at the boundary between Mediterranean and north European climatic influence. Trees commonly dom-
inated during warm and moist interglacial conditions, while herbs and grasses were dominant during the cold 
and dry glacial climate20.
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The sediment record covers the period from 140 to 99 ka B.P., in particular, the transition from the penulti-
mate glacial, i.e. marine isotope stage (MIS) 6 to the last peak interglacial, MIS 5e, and the following interstadial 
(5d) and stadial (5c), including the North Atlantic cold events C24 and C23 (112–108.8 and 105.1–102.6 ka, 
respectively)21. The lake is surrounded by mountain ranges (1500–2200 m.a.s.l.) and, with no large river entering 
the basin, its direct catchment is small (1310 km2)22. Hence, processes occurring in the immediate surroundings 
of the basin control the inputs of terrestrial OM to the lake sediments as well as nutrient supply for aquatic bio-
mass production.

Lake level fluctuated substantially over the course of MIS 6 and 5, with evidence for phases of regression 
and transgression exposing or flooding subaquatic terraces at 12, 30 and 60 m below present-day water depth 
(Fig. 1C)14. The lowest lake level of about 60 m below present occurred in MIS 6, but earlier than the oldest sedi-
ment recovered at Co1202. It remains uncertain if the lake-level highstands during MIS 5 exceeded modern lake 
level. Sedimentological11 and archaeological findings23 such as the remains of Neolithic pile dwellings behind the 
modern shoreline in the modern town of Ohrid certainly suggest that lake level was higher than present earlier 
in the Holocene, shaping the floodplains above modern lake level (Fig. 1B,C) and this may well have been the 
case during MIS 5. While Co1202 remained at substantial water depth (currently 145 m) over the course of MIS 
6 and 5, parts of the shoreline would have moved closer to the study site, exposing relatively flat surfaces between 
the lake and the mountain slopes. We demonstrate how it is possible to disentangle the interplay between global 
climate change, vegetation and soil stock dynamics and how these were influenced by local factors, particularly 
lake level and morphology.

Choice of Proxies
Lake surface temperature (LST) changes are primarily controlled by changes in air temperature24. We use the 
TEX86 molecular proxy25, 26 (see Supplementary Materials for details) and the amount of endogenic calcite 
(CaCO3)13 deposited in the sediments to determine relative changes in LST at Lake Ohrid. Changes in the vege-
tation structure are reconstructed through palynological analysis focussing on arboreal (trees plus shrubs) pollen 
types, in particular Pinus spp. (pine), Quercus spp. (oak, deciduous and evergreen) and Abies spp. (fir). For the 
Ohrid Basin, it has been shown that the ACL FA22–26 (average chain length of fatty acids between C22 and C26) is a 

Figure 1.  Location of Lake Ohrid in the Western Balkans (A), morphology and bathymetry of the Ohrid Basin 
and position of study site Co1202, the ICDP coring site DEEP and core JO2004-1 (B) and high-resolution 
bathymetry of the terrace system in Ohrid Bay (C). Plates A-C were generated using Generic Mapping Tools 
(GMT 5.2.1; http://gmt.soest.hawaii.edu), Global Mapper (http://www.bluemarblegeo.com) and Fledermaus 7.0 
(http://www.qps.nl), respectively.

http://gmt.soest.hawaii.edu
http://www.bluemarblegeo.com
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proxy for relative input of soil OM vs. leaf litter, and that the FA/OH25–30 (the ratio of fatty acids to alcohols with 
carbon numbers 25 to 30) reflects the degradation state of soil OM27 (see Supplementary Material for further 
explanation of the proxies). Distributions of alkyl lipids together with bulk28 and compound-specific isotope data 
(see Fig. S2 and Supplementary Materials) suggest that soil OM dominates the lake sediments, with little contri-
bution from phytoplankton or macrophytes.

Results and Discussion
Local climate development.  The LST proxies CaCO3 and TEX86 (Fig. 2) indicate a cold MIS 6 in the Ohrid 
Basin, with warming commencing at ~133 ka. Subsequently, there was a relatively stable and warm climate during 
the full interglacial conditions of MIS 5e, with a temperature maximum around 124 ka. A return to colder con-
ditions occurred during MIS 5d, with cooling starting between 116 and 115 ka, followed by a somewhat muted 
warm phase during MIS 5c.

Short and lower amplitude cold episodes around 110 and 105 ka most likely correspond to the North Atlantic 
cold events C24 and C23, respectively29. The latter coincides with aeolian silt deposition in Central Europe, 
known as the Montaigu Event, while C24 overlaps with the Melisey 1 stadial19, 30, 31. Minima in the CaCO3 record 
also occur at 112.7, 108.3 and 102.0 ka and largely result from the deposition of dated tephras X6 (108.3 ka) and 
TM24a (102.0 ka) and a supply of sand (112.7 ka) diluting the CaCO3. The deposition of the sandy layer probably 
reflects a shift of the shoreline during a lake-level fall, arising from the Atlantic cold event C2519, 31. This can be 
regarded as the regional expression and culmination of the pronounced cooling trend and associated aridification 
starting at about 115 ka. Overall, the climatic development in the Ohrid Basin appears in agreement with the 
general pattern of climatic development recorded in the Northeast Atlantic domain and in central Europe29, 32, 33 
(see also Supplementary Material).

Figure 2.  Records of palynological and organic geochemical data from site Co1202 (Ohrid Bay) from 140 to 99 
thousand calendar years before present (cal. ka BP; BP = 1950) and schematic model of lake-level and habitat 
dynamics across the aridity-humidity cycle from ~137 to ~112 ka (insets A–D). Quercus spp. includes deciduous 
and evergreen species, with the latter typically accounting for less than 5% of the total Quercus pollen. Slightly 
elevated evergreen proportions (>10%, max. 19%) occur between 115 and 111 ka; PAR = pollen accumulation 
rate (grains cm−2 yr−1). CaCO3 data has been published previously13. Blue horizontal lines labelled P11, X6 
and TM24a represent tephra layers used to establish the age model of Co120213, 38; MIS = marine isotope stage, 
T II = Termination II (MIS 6–5 transition), C23–25 = North Atlantic cold events 23–25 corresponding to the 
Central European Montaigu, Melisey 1 and Woillard events (see text for references), IE = Intra-Eemian cold 
event; white arrows mark abrupt shifts in OM quality that represent the reduction of the soil OM pool relative 
to standing vegetation through terrace drowning or exposure and related vegetation changes; numbers 1 and 2 
label the two phases of transgression across the terrace systems in Ohrid Bay and associated soil erosion (brown 
minima in ACL FA22–26), reducing the extent of pine habitat (phase 1) and delivering steppic pollen from the 
preceding vegetation cover (phase 2, maximum in steppic pollen; inset B).

http://S2
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Pollen supply.  Trends in the pollen profile of Co1202 are generally consistent with pollen records from the 
south34 and centre35 of Lake Ohrid, showing an increase in arboreal pollen (Fig. S1 in Supplementary Materials; 
total aboreal pollen excludes Pinus, Betula and Juniperus species) during the warm moist Eemian, relative to the 
cool, dry MIS-6 as seen in numerous other palynological records documenting the adjustment of the continental 
biomes over Central and Southern Europe29, 36, 37. However, between 140 and 135 ka, (MIS 6), the relative amount 
of pine pollen is higher (80–90%) at Co1202 than reported from the basin centre (40–80%)35 or the southern 
margin (pine + juniper: 20–70%)34. At the latter, pollen from steppic species and grasses was substantially more 
abundant (20–40% vs. <10% at Co1202). Thus, the local vegetation cover across the basin seems to have differed; 
in the southern basin, close to low-lying hills to the southeast (Fig. 1B) and south, there may have been areas 
suitable for steppic vegetation, while the catchment of Co1202 in the northeast featured steep mountain slopes as 
well as low-lying plains (terrace surfaces/flood plains, Fig. 1B,C) that apparently supported a larger stock of pine.

At Co1202, the amount of deciduous and evergreen oak pollen started to rise from about 135 ka (Fig. 2), with 
the evergreen species averaging at 5% of the total oak pollen. The onset of this vegetation change was marked 
by a short-term increase in fir pollen of almost 20%, which caused an equivalent drop in the relative amount of 
pine pollen, while grass and steppic pollen were absent (sample “x” in Fig. 2). This “event” is characterised by 
the supply of highly degraded OM (very low FA/OH25–30; Fig. 2; see following chapter) and a distinct peak in the 
pollen accumulation rate (PAR) and likely results from the re-activation of parts of the drainage system due to 
higher rainfall, including influx of soil-stored fir pollen. This first significant change in pollen composition led 
the temperature change as indicated by the LST proxy records (CaCO3, TEX86) by almost 2,000 years, but is con-
sistent with recent sedimentological evidence for changes in hydrology and associated lake-level rise occurring 
throughout the later stages of MIS 638.

At 133 and 131 ka, two distinct peaks in steppic pollen supply (Fig. 2) appear out of phase with the general 
climatic and basin-wide vegetation development, as they occur during the transition towards warmer and more 
humid climatic conditions. The first peak appears driven mainly by the reduction in pine pollen supply, as is the 
concomitant shift towards higher amounts of oak pollen, and coincides with the onset of temperature increase 
and supply of soil OM (phase 1 in Fig. 2). The second peak occurs mid-way through the MIS 6–5 transition, 
where there is clear evidence for substantial soil erosion as indicated by biomarker proxies and the input of silici-
clastic material diluting the carbonate (see following chapter). The steppic pollen is therefore likely to be part of 
the soil fraction re-suspended from an upper terrace surface during lacustrine transgression, while oak and pine 
pollen derived from the contemporary vegetation cover. The high-amplitude shift in the biomarker and CaCO3 
records at 129 ka that indicates a sharp reduction in the supply of degraded soil-derived material coincided with 
a further drop in pine pollen supply, implying that another source area for the latter had disappeared. It seems, 
therefore, that Pinus spp. habitats were successively removed from low-lying terrace surfaces close to Co1202 
through the rise in lake level during the late MIS 6 and into MIS 538. This led to relatively increased contributions 
first from steppic vegetation and oaks as the lowermost terrace drowned, with steppic vegetation remaining on 
the upper terraces and slopes (Fig. 2; phase 1), and then from expanding arboreal vegetation, including pine, and 
steppic pollen stored in eroding soils as a higher terrace drowned (Fig. 2; phase 2). Similar sharp changes in pollen 
composition are associated with phases of lower-amplitude climatic change in the younger record, for example, 
at the termination of the C23 cold event. This may also be explained by lake-level controlled modifications of the 
terrestrial habitat that altered the proportion of terrace and floodplain surface area relative to the mountain slopes 
and, hence, the distribution and relative proportions of associated vegetation. Lake-level change does not appear 
a factor in the modification of the terrestrial habitat in the Co1202 catchment during the mid and late Eemian, i.e. 
from 123 to 117 ka, where a gradual decline in oak and increase in pine pollen is apparent, or after ~103 ka (MIS 
5c) during the gradual expansion of fir. In both cases, the gradual trends in the pollen records reflect the response 
of the vegetation towards gradual cooling as indicated by the LST proxies.

The onset of accelerated cooling at the end of the Eemian (116 ka) is marked by abrupt changes in pine and fir 
pollen supply (Fig. 2) initially favouring pine, followed by a 30% increase in fir pollen supply which maximised at 
this time. Whether or not temporarily enhanced PAR at 118–117 ka, which coincides with a drop in fir pollen and 
enhanced pine pollen supply, are related to an earlier deterioration of the montane habitat is unclear. The onset of 
a similar change to the one observed at 116 ka, with accelerating cooling and a pulse in pine peak pollen, appears 
at the end of the record at 99 ka.

Organic matter pools and interpretation of the sediment record.  The locally calibrated proxies 
ACL FA22–26 and FA/OH25–30 (Fig. 2) reflect changes in the quality of terrestrial OM supplied to site Co1202, with 
lower values indicating enhanced contributions from soil relative to plant litter and more degraded relative to less 
degraded OM, respectively27. They show a seesaw-type pattern and bear little resemblance to the LST records, 
but rather imply abrupt changes in lipid supply from strongly to less degraded soil OM and plant litter followed 
by gradual increases in the contribution of degraded OM (Fig. 2). This pattern suggests a threshold-controlled 
depositional system that nevertheless responds to continuous climate development, since the abrupt changes in 
OM supply are, in nearly all cases, associated with either major (MIS 6–5 transition) or minor (C23–25) climate 
events. Considering the terraced morphology within the catchment of Co1202, lake-level rise would have pro-
vided a mechanism for such a pattern of change in OM sources, equivalent to some of the abrupt changes in pol-
len supply. For example, one of the most pronounced changes in OM quality at phase 2 in Fig. 2, as observed in the 
ACL FA22–26 and FA/OH25–30 profiles, is associated with the beginning and end of the episode of decreased CaCO3 
deposition, reflecting dilution with siliciclastic material derived from soil erosion (the concentration of bio-
genic silica over the whole record never exceeds 8%13). The end of phase 2 (~129 ka) is characterised by a switch 
towards the supply of more litter-type OM, with low amounts of root-derived material (higher ACL FA22–26)  
and less degraded fatty acids (high FA/OH25–30).

http://S1
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Given these observations of changing OM quality as indicators of soil erosion, it is possible to synthesise 
the palynological and geochemical proxy records across the MIS 6–5 transition and to interpret the sediment 
record. From 140–135.2 ky B.P., pine dominated the catchment of Co1202, perhaps with grassy undergrowth or 
open grasslands, while steppic vegetation remained in the background (Fig. 2, inset A). At 135.2 ka, oak habitats 
began to expand, accompanied by an initial activation of the drainage system as indicated by the pulse of highly 
degraded soil OM (minimum in FA/OH25–30) and a stand-alone peak in fir pollen (Fig. 2). This is consistent with 
the continual hydrological change during this period38 and precedes the rapid rise in temperature starting at 133 
ka, at the earliest (increase in CaCO3). At 133 ka, the pine-dominated habitat on the lowest exposed terrace was 
drowned (drop in pine pollen), accompanied by transgressive erosion of soils (Fig. 2: phase “1”, minimum in ACL 
FA22–26) and resulting in a relative increase in oak, grass and steppic pollen supply. The supply of soil OM and 
steppic pollen then reduced for about 1,000 years around 129 ka due to a slow-down in transgressive soil erosion 
(increased CaCO3, ACL22–26 FA, FA/OH25–30) while lake-level rose across the slope of the next higher terrace and 
pine successively replaced steppic vegetation (increase in pine pollen, substantial decrease in steppic pollen, small 
relative decrease in oak pollen). Between 131 and 129 ka, transgressive erosion of more degraded soils from the 
upper terrace is evident (phase “2”, minima in biomarker proxies and CaCO3; see inset B in Fig. 2) that apparently 
also supplied significant amounts of soil-stored pollen from the former steppic vegetation. By 127.8 ka, the lake 
level had maximised with all terraces drowned, so plant litter from the slopes became the main source of OM 
(inset C in Fig. 2). At this stage, a substantial soil pool on the slopes had not yet developed.

Over the following 10,000 years, the supply of degraded soil OM (FA/OH25–30) and subsurface biomass (ACL 
FA22–26) steadily increased as soils accumulated under forest vegetation. This is illustrated by the decreasing trends 
in FA/OH25–30 and ACL FA22–26 (Fig. 2). There was a gradual decline in oak and increase in pine pollen supply 
between 128 and 116 ka suggesting vegetation change in response to steady Eemian cooling, as observed in several 
southern and central European Eemain pollen records39, which was potentially disrupted by the Intra-Eemian 122 
ka cold climate anomaly40. With more severe climate deterioration setting in at 116 ka BP, a significant vegetation 
change is first indicated by a pulse in pine pollen supply followed by a shift towards substantially higher fir and an 
equivalent drop in pine pollen supply. From 114.9 ka, soil erosion appeared to increase and substantial amounts 
of soil OM reached site Co1202 by 113 ka (minimum in ACL FA22–26). This is consistent with a significant drop in 
lake level (inset D in Fig. 2) bringing the shoreline closer to the site14 as indicated by the supply of sandy material 
and eroded former lake sediments from the terrace surfaces that apparently also contributed GDGTs carrying an 
elevated LST signal from the preceding lake-level highstand (increased TEX86). This episode probably relates to 
the C25 cold event and marks the end of MIS 5e, or the “Eemian”, in our record.

Following this highly dynamic change, the ecosystem briefly stabilised, with reduced soil erosion (switch to 
higher ACL FA22–26 and FA/OH25–30) and vegetation establishing on the lowest terrace exposed at the time. There 
were only minor fluctuations in pollen supply between 115 ka and the onset of the C24 cold event after 111 ka 
even though soil OM supply had changed dramatically during C25, suggesting that soil OM and pollen derived 
from the same habitats and that the relative proportions of these did not change significantly. The proportions did 
change over the course of the C24 event and coincided with the supply of slightly more degraded OM, suggesting 
that a pine-dominated habitat is destabilised. Between C24 and C23, the carbonate record suggests warming 
towards MIS 5c, while the pollen records and FA/OH25–30 show a similar pattern as in phase 2 in the MIS 6–5 
transition, with a small peak in steppic pollen supply coinciding with a drop in pine pollen supply and an increase 
in OM degradation. Assuming that lake level was rising, following the lowstand at 113 ka, these fluctuations 
probably resulted from lake-level controlled habitat modifications. At the end of C23, another rapid change in 
OM quality and LST is recorded, in a similar way to the development of the MIS 6–5 transition, albeit with lower 
amplitude and without disruption, which suggests that from 113 to 105 ka lake-level rise may have drowned only 
one terrace level.

Conclusions
Records of carbonate precipitation and biomarker-based lake surface water temperature (TEX86) reflect the cli-
matic development during the last glacial-interglacial transition and marine isotope stages (MIS) 5c-e (140–
99 ka B.P.) at Lake Ohrid and reveal a strong relation to NE Atlantic climate (see Supplementary Material for NE 
Atlantic isotope record). By contrast, due to the location of sediment core Co1202 and its vicinity to a sequence 
of extended terrace systems, the records of biomarker composition and pollen supply are to a significant extent 
shaped by local terrestrial habitat dynamics in the catchment, specifically, the exposure and drowning of terrace 
surfaces. The distributions of different types of soil cover appear crucial in the supply of OM as reflected in the 
biomarker records. It appears that the terrace surfaces of the Ohrid Basin allowed forest vegetation to persist 
through periods of falling lake level in areas with low groundwater depth and stable soil cover, in contrast to 
the basin as a whole where steppic vegetation expanded to much larger extent during arid climatic conditions. 
Our approach demonstrates that combining proxies sensitive to vegetation as well as soil pool changes enables 
detailed reconstruction of terrestrial habitat dynamics and underlines the importance of soils as OM sources to 
environmental archives.

Material and Methods
The sedimentary archive of site Co1202.  The sediment sequence of site Co1202 is a 15 m compos-
ite record of piston cores taken in 2007 from 145 m water depth in the north-eastern part of Lake Ohrid (41° 
5′36.91″N; 20°46′2.93″E) about 2.5 km from the shoreline. The sediments are formed of clayey to sandy silts. The 
stratigraphy of Co1202 is based on tephrochronology and radiocarbon dates that have been described in detail 
elsewhere13. The error for the ages of the TM24a and X6 tephra layers is ±2 ka. The age of the P11 tephra, the 
oldest in the Co1202 sediment sequence, has recently been reassessed as 133.5 ± 2 ka B.P. as well as the identity of 
the TM24a tephra38. The age model used in this study has been adjusted accordingly.
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Elemental analysis.  The determination of CaCO3 and total organic carbon (TOC, see Supplementary 
Materials) have been described and the data reported previously13.

Biomarkers and pollen.  Lipid biomarkers were extracted from freeze-dried and homogenised sediment 
samples by accelerated solvent extraction (ASE) and analysed by liquid chromatography-mass spectrometry 
(LC-MS, for GDGTs) and gas chromatography-mass spectrometry (GC-MS, for alkyl lipids). For pollen analyses, 
samples (1 cm3) with added tablets of Lycopodium spores were treated with HCl (30% v/v) for the removal of car-
bonates, KOH (10% w/v) for the removal of organic debris, HF (40% v/v) for the removal of silicates followed by 
acetolysis. Detailed methodologies are given in the Supplementary Material.

Data availability.  The proxy data generated during this study can be found in appendices to the 
Supplementary Materials. All primary data generated are available through the PANGAEA data repository, 
https://www.pangaea.de.
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